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Abstract: Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type
environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and
prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding
efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these
abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from
interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and
Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and
heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi,
S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The
combined analysis of variance showed the highly significant effects of genotypes, environments, and
genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha),
heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four
wild parents combined productivity and stability, making them suitable for unpredictable climatic
conditions. A significant advantage in yield and stability was observed in Haurani derivatives
compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5
derivatives; they had improved yield under unfavorable environments while maintaining the high
yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited
number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a
breeding pipeline. Comparing different stability approaches showed that some of them can be used
interchangeably; others can be complementary to combine broad adaption with higher yield.

Keywords: durum wheat; crop wild relatives; yield stability; genotype by environment interaction

1. Introduction

Durum wheat (Triticum turgidum subsp. durum (Desf.)) is an important cereal cul-
tivated worldwide with an annual production of 40 million tones [1]. Its importance
worldwide is the result of its grain characteristics, which make it suitable to develop var-
ious products namely, pasta, couscous, and burghul among others [2]. Most of the area
cultivated with durum wheat is in the Mediterranean region, accounting for 60% of global
production [3].

Durum wheat is generally grown under the rainfed conditions of the semi-arid regions,
where it is exposed to several biotic and abiotic stresses [1,4]. For instance, Hessian fly
(Mayetiola destructor), a major pest for wheat in North America and the temperate Mediter-
ranean drylands, can cause significant yield losses of more than 30% in Morocco [5,6]. Dis-
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eases such as leaf rust, stem rust and root rot are important in west Asia and north Africa [7].
Their economic impact has been documented [8,9], and new, more virulent strains of leaf
rust and stripe rust are emerging in Europe, especially in France and Spain [10,11]. In terms
of abiotic stresses, drought and high temperatures decrease wheat yields worldwide and
their frequency is expected to increase under climate change [12–14].

These stresses, combined with different crop management practices, increase genotype-
by-environment interactions (GEI) and affect yield stability [15–17]. Between 1985 and 2017,
changes in climatic conditions accounted for 70% of the year to year variation in GEI and
crossover interactions GEI for bread and durum wheat yields [18]. Crossover interactions
imply changes in genotype rankings, and reduce the selection efficiency for superior and
stable genotypes. In fact, low stability has been recognized as an important factor in the
gap between potential and actual yield [19–21]. Breeding stable genotypes with high yield
potential therefore becomes essential for the sustainable production of durum wheat under
variable environments [22].

Coping with high environmental variation requires germplasm with high plasticity,
which can be supplied by crop wild relatives [23,24]. Durum wheat has a rich gene pool
that has been used extensively in breeding for yield, pest, disease resistance, and end use
quality [25,26]. Triticum dicoccoides was identified as a source of resistance to leaf rust and
stripe rust, and for improved concentrations of protein, zinc, and iron [27–30]. Resistance
to leaf rust, stripe rust, stem rust, powdery mildew and wheat blast was introgressed from
several Aegilops and wild Triticum species from the primary, secondary, and tertiary wheat
gene pool (Triticum monococcum subsp. Aegilopoides, Triticum urartu, Aegilops speltoides,
Aegilops sharonensis, Aegilops kotschyi, Aegilops tauschii and Aegilops ventricosa) [31–37]. Hes-
sian fly resistance was identified in Aegilops tauschii, Aegilops geniculata, Aegilops ventricosa,
Aegilops cylindrica, Aegilops neglecta and Triticum araraticum [38,39]. Drought adaptive traits
were identified in Triticum dicoccoides and Aegilops tauschii [29,40], and tolerance to high
temperature was found in Aegilops geniculata, Aegilops speltoides and Aegilops longissima [41].
The mobilization of these traits into a cultivated gene pool through pre-breeding can
improve wheat productivity, resilience, and genetic diversity simultaneously [42,43].

In addition to harnessing diversity, several statistical approaches have been suggested
to account for GEI and select stable genotypes. The regression coefficient (Bi) and the
squared deviation from regression (S2di) [44,45] are widely used to measure phenotypic
stability. Wricke ecovalence (Wi2) [46] and stability variance (σi

2) [47] have also been
suggested, to make selections based on the contribution of each genotype to the GEI. These
two approaches are similar for the ranking of genotypes [48]. Francis and Kannenberg [49]
recommended the coefficient of variation (CV), while environment variance (EV) was
proposed by Roemer [50] (cited by (Becker and Leon [48]) to select stable genotypes based
on low variance. Genotypic superiority (Pi) [51] uses the mean squared distance between
each genotype and the maximum response in each environment as a stability measure.
These approaches rely on absolute data, and on the assumption of normal distribution and
homogeneity of the variance. Non-parametric stability approaches are suggested based on
genotype ranking with no assumptions related to data distribution. Four non-parametric
indices are recommended by Huehn [52] and Nassar and Huehn [53]. Si1 is the mean of
absolute rank difference over environment, Si2 is the variance of the ranks, Si3 is the sum of
absolute deviations and Si6 is the relative sum of squares of rank for genotype.

The additive main effects and multiplicative interaction (AMMI) [54,55] is a multivari-
ate model that is used extensively to analyze multi-environment trials with complex GEI
structures. Several stability indices are derived from the AMMI model using interaction
principal components [56–58]. Recently, Olivoto et al. [59] suggested the use of weighed
averages of absolute scores (WAAS) as a multivariate analysis technique using mixed
models. The derived superiority index (WAASY) offers the flexibility to balance stability
and productivity, based on the population and the objective of the selection.

These different parameters select stable genotypes based on two stability concepts. The
“biological concept” selects genotypes which have consistent performance with minimal
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variation across environments. In general, these genotypes will not respond to improve-
ment in the environmental conditions, nor increase the yield in favorable environments.
The “agronomic concept” defines a stable genotype as one with the minimum contribution
to the GEI. According to the agronomic concept, stable genotypes will respond to change
in the environments [48].

This research was conducted to study the contribution of durum wheat wild relatives
to yield stability under different environments characterized by drought, heat, and disease
pressure, and under optimal conditions. Different stability approaches were used to charac-
terize both the germplasm stability and the relationships between the testing environments.

2. Materials and Methods
2.1. Plant Material

The germplasm tested here is composed of 67 lines of backcrossing populations
derived from interspecific crosses of two durum wheat cultivars (Haurani and Cham5) with
four wild wheat progenitors. 29 lines were derived from hybridization with the tetraploid
progenitor (Triticum turgidum subsp. dicoccoides (syn. Triticum dicoccoides), and 47 lines
from crosses with the three diploid ancestors Triticum monococcum subsp. aegilopoides (syn.
Triticum aegilopoides), Triticum urartu and Aegilops speltoides. The choice of the recurrent
parent was based on the local adaptation and drought tolerance of Haurani. Cham5, on
the other hand, is a high yielding variety released in several countries from the ICARDA
breeding program. The wild parents were selected based on their origins and the available
information on their resistance to disease (mainly leaf rust). Table 1 provides a summary
of the number of lines derived from each cross, with the number of backcrosses and a
detailed list with DOIs given in Supplementary Table S1. The two recurrent parents and
eight checks, including the released varieties and the ICARDA elite lines, were included in
the trials and represented 13% of the total nursery.

Table 1. Pedigree and number of derivative lines from each cross.

Pedigree/Name Wild Parent Genome Number of Lines

Cham5*2/T. dicoccoides IG 118178 AuAuBB 6
Cham5*3/T. dicoccoides IG 118178 AuAuBB 11
Haurani*2/T. urartu IG 45489 AuAu 4
Cham5*3/T. urartu IG 45488 AuAu 2
Cham5*3/T. aegilopoides IG 118180 AmAm 19
Cham5*2/T. urartu IG 118184 AuAu 2
Cham5*3/T. aegilopoides IG 118181 AmAm 1
Cham5*4/Ae. speltoides IG 47843 SS (BB) 6
Cham5*2/T. aegilopoides IG 118180 AmAm 3
Cham5*3/T. dicoccoides IG 118179 AuAuBB 2
Haurani*2/T. aegilopoides IG 118185 AmAm 2
Haurani*2/T. urartu IG 45475 AuAu 2
Cham5*3/T. urartu IG 118182 AuAu 3
Cham5*3/T. urartu IG 118184 AuAu 1
Cham5*4/Ae. speltoides IG 47844 SS (BB) 1
Cham5*2/T. urartu IG 118182 AuAu 1
Haurani*3/T. dicoccoides IG 118178 AuAuBB 1
Checks - 8
Recurrent parents - 2

The IG refers to the accession number of the wild parent at the ICARDA genebank. The number following the
Asterix (*) refers to the number of backcrosses.

2.2. Testing Environments and Experimental Design

The trials were conducted in 15 environments representing six locations during dif-
ferent seasons, between 2015 and 2018. Five locations were in Morocco, representing the
Mediterranean hot and temperate environments, while Wad Medani in Sudan represented
the hot and irrigated environment (Table 2). At Tessaout and Melk Zher, two trials were
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planted in the same season with different water regimes, one under full irrigation (FIR) and
the second under rainfed (RFD) or supplemental irrigation (SIR). The purpose was to assess
yield losses and the effects of late drought by comparing the two treatments/environments.
At Tessaout, the fully irrigated trials received six irrigations, the first one at sowing, and
the rest supplemented at different growth stages. The drought-stressed trials at Tessaout
were irrigated only at sowing to ensure simultaneous germination with the irrigated trials.
At Melk Zher, drip irrigation was used to supply a total of 411 mm for MZIR-16. MZRF-16
(the stressed environment) received 127 mm between rainfall and irrigation. The trials at
Wad Medani were irrigated at an interval of seven days. All other trials were conducted
under rainfed conditions, with the exception of Marchouch during the 2016 season, which
received one supplementary irrigation during the vegetative stage.

Table 2. Location, seasons, and codes for the testing environments of durum wheat derivatives.

Location Country Long Lat Season ENV Sowing Date Treatment

Allal Tazi Morocco 34◦31′ N 6◦14′ W
2016–17 AT-17 2016/11/12 RFD
2017–18 AT-18 2017/11/21 RFD

Annoceur Morocco 33◦41′ N 4◦51′ W
2016–17 AN-17 2016/12/02 RFD
2017–18 AN-18 2017/11/21 RFD

Marchouch Morocco 33◦36′ N 6◦42′ W
2015–16 MCH-16 2015/12/16 SIR
2016–17 MCH-17 2016/11/19 RFD
2017–18 MCH-18 2017/11/29 RFD

Melk Zher Morocco 30◦02′ N 9◦33′ W
2015–16 MZIR-16 2015/12/21 FIR
2015–16 MZRF-16 2015/12/21 SIR

Tessaout Morocco 31◦49′ N 7◦25′ W

2016–17 TSIR-17 2016/12/14 FIR
2016–17 TSRF-17 2016/12/14 RFD
2017–18 TSIR-18 2017/12/22 FIR
2017–18 TSRF-18 2017/12/22 RFD

Wad Medani Sudan 14◦24′ N 33◦31′ E
2016–17 WMD-17 2016/12/18 FIR
2017–18 WMD-18 2017/12/07 FIR

RFD, Rainfed conditions; SIR; supplementary irrigation; FIR, Full irrigation; ENV, the combination of the location, the year, and the treatment.

The trials were randomized in an incomplete block design (alpha-lattice) with two
replications. Each replication was composed of eleven incomplete blocks, with seven plots
in each block. Each plot consisted of four rows of two meters length, with a distance of
0.25–0.30 m between rows, and a sowing density of 300 seeds/m2. The recommended
agronomic practices (land preparation, fertilizers, weeding, etc.) for each environment
were applied. At maturity, the grain yield (GY) was estimated by harvesting and weighing
the two internal rows, avoiding the borders, and then converting to kg/ha.

2.3. Data Analysis
2.3.1. Analysis of Variance and Genotype by Environment Interaction

In order to investigate the genotype-by-environment interaction (GEI) and estimate
the variance components, a linear mixed model and an Additive Main Effects and Mul-
tiplicative Interaction Model (AMMI) [54,55] were used for the analysis of variance. The
mixed model was fitted using the sommer R package [60] in R version 4.0.4 [61] with the
environment as fixed effects, and the genotypes and GEI as random effects. Diagonal
variance structures were used to account for the heterogenous residual variance between
environments, and therefore to estimate the residual variance in each environment. Simi-
larly, the replication and block effects were considered heterogenous and estimated in each
environment as random effects. The genotypic effects allowed the computation of the best
linear unbiased prediction (BLUP) across environments for each genotype. The Metan R
package [62] was used to perform the AMMI model and the results were used to compute
stability parameters based on the interaction principal components from AMMI. The best
linear unbiased estimations (BLUEs) in each environment were computed using Meta-R
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software [63]. The BLUEs were used to run a genotype and genotype-by-environment
interaction model (GGE) [64] using the GGEBiplots R package [65]. The GGE model was
used to assess the representativeness and discrimination of each environment. Meta-R was
also used to estimate the genetic correlation (ρg) between environments for grain yield,
following Equation (1) from Cooper and DeLacy [66].

ρgij =
ρpij√
hihj

(1)

where, ρgij is the genetic correlation, ρpij is the phenotypic correlation between the en-
vironments i and j, hi and hj are the broad sense heritabilities in environments i and
j, respectively.

2.3.2. Analysis of Stability

The BLUPs computed from the linear mixed model were the first stability parameter
used for the ranking of genotypes. The stability indices derived from the AMMI model were
sums of the absolute values of the IPCA scores [56] and AMMI stability values (ASV) [57].
The SIPC and ASV were computed according to Equations (2) and (3), respectively.

SIPC = ∑P
k=1

∣∣∣λ0.5
k αik

∣∣∣ (2)

where P is the number of IPCs retained via the F-test, λk is the eigenvalue of the kth IPC
and αik is the genotype principal component score.

ASV =

√
[
SSIPC1
SSIPC2

(IPC1)]
2
+ (IPC2)2 (3)

where SSIPC1 and SSIPC2 are the sum of squares of the first and second IPC, respectively.
IPC1 and IPC2 are the scores of the genotypes in the first and second IPC, respectively.

The weighed average of absolute scores (WAAS) [59] was estimated following Equation (4).
A superiority index (WAASY) was derived by rescaling the yield and WAAS to balance produc-
tivity and stability [59]. In the present study, yield and stability were given the same weight
(50/50) (Equation (5)).

WAAS =
∑

p
k=1

∣∣∣IPCAik × EPk

∣∣∣
∑

p
k=1 EPk

(4)

where, PCAik is the score of the ith genotype in the kth IPCA, and EPk is the amount of
variance explained by the kth IPCA

WAASY =
(rGi × θY) + (rWi × θs)

θY + θs
(5)

where rGi and rWi are the rescaled values for GY and WAAS, θY and θS are the weights for
grain yield and stability assumed to be 50 for each in this study.

The rest of the stability parameters were computed using the BLUEs from each envi-
ronment. The Agrostab package [67] was used for the estimation of the regression coefficient
(Bi), squared deviation from the regression (S2di) [45], environment variance (EV) [50]
and the coefficient of variation [49]. The Metan package was used to compute Shukla
stability variance (σi

2) [47], geometric adaptability index (GAI) [68] and the superiority
index (Pi) [51].

Four non-parametric stability indices [52,53] were also estimated using the Metan R
package: Si1, which is the mean of absolute rank difference over environment, Si2, which is
the variance of the ranks, Si3, which is the sum of absolute deviations and Si6, which is the
relative sum of squares of rank for genotype. The Pearson correlation coefficients between
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the stability indices were computed using the Hmisc R package [69] and plotted using the
corrplot R package [70].

3. Results
3.1. Analysis of Variance

The analysis of variance from the linear mixed model and AMMI showed highly signif-
icant effects of the environment, genotypes, and their interaction (p < 0.001) (Tables 3 and 4).
The highest proportion of variance was explained by the environment (66.93%), followed
by the GEI (18.74%), while the genotypes accounted for 8.39% of the variance (Table 4). The
diagonal structure of the error in the mixed model validated the assumption of residual het-
erogeneity between the environments (Table 3). Therefore, accounting for the heterogeneity
of error variance would increase the precision of genotypic variance estimation and thus
the BLUPs across environments and their precision. The first seven interaction principal
components (IPCs) from the AMMI model were significant, and explained 80.6% of the
GEI (Table 4). The variance explained by the first two IPCs was relatively low, accounting
for only 38.8% of the GEI. The first IPC captured 22.6% of the variance while the second
(IPC2) accounted for 16.2%, which highlights the complexity of the interaction patterns.

Table 3. Combined analysis of variance from the linear mixed model of durum wheat lines derived
from interspecific crosses and checks grown in contrasted environments in Morocco and Sudan.

Source of Variation DF Variance Component

ENV Mean Sq (f) 14 536,126,241 ***
Genotypic variance (r) - 221,131 ***

GE interaction variance (r) - 213,091 ***
AN-17 residuals (r) - 264,403
AN-18 residuals (r) - 314,508
AT-17 residuals (r) - 466,464
AT-18 residuals (r) - 722,924

MCH-16 residuals (r) - 1,268,491
MCH-17 residuals (r) - 332,655
MCH-18 residuals (r) - 2,107,375
MZIR-16 residuals (r) - 2,075,582
MZRF-16 residuals (r) - 795,924
TSIR-17 residuals (r) - 1,469,300
TSIR-18 residuals (r) - 1,269,044
TSRF-17 residuals (r) - 404,398
TSRF-18 residuals (r) - 566,288
WMD-17 residuals (r) - 297,060
WMD-18 residuals (r) - 203,483

f, Fixed effects; r, Random effects; ***, significant at p < 0.001. AN, Annoceur; AT, Allal Tazi; MCH, Marchouch;
MZIR, Melk Zher Irrigated; MZRF, Melk Zher Rainfed; TSIR, Tessaout Irrigated; TSRF, Tessaout Rainfed; WMD,
Wad Medani; the numbers after the dash 16, 17 and 18 represent the cropping seasons 2015–2016, 2016–2017 and
2017–2018, respectively.

3.2. Characterization of the Testing Environments
3.2.1. Climatic Data

The testing locations in Morocco represent typical Mediterranean semi-arid and tem-
perate environments, while Wad Medani in Sudan represents dry hot irrigated environ-
ments. The maximum temperature at Wad Medani was consistently above 30 ◦C and no
rainfall was registered during both cropping seasons. In Morocco, the rainfall distribution
seemed to be as important as the total amount of rainfall in determining the type of envi-
ronment. For instance, the Marchouch and Annoceur locations received almost double the
amount of rainfall (514 and 611 mm, respectively) in 2018 compared to 2017 (Table 5). In
terms of rainfall distribution, MCH-17 was exposed to a severe drought during the vegeta-
tive stage, while drought was more intense during the reproductive stage at MCH-17 and
TSRF-17. Melk Zher was characterized by a dry season where the total rainfall registered
was 85.5 mm, and drip irrigation was applied to differentiate between fully irrigated and
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drought-stressed environments. The trials in Melk Zher were irrigated, where MZIR-16
and MZRF-16 received, between irrigation and rainfall, a total of 411 mm and 127 mm,
respectively. In terms of temperature, Annoceur and Marchouch were characterized by a
cooler winter in comparison to other locations, while higher temperatures were observed
during the reproductive stages in all locations.

Table 4. Analysis of variance and significant interaction components from the AMMI model of durum wheat lines derived
from interspecific crosses and checks grown in contrasted environments in Morocco and Sudan.

Source Df Mean Sq % TSS GEI Proportion (%) Accumulated

ENV 14 383,602,598 *** 66.93 - -
REP(ENV) 15 10,556,057 *** 1.973 - -

BLOCK(REP*ENV) 300 1,055,308 *** 3.94 - -
GEN 76 8,857,688 *** 8.39 - -

GEN:ENV 1061 1,417,790 *** 18.74 - -
Residuals 808 716,543 -

PC1 89 3,871,018 - 22.6 22.6
PC2 87 2,840,469 - 16.2 38.8
PC3 85 2,148,503 - 12 50.7
PC4 83 1,854,171 - 10.1 60.8
PC5 81 1,343,685 - 7.1 68
PC6 79 1,361,599 - 7 75
PC7 77 1,111,644 - 5.6 80.6

ENV, Environment; REP, Replication, GEN, Genotypes. ***, significant at p < 0.001.

Table 5. Precipitation (mm), maximum, minimum, and average temperature (◦C) in the 15 testing environments.

ENV Sowing Date Treatment Max T Min T Mean T Prec (mm)

AT-17 2016/11/12 RFD - - - 592
AT-18 2017/11/21 RFD - - - 602
AN-17 2016/12/02 RFD 23.87 7.14 15.05 306
AN-18 2017/11/21 RFD 26.66 1 12.69 611

MCH-16 2015/12/16 SIR 25.24 10 14 204.8
MCH-17 2016/11/19 RFD 32.2 3.63 15.96 275.9
MCH-18 2017/11/29 RFD 26.54 2.68 14.38 514.6
MZIR-16 2015/12/21 FIR 24.63 10.86 17.75 85.8
MZRF-16 2015/12/21 SIR
TSIR-17 2016/12/14 FIR 25.76 10.19 17.98 207
TSRF-17 2016/12/14 RFD
TSIR-18 2017/12/22 FIR 26.17 10.31 18.24 294
TSRF-18 2017/12/22 RFD
WMD-17 2016/12/18 FIR 37 18 27 0
WMD-18 2017/12/07 FIR 37.3 18.6 27.9 0

Max T, Average maximum temperature (◦C); Min T, Average minimum temperature (◦C); Mean T, Average temperature (◦C); Prec (mm),
precipitation; RFD, Rainfed conditions; SIR, Supplemental irrigation; FIR, Full irrigation. AN, Annoceur; AT, Allal Tazi; MCH, Marchouch;
MZIR, Melk Zher Irrigated; MZRF, Melk Zher Rainfed; TSIR, Tessaout Irrigated; TSRF, Tessaout Rainfed; WMD, Wad Medani; the numbers
after the dash 16, 17 and 18 represent the cropping seasons 2015–2016, 2016–2017 and 2017–2018, respectively.

3.2.2. Environment Characterization for Yield

The average yield across all environments was 3387 kg/ha. This yield is in the range of
the national average yield in the Mediterranean region, which varies between 1500 kg/ha
under rainfed conditions, and 4500 kg/ha under irrigated or favorable rainfed conditions.
Six environments had yields above average, while nine were unfavorable and had lower
yields (Figure 1). The highest mean yield was registered at MCH-18 (6468 kg/ha), followed
by TSIR-17 (5955 kg/ha) and TSIR-18 (5251 kg/ha). The lowest yield was observed under
heat stress at WMD-17 (1370 kg/ha), followed by yields at AT-17 (1751 kg/ha), AN-17
(2149 kg/ha), and WMD-18 (2183 kg/ha). The yield at MCH-18 reflected the favorable
season in comparison to MCH-17 where the average yield was 2533 kg. The supplemental
irrigation at MCH-16 resulted in favorable conditions and a yield of 3993 kg/ha. The
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contrasts between fully irrigated and rainfed trials at Tessaout and Melk Zher were high,
as shown by the yield reduction between irrigated and rainfed conditions (Figure 1). On
average, the yield at MZIR-16 was 73% higher than MZRF-16, while TSIR-17 had an
average yield 164% higher than TSRF-17. The broad sense heritability ranged between
0.08 at AN-17 and 0.90 at WMD-18, and was moderate in the rest of the environments
(Figure 1). Significant genotypic effects were observed in 12 environments and only three
had non-significant genotypic effects (AN-17, AN-18, and WMD-17).
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Figure 1. Boxplot of best linear unbiased estimations (BLUEs) and heritability for grain yield (GY)
of durum wheat genotypes in the 15 environments included in the stability analysis. The dashed
horizontal line represents the grand mean across all environments. The number above each boxplot
represents the heritability in that environment and the red dots represent the outliers.

3.2.3. Association between the Environments

The genetic correlation, which provided insight into the interaction between different
pairs of environments, ranged between −0.15 (MZRF-16 and TSIR-18) and 0.97 (TSIR-
17 and MCH-18) (Figure 2). MCH-18 was highly correlated with both favorable (TSIR-
17, MZIR-16) and unfavorable environments (TSRF-17 and AN-17), indicating a lower
GEI of MCH-18 with many other environments (Figure 2). It was followed by TSIR-17
and TSRF-18 in terms of correlations with other environments. AT-17 and WMD-17 had
the lowest association with the rest of the environments (Figure 2), and the correlation
between AT-17 and TSRF-17 was null, indicating a full interaction. WMD-17 had a strong
interaction with most of the environments, and was correlated only with AT-18, WMD-18,
and TSRF-18. WMD-18 was significantly correlated only with TSRF-17 (r2 = 0.65) and
TSRF-18 (r2 = 0.56). AN-18 was dropped from the analysis due to its low heritability.
The genetic correlation results were corroborated by the GGE biplot for the association
between environments (Figure 3). The GGE biplot confirmed the high discrimination
ability of MCH-18, TSIR-18, and MZIR-16. MCH-18 had the advantage of efficiently
representing most of the other environments compared to TSIR-18 and MZIR-16. Low
yielding environments such as WMD-17, AN-17 and AN-18 showed low discrimination
ability for the genotypes (Figure 3).
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Figure 3. Genotype and genotype-by-environment (GGE) biplot for the ranking of the 15 testing
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the central circle are the best in terms of both discrimination and representativeness.

The color and size of the circles represent the direction and strength of the correlation
between environments.
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3.3. Yield Stability Assessment
3.3.1. Parametric Stability Indices

More than 50% of the tested lines had BLUPs for yield above average. The check
Marzak had the highest yield (2854 kg/ha), while line 142003 had the lowest yield
(1274 kg/ha). Four other checks (129080, Icarachaz, Louiza and Faraj), the recurrent
parent Cham5, and four of its derivatives, were also among the highest yielding lines
(Table 6). The recurrent parent Haurani had the second lowest BLUP (1290 kg/ha), and
the highest yielding of its derivatives was 142001 (Haurani*2/T. urartu), with a yield 58%
higher than its recurrent parent. The range of the BLUPs suggests that the germplasm tested
here have high variation in yield. Therefore, the BLUPs should be taken into consideration
for the interpretation of the other stability parameters in order to balance productivity
and stability.

Table 6. Ranking of the best ten stable and the least ten stable genotypes of durum wheat genotypes using parametric
stability indices.

Desirable

Rank 1 2 3 4 5 6 7 8 9 10
Pi 129080 129081 142005 Marzak MIKI3 Faraj Icarachaz 142060 142074 142009
EV 141972 84859 141984 142007 142057 142001 142056 142015 142055 142039
GAI Marzak 129080 129081 142005 Faraj Louiza Icarachaz 142009 142074 142060
σi

2 141995 141966 142000 141986 142071 142048 142027 142039 142045 142040
BLUPs Marzak 129080 Icarachaz Louiza 142074 142009 129081 142005 Faraj 142061
Bi 142012 142044 142073 142068 142072 141970 142042 Marzak 142053 141996
S2di 142001 142000 141995 141966 142071 142039 142003 141986 142040 142069
CV 142015 142001 141972 142000 Marzak 141969 142055 142066 142014 141976
WAASY 141986 142045 Louiza 141966 142009 142027 141995 Marzak 142040 129080
ASV 142045 142063 142032 142040 141986 142046 142027 142012 141989 142053
SIPC 142008 142071 142001 142068 142015 141995 141966 142032 141986 142040

Undesirable

Rank 68 69 70 71 72 73 74 75 76 77
Pi 142067 142007 142072 142003 142062 142039 142057 141984 84859 141972
EV 142005 141994 142064 142060 129081 Icarachaz 141997 129080 142026 142013
GAI 141972 142057 142039 142072 142062 142003 84859 141999 141970 141979
σi

2 142005 142061 141990 142007 142026 129081 142067 141972 Icarachaz 142013
BLUPs 141999 142072 141984 141979 141972 142039 142062 142057 84859 142003
Bi 142056 141997 141984 142013 142007 142001 129080 142057 84859 141972
S2di 142064 142026 142044 142073 141999 Icarachaz 141990 142061 129081 142067
CV 135226 141999 142003 142013 141990 142062 142064 141979 142072 141970
WAASY 141970 141984 142062 141999 141979 142057 84859 142067 142007 141972
ASV 129080 142060 142056 142013 142005 141984 142007 129081 141972 142067
SIPC 129081 142026 Marzak 142064 141991 142007 142013 142067 142061 Icarachaz

Pi, Superiority index; EV, Environment variance; GAI, Geometric adaptability index; σi
2, Shukla variance; BLUPs, Best linear unbiased

predictions; Bi, Regression coefficients; S2di, Squared deviation from the regression; CV, coefficient of variation; WAASY, superiority index
from the weighed average of absolute scores; ASV, AMMI stability value; SIPC, sums of the absolute values of the IPCA scores.

According to the joint regression, the ideal genotype would have a regression coef-
ficient (Bi~1) combined with low squared deviation (S2di) and high BLUPs. However,
these three conditions could be met only for a few lines having average yield performance
(Figure 4). Some lines such as Icarachaz, 129080, and 142074 (Cham5*3/T. dicoccoides) com-
bined higher yields with high Bi. In addition, Icarachaz was regarded as unstable according
to S2di, as it had high variance (Table 6). Plotting Bi versus BLUPs identified an interesting
group of lines which combined high productivity and high stability (Figure 4). This group
included three checks (Marzak, Louiza and Faraj), the recurrent parent Cham5, and three
of its derivatives. Marzak combined the highest yield (2952 kg/ha) with a regression coeffi-
cient of 0.96. The two derivatives 142009 and 142061 had yields of 2699 and 2597 kg/ha
paired with regression coefficients of 1.09 and 1.05, respectively. They are derived from
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the same three backcrosses of Cham5 with T. aegilopoides. The derivative line 142005
(Cham5*4/Ae. speltoides) combined a yield of 2677 kg/ha with a Bi of 1.13. The landrace
Haurani and its derivatives showed specific adaptation to unfavorable environments; they
had low yields paired with low regression coefficients. The line 141972 (Haurani*2/T.
urartu) had the lowest Bi (0.41) and was ranked 72 according to the BLUPs. Two Haurani
derivative lines showed a significant yield improvement compared to their recurrent par-
ent. One of these two derivatives (142001) was ranked the most stable according to its
S2di. Since a lower S2di is associated with more predictable performance, adding the yield
suggested that the lines 141995, 141966, 142071 and 142070 are desirable (Table 6, Figure 4).
The S2di did not succeed in selecting genotypes combining high yields with broad adapta-
tion. For instance, the lines 142003 and 142062 were ranked high according to the S2di, but
their BLUPs and Bi suggested they were poorly adapted to all environments.
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urartu) combined a CV of 38% with a BLUP of 2316 kg/ha. The two lines 142001 and 141792 
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derived from the same cross of Haurani and T. urartu with two backcrosses, were also 
selected as stable using the EV. However, the EV showed more affinity to select for the 
biological concept of stability than the CV. Eight of the best ten lines selected using EV 
had yields below average and only two were above average (142015 and 142055). High 
yielding lines like Icarachaz (3rd BLUP) and 129080 (2nd BLUP) were considered unsta-
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Figure 4. Plot of Best linear unbiased predictions (BLUPs) for grain yield plotted against the regression coefficient (Bi).
Each point represents a single breeding line. Vertical and horizontal lines represents the grand mean ± 1 SD of BLUPs and
Bi, respectively. Blue color represents the first ranked breeding lines according to Bi, red color represents the first ranked
breeding lines according to the squared deviation from the regression (S2di). Some labels were repelled using black arrows
to avoid overlapping.

The CV showed high efficiency to be used for negative selection to discard the low
yielding unstable genotypes (Figure 5). Some lines, such as 141979, 142062 and 142039,
were among the lowest yielding, and had high CVs (67%, 65% and 60%, respectively).
Marzak was ranked fifth with a CV of 42%, while the first ranked line 142015 (Cham5*2/T.
urartu) combined a CV of 38% with a BLUP of 2316 kg/ha. The two lines 142001 and
141792 had yields below average, coupled with respective CVs of 40% and 41%. These two
lines, derived from the same cross of Haurani and T. urartu with two backcrosses, were
also selected as stable using the EV. However, the EV showed more affinity to select for
the biological concept of stability than the CV. Eight of the best ten lines selected using EV
had yields below average and only two were above average (142015 and 142055). High
yielding lines like Icarachaz (3rd BLUP) and 129080 (2nd BLUP) were considered unstable,
and were ranked 70 and 72 for EV, respectively (Table 6).
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The selection intensity of Shukla stability variance (σi2) was centered around the
genotypes having an average yield performance coupled with low variance. The accession
141995 (Cham5*4/Ae. speltoides) was ranked first, followed by the lines 141966 and 142000,
which are derived from Cham5 crossed to T. dicoccoides with two and three backcrosses,
respectively. Shukla variance attributed lower stability to the genotypes with high and low
yields such as Icarachaz and 141972 (Table 6).

The superiority index (Pi) and the geometric adaptation index (GAI) selected similar
genotypes for stability. Nine genotypes were included in the best ten lines using both
GAI and Pi, among which were five checks, the recurrent parent Cham5 and four of its
derivatives. The stable derivatives were issued from crosses with T. aegilopoides (142009
and 142060), T. dicoccoides (142074) and Aegilops speltoides (142005). Pi and GAI tended to
select genotypes with high yield potential, as most of the low yielding genotypes were
regarded as unstable (Table 6).

By giving the same weight to productivity and stability, the superiority index from the
weighed average of absolute scores (WAASY) balanced productivity and general adaptation
for the ranking of genotypes (Table 6). The lines 141986 (Cham5*3/T. dicoccoides) and 142045
(Cham5*3/T. urartu) were the most stable, followed by Louiza and line 141966. WAASY also
included the two highest yielding checks, Marzak and 129080, within the most stable genotypes.
Interestingly, derivatives from crosses/backcrosses of Cham5 with the four wild species
(Ae. speltoides, T. urartu, T. aegilopoides and T. dicoccoides) had superior stability/productivity
compared to the recurrent parent. It was also noticeable that the same crosses resulted in
genotypes with contrasting performance in yield and stability. This was the case for lines
141984 and 142074, both derived from Cham5*3/T. dicoccoides (Table 6).
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3.3.2. Non-Parametric Stability Indices

Despite the differences in the ranking of genotypes between the four non-parametric
stability parameters, some lines were identified as stable by all of them. Si1, Si2, Si3 and Si6
ranked the line 142053 (Cham5*2/T. dicoccoides) among the most stable, and the lines 141995
and 141966 were selected based on three of these parameters (Si2, Si3 and Si6) (Table 7). Si3
and Si6 selected similar lines for stability while Si6 had more affinity for the selection of
high yielding genotypes (129080, 142053, Marzak). The lines selected by Si1 and Si2 could
have low and high yields; this resulted in lower ability to differentiate superior from poorly
adapