Laboratory and Field Trials to Identify Sustainable Chemical Control Strategies for Trioza erytreae in European Citrus Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insecticides and Adjuvant
2.2. Insecticide Effect on T. erytreae in Semi-Field Conditions
2.2.1. Trial Location
2.2.2. Insect Source and Inoculation
2.2.3. Experimental Design, Treatments, and Psyllid Assessment
2.3. Insecticide Effect on T. erytreae in Field Conditions
2.3.1. Trial Location
2.3.2. Experimental Design, Treatments, and Psyllid Assessment
2.4. Acute Toxicity of Insecticides to T. dryi
2.4.1. Effect on T. dryi Pupae
2.4.2. Effect on T. dryi Adults
2.5. Data Analysis
3. Results
3.1. Evaluation of the Combination of Five Insecticides with an Organic Adjuvant on T. erytreae under Semi-Field Conditions
3.2. Evaluation of the Combination of Five Insecticides with an Organic Adjuvant on T. erytreae under Field Conditions
3.3. Effect of the Combination of Five Insecticides with and without an Organic Adjuvant on T. dryi
3.3.1. Evaluation of Treatments on T. dryi Pupae
3.3.2. Evaluation of Treatments on T. dryi Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations. 2021. Available online: http://www.fao.org/faostat/es/#home (accessed on 29 June 2021).
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Bové, J.M.; Ayres, A.J. Etiology of three recent diseases of citrus in São Paulo State: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life 2007, 59, 346–354. [Google Scholar] [CrossRef]
- Gottwald, T.R. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 2010, 48, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Ichinose, K.; Hoa, N.V.; Bang, D.V.; Tuan, D.H.; Dien, L.Q. Limited efficacy of guava interplanting on citrus greening disease: Effectiveness of protection against disease invasion breaks down after one year. Crop Prot. 2012, 34, 119–126. [Google Scholar] [CrossRef]
- Jagoueix, S.; Bove, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. Int. J. Syst. Bacteriol. 1994, 44, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Fuentes, L.M.; Urias-López, M.A.; López-Arroyo, J.I.; Gómez-Jaimes, R.; Bautista-Martínez, N. Control químico de Diaphorina citri Kuwayama (Hemíptera: Psyllidae) en lima persa Citrus latifolia Tanaka. Rev. Mex. Cien. Agríc. 2012, 3, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Powell, C.A.; Duan, Y.; Shatters, R.G.; Lin, Y.; Zhang, M. Mitigating citrus huanglongbing via effective application of antimicrobial compounds and thermotherapy. Crop Prot. 2016, 84, 150–158. [Google Scholar] [CrossRef]
- CABI. 2021. Available online: https://www.cabi.org/isc/datasheet/16567 (accessed on 15 March 2020).
- EPPO. European and Mediterranean Plant Protection Organization. 2021. Available online: https://gd.eppo.int/ (accessed on 15 March 2021).
- Bové, J.M. Huanglongbing or yellow shoot, a disease of Gondwanan origin: Will it destroy citrus worldwide? Phytoparasitica 2014, 42, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Bové, J.M.; Durán-Vila, N. ¿El huanglongbing va a destruir la citricultura mediterránea? Phytoma España 2016, 277, 18–28. [Google Scholar]
- López, M.M.; Marco-Noales, E.; Bertolini, E. Aumenta el riesgo de huanglongbing, causado por Candidatus Liberibacter spp., que supone la mayor amenaza actual para la citricultura española. Phytoma España Rev. Prof. Sanid. Veg. 2015, 270, 32–34. [Google Scholar]
- Siverio, F.; Marco-Noales, E.; Bertolini, E.; Teresani, G.R.; Peñalver, J.; Mansilla, P.; Aguín, O.; Pérez-Otero, R.; Abelleira, A.; Guerra-García, J.A.; et al. Survey of huanglongbing associated with “Candidatus Liberibacter” species in Spain: Analyses of citrus plants and Trioza erytreae. Phytopathol. Mediterr. 2017, 56, 98–110. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Bassanezi, R.B.; Paulo, S. Citrus Huanglongbing: The pathogen and its impact. Plant Health Prog. 2007, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Ajene, I.J.; Khamis, F.; Mohammed, S.; Rasowo, B.; Ombura, F.L.; Pietersen, G.; van Asch, B.; Ekesi, S. First report of field population of Trioza erytreae carrying the Huanglongbing-associated pathogen, Candidatus Liberibacter asiaticus, in Ethiopia. Plant Dis. 2019, 103, 1766. [Google Scholar] [CrossRef]
- Van den Berg, M.A. The citrus pyslla, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae): A review. Agric. Ecosyst. Environ. 1990, 30, 171–194. [Google Scholar] [CrossRef]
- EPPO Global Database. 2021. Available online: https://gd.eppo.int/ (accessed on 15 March 2021).
- González Hernández, A. Trioza erytreae (Del Guercio 1918): Nueva plaga de los citricos en Canarias. Phytoma España Rev. Prof. Sanid. Veg. 2003, 153, 112–118. [Google Scholar]
- Pérez-Otero, R.; Mansilla, J.P.; Del Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio, 1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arq. Entomolóxicos 2015, 13, 119–122. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- Cocuzza, G.E.M.; Urbaneja, A.; Hernández-Suárez, E.; Siverio, F.; Di Silvestro, S.; Tena, A.; Rapisarda, C. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. J. Pest Sci. 2016, 90, 1–17. [Google Scholar] [CrossRef]
- Urbaneja-Bernat, P.; Pérez-Rodríguez, J.; Krüger, K.; Catalán, J.; Rizza, R.; Hernández-Suárez, E.; Urbaneja, A.; Tena, A. Host range testing of Tamarixia dryi (Hymenoptera: Eulophidae) sourced from South Africa for classical biological control of Trioza erytreae (Hemiptera: Psyllidae) in Europe. Biol. Control 2019, 135, 110–116. [Google Scholar] [CrossRef]
- Monzo, C.; Stansly, P.A. Economic injury levels for Asian citrus psyllid control in process oranges from mature trees with high incidence of huanglongbing. PLoS ONE 2017, 12, e0175333. [Google Scholar] [CrossRef] [Green Version]
- Rizza, R.; Hernández-Suárez, E.; Perera, S.; Quinto, J.; Hervalejo, A.; Siverio, F.; Arenas-Arenas, F.J. Evaluación de la eficacia de estrategias de manejo químico para el control de Trioza erytreae (Hemiptera: Triozidae) en España. Levante Agrícola Rev. Int. cítricos 2019, 446, 65–70. [Google Scholar]
- EU law—EUR-Lex. Access to European Union Law. 2021. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 25 June 2021).
- Tiwari, S.; Mann, R.S.; Rogers, M.E.; Stelinski, L.L. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag. Sci. 2011, 67, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Dávila Medina, M.D.; Cerna Chávez, E.; Aguirre Uribe, L.A.; García Martínez, O.; Ochoa Fuentes, Y.M.; Gallegos Morales, G.; Landeros Flores, J. Susceptibilidad y mecanismos de resistencia a insecticidas en Bactericera cockerelli (Sulc.) en Coahuila, México. Rev. Mex. Cien. Agríc. 2012, 3, 1145–1155. [Google Scholar]
- Tiwari, S.; Clayson, P.J.; Kuhns, E.H.; Stelinski, L.L. Effects of buprofezin and diflubenzuron on various developmental stages of Asian citrus psyllid, Diaphorina citri. Pest Manag. Sci. 2012, 68, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Killiny, N.; Stelinski, L.L. Dynamic insecticide susceptibility changes in Florida populations of Diaphorina citri (Hemiptera: Psyllidae). J. Econ. Entomol. 2013, 106, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grafton-Cardwell, E.E.; Stelinski, L.L.; Stansly, P.A. Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu. Rev. Entomol. 2013, 58, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, J.A.; Kostyk, B.C.; Stansly, P.A. Insecticidal suppression of asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of huanglongbing pathogens. PLoS ONE 2014, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, J.A.; Stansly, P.A. Integrated approaches for managing the Asian citrus psyllid Diaphorina citri (Homoptera: Psyllidae) in Florida. In Proceedings of the Florida State Horticultural Society, Lake Alfred, FL, USA, 2007; Volume 120, pp. 110–115. [Google Scholar]
- Vega-Gutierrez, M.T.; Rodriguez-Maciel, C.J.; Diaz-Gomez, O.; Bujanos-Muniz, R.; Mota-Sanchez, D.; Martinez-Carrillo, L.J.; Lagunes-Tejeda, A.; Garzon-Tiznado, J.A. Susceptibility to insecticides in two Mexican populations of tomato-potato psyllid, Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Agrociencia 2008, 42, 463–471. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Bakırcı, G.T.; Yaman Acay, D.B.; Bakırcı, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef]
- Hoganson, D.A.; Stahly, D.P. Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J. Bacteriol. 1975, 124, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Catling, H.D. The bionomics of the South African citrus psylla, Trioza erytreae (Del Guercio) (Homoptera: Psyllidae). 1. The influence of the flushing rhythm of citrus and factors which regulate flushing. J. Entomol. Soc. South. Afr. 1969, 32, 273–290. [Google Scholar]
- Mc Daniel, J.R.; Moran, V.C. The parasitoid complex of the citrus psylla Trioza erytreae (Del Guercio) [Homoptera: Psyllidae]. Entomophaga 1972, 17, 297–317. [Google Scholar] [CrossRef]
- Van den Berg, M.A.; Greenland, J. Tamarixia dryi, parasitoid of the citrus psylla, Trioza erytreae: A review. Afr. Plant Prot. 2000, 6, 25–28. [Google Scholar]
- Tamesse, J.L.; Messi, J. Incidence de Trioza erytreae (del Guercio) (Homoptera: Triozidae), psylle vecteur du greening sur la sensibilité des plantules d’agrumes dans une pépinière au Cameroun. Int. J. Trop. Insect Sci. 2002, 22, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rodríguez, J.; Krüger, K.; Pérez-Hedo, M.; Ruíz-Rivero, O.; Urbaneja, A.; Tena, A. Classical biological control of the African citrus psyllid Trioza erytreae, a major threat to the European citrus industry. Sci. Rep. 2019, 9, 9440. [Google Scholar] [CrossRef]
- Etienne, J.; Aubert, B. Biological control of psyllid vectors of greening disease on Reunion Island. In Proceedings of the 8th International Organization of Citrus Virologists, International Organization of Citrus Virologists; University of California: Riverside, CA, USA, 1980; Volume 8, pp. 118–121. [Google Scholar]
- Aubert, B.; Quilici, S. Monitoring adult psyllas on yellow traps in Reunion Island. In Proceedings of the International Organization of Citrus Virologists Conference Proceedings (1957–2010); University of California: Riverside, CA, USA, 1988; Volume 10, pp. 249–254. [Google Scholar]
- Fernandes, A.; Aguiar, A.M.F. Situação actual das pragas dos citrinos Toxoptera citricida (Kirkaldy) e Trioza erytreae (Del Guercio) na Região Autónoma da Madeira. In Proceedings of the Actas do Congreso Nacional de Citricultura, Faro, Portugal; 2002; Volume 4, pp. 621–627. Available online: https://www.researchgate.net/publication/233819620_Situacao_actual_das_pragas_dos_citrinos_Toxoptera_citricida_Kirkaldy_e_Trioza_erytreae_Del_Guercio_na_Regiao_Autonoma_da_Madeira (accessed on 1 September 2021).
- Hernández-Suárez, E.; Pérez-Rodríguez, J.; Suárez-Méndez, L.; Urbaneja-Bernat, P.; Rizza, R.; Siverio, F.; Piedra-Buena, A.; Urbaneja, A.; Tena, A. Control de Trioza erytreae en las Islas Canarias por el parasitoide Tamarixia dryi. Phytoma España. Rev. Prof. Sanid. Veg. 2020, 319, 28–32. [Google Scholar]
- Bueso, G. Primeras sueltas experimentales de Tamarixia dryi en la península. Phytoma España Rev. Prof. Sanid. Veg. 2020, 315, 16–17. [Google Scholar]
- Yamamoto, P.T.; Alves, G.R.; Beloti, V.H. Manejo e controle do huanglongbing (HLB) dos cítricos. Investig. Agrar. 2015, 16, 69–82. [Google Scholar]
- Hall, D.G.; Nguyen, R. Toxicity of pesticides to Tamarixia radiata, a parasitoid of the Asian citrus psyllid. BioControl 2010, 55, 601–611. [Google Scholar] [CrossRef]
- Interactive MoA Classification|Insecticide Resistance Action Committee (IRAC). Available online: https://irac-online.org/modes-of-action/ (accessed on 10 May 2021).
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. Available online: https://www.r-project.org/ (accessed on 22 December 2020).
- de Mendiburu, F. Statistical Procedures for Agricultural Research; Package “Agricolae”, Version 1.4-4, Comprehensive R Archive Network; Institute for Statistics and Mathematics: Vienna, Austria, 2013. [Google Scholar]
- Hassan, S.A.; Bigler, F.; Bogenschütz, H.; Boller, E.; Brun, J.; Calis, J.N.M.; Coremans-Pelseneer, J.; Duso, C.; Grove, A.; Heimbach, U.; et al. Results of the sixth joint pesticide testing programme of the IOBC/WPRS-working group «pesticides and beneficial organisms». Entomophaga 1994, 39, 107–119. [Google Scholar] [CrossRef]
- Beloti, V.H.; Alves, G.R.; Araújo, D.F.D.; Picoli, M.M.; Moral, R.D.A.; Demétrio, C.G.B.; Yamamoto, P.T. Lethal and sublethal effects of insecticides used on citrus, on the ectoparasitoid Tamarixia radiata. PLoS ONE 2015, 10, e0132128. [Google Scholar] [CrossRef] [Green Version]
- Van de Veire, M.; Sterk, G.; Van der Staaij, M.; Ramakers, P.M.J.; Tirry, L. Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus. BioControl 2002, 47, 101–113. [Google Scholar] [CrossRef]
- Aubert, B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psyllidae), the two vectors of citrus greening disease: Biological aspects and possible control strategies. Fruits 1987, 42, 149–162. [Google Scholar]
- Srinivasan, R.; Hoy, M.A.; Singh, R.; Rogers, M.E. Laboratory and field evaluations of Silwet L-77 and kinetic alone and in combination with imidacloprid and abamectin for the management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Florida Entomol. 2008, 91, 87–100. [Google Scholar] [CrossRef]
- Tiwari, S.; Stelinski, L.L. Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag. Sci. 2013, 69, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Sattelle, D.B.; Cordova, D.; Cheek, T.R. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebr. Neurosci. 2008, 8, 107–119. [Google Scholar] [CrossRef] [PubMed]
Active Ingredient | Trade Name | PSA/MoA | Chemical Subgroup | Concentration/Formulation | Manufacturer |
---|---|---|---|---|---|
dimethoate | Perfekthion Top® | AChE|inhibitor | 1B Organophosphate | 40% EC | BASF |
L. cyhalothrin | Kenotrin® | VGSC|modulator | 3A Pyrethroid | 2.5% WG | Kenogard |
acetamiprid | Epik® | nAChR|antagonist | 4A Neonicotinoid | 20% SG | Sipcam Iberia |
flonicamid | Teppeki® | CO|modulator | 9C Pyridine | 50% WG | Belchim Crop Protection |
cyantraniliprole | Minecto Alpha® | Rr|modulators | 28 Diamides | 10% SE | Syngenta |
Pine oil | Retenol® | EC | Daymsa |
Treatment | Dose |
---|---|
Control | |
Pine oil | 100 cc of a.i./hl |
dimethoate | 150 cc of a.i./hl |
dimethoate + pine oil | 150 cc of a.i./hl + 100 cc of a.i./hl |
L. cyhalothrin | 80 g of a.i./hl |
L. cyhalothrin + pine oil | 80 g of a.i./hl + 100 cc of a.i./hl |
acetamiprid | 50 g of a.i./hl |
acetamiprid + pine oil | 50 g of a.i/hl + 100 cc of a.i./hl |
flonicamid | 5 g of a.i./hl |
flonicamid + pine oil | 5 g of a.i./hl + 100 cc of a.i./hl |
cyantraniliprole | 125 cc of a.i./hl |
cyantraniliprole + pine oil | 125 cc of a.i./hl + 100 cc of a.i./hl |
Treatment | PM (%) ± SE | ||||
---|---|---|---|---|---|
5 daa | 7 daa | 14 daa | 21 daa | 28 daa | |
Pine oil | 17.86 ± 8.62 ns | 23.87 ± 11.48 ns | 27.47 ± 12.52 d | 23.61 ± 10.56 e | 25.65 ± 11.61 e |
dimethoate | 44.13 ± 11.01 ns | 50.89 ± 16.13 ns | 56.11 ± 13.31 bc | 75.21 ± 9.21 abc | 77.46 ± 10.04 abc |
dimethoate + pine oil | 52.30 ± 15.58 ns | 68.44 ± 10.58 ns | 73.61 ± 8.61 abc | 79.17 ± 0.09 abc | 88.87 ± 3.61 ab |
L. cyhalothrin | 43.28 ± 13.65 ns | 47.98 ± 13.56 ns | 54.78 ± 9.78 bc | 61.81 ± 9.94 cd | 65.04 ± 5.67 cd |
L. cyhalothrin + pine oil | 66.20 ± 7.33 ns | 74.50 ± 5.31 ns | 77.01 ± 4.07 ab | 80.73 ± 5.34 abc | 79.13 ± 4.89 abc |
acetamiprid | 63.05 ± 13.17 ns | 72.77 ± 13.46 ns | 78.55 ± 8.19 ab | 87.33 ± 4.75 ab | 91.30 ± 2.96 a |
acetamiprid + pine oil | 48.85 ± 11.44 ns | 59.37 ± 8.55 ns | 60.65 ± 7.56 bc | 69.79 ± 5.59 bcd | 70.09 ± 5.74 bcd |
flonicamid | 42.05 ± 14.34 ns | 43.04 ± 14.81 ns | 49.54 ± 12.89 cd | 49.48 ± 11.87 d | 53.94 ± 13.16 d |
flonicamid + pine oil | 46.98 ± 12.34 ns | 49.71 ± 10.23 ns | 55.25 ± 8.55 bc | 68.06 ± 8.80 bcd | 66.43 ± 8.79 cd |
cyantraniliprole | 59.10 ± 14.64 ns | 67.63 ± 14.10 ns | 71.76 ± 11.76 abc | 81.42 ± 11.06 abc | 92.00 ± 3.91 a |
cyantraniliprole + pine oil | 70.20 ± 14.48 ns | 74.06 ± 14.92 ns | 88.73 ± 6.41 a | 97.05 ± 2.09 a | 98.09 ± 1.91 a |
Treatment | PM (%) ± SE | |||
---|---|---|---|---|
7 daa | 14 daa | 21 daa | 28 daa | |
Pine oil | 16.00 ± 0.34 e | 18.15 ± 6.62 g | 24.25 ± 7.50 e | 27.56 ± 7.64 d |
dimethoate | 38.39 ± 3.82 abc | 59.83 ± 6.37 abc | 82.58 ± 3.13 abc | 87.48 ± 1.92 ab |
dimethoate + pine oil | 42.73 ± 6.43 ab | 65.70 ± 5.83 ab | 86.16 ± 2.98 ab | 91.85 ± 2.08 a |
L. cyhalothrin | 28.76 ± 7.22 bcde | 40.43 ± 4.67 def | 56.42 ± 8.01 d | 59.02 ± 7.79 c |
L. cyhalothrin + pine oil | 19.88 ± 5.34 de | 44.38 ± 3.10 cde | 67.53 ± 5.28 cd | 82.53 ± 2.96 ab |
acetamiprid | 34.58 ± 5.56 abcd | 58.12 ± 6.64 abcd | 74.81 ± 5.13 abc | 80.42 ± 3.88 ab |
acetamiprid + pine oil | 27.09 ± 6.05 bcde | 56.40 ± 5.31 abcd | 72.08 ± 5.87 bcd | 76.10 ± 6.09 b |
flonicamid | 24.86 ± 8.34 cde | 24.58 ± 7.86 fg | 33.41 ± 8.19 e | 29.45 ± 7.55 d |
flonicamid + pine oil | 27.70 ± 5.07 bcde | 27.25 ± 5.63 efg | 30.61 ± 6.97 e | 38.06 ± 7.86 d |
cyantraniliprole | 28.34 ± 3.16 bcde | 51.82 ± 5.37 bcd | 76.63 ± 4.71 abc | 90.10 ± 2.11 ab |
cyantraniliprole + pine oil | 46.57 ± 6.82 a | 71.43 ± 4.69 a | 88.95 ± 2.64 a | 93.74 ± 1.92 a |
Treatment | PM (%) ± SE|Class | |||
---|---|---|---|---|
3 haa | 7 daa | 14 daa | 21 daa | |
Pine oil | 9.06 ± 3.61 d|1 | 5.66 ± 1.93 d|1 | 8.05 ± 2.56 ns|1 | 7.21 ± 2.69 c|1 |
dimethoate | 94.57 ± 4.38 a|4 | 36.54 ± 9.55 a|2 | 10.82 ± 3.80 ns|1 | 19.37 ± 5.37 abc|1 |
dimethoate + pine oil | 91.30 ± 4.35 a|4 | 33.18 ± 5.39 ab|2 | 13.11 ± 5.86 ns|1 | 15.14 ± 4.95 bc|1 |
L. cyhalothrin | 13.77 ± 4.00 cd|1 | 35.22 ± 7.64 ab|2 | 20.90 ± 5.81 ns|1 | 33.11 ± 5.73 a|2 |
L. cyhalothrin + pine oil | 25.00 ± 8.86 bc|2 | 22.17 ± 6.15 abc|1 | 12.13 ± 4.60 ns|1 | 29.50 ± 6.12 ab|2 |
acetamiprid | 31.88 ± 8.48 b|2 | 21.54 ± 6.74 abcd|1 | 19.54 ± 3.46 ns|1 | 26.80 ± 6.75 ab|2 |
acetamiprid + pine oil | 30.43 ± 7.18 b|2 | 19.21 ± 5.90 bcd|1 | 31.56 ± 10.35 ns|2 | 10.36 ± 5.35 c|1 |
flonicamid | 6.16 ± 3.23 d|1 | 10.38 ± 4.84 cd|1 | 11.48 ± 5.24 ns|1 | 11.04 ± 3.89 c|1 |
flonicamid + pine oil | 11.59 ± 3.87 cd|1 | 15.72 ± 4.30 cd|1 | 9.29 ± 3.30 ns|1 | 17.79 ± 4.17 abc|1 |
cyantraniliprole | 9.78 ± 4.18 d|1 | 13.21 ± 4.39 cd|1 | 18.58 ± 5.64 ns|1 | 31.08 ± 8.28 ab|2 |
cyantraniliprole + pine oil | 4.71 ± 9.96 d|1 | 15.44 ± 6.14 cd|1 | 5.96 ± 3.99 ns|1 | 16.22 ± 5.61 bc|1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionisio, M.A.; Hernández-Suárez, E.; Siverio, F.; Arjona-López, J.M.; Hervalejo, A.; Arenas-Arenas, F.J. Laboratory and Field Trials to Identify Sustainable Chemical Control Strategies for Trioza erytreae in European Citrus Orchards. Agronomy 2021, 11, 1982. https://doi.org/10.3390/agronomy11101982
Dionisio MA, Hernández-Suárez E, Siverio F, Arjona-López JM, Hervalejo A, Arenas-Arenas FJ. Laboratory and Field Trials to Identify Sustainable Chemical Control Strategies for Trioza erytreae in European Citrus Orchards. Agronomy. 2021; 11(10):1982. https://doi.org/10.3390/agronomy11101982
Chicago/Turabian StyleDionisio, Miguel A., Estrella Hernández-Suárez, Felipe Siverio, Juan M. Arjona-López, Aurea Hervalejo, and Francisco J. Arenas-Arenas. 2021. "Laboratory and Field Trials to Identify Sustainable Chemical Control Strategies for Trioza erytreae in European Citrus Orchards" Agronomy 11, no. 10: 1982. https://doi.org/10.3390/agronomy11101982
APA StyleDionisio, M. A., Hernández-Suárez, E., Siverio, F., Arjona-López, J. M., Hervalejo, A., & Arenas-Arenas, F. J. (2021). Laboratory and Field Trials to Identify Sustainable Chemical Control Strategies for Trioza erytreae in European Citrus Orchards. Agronomy, 11(10), 1982. https://doi.org/10.3390/agronomy11101982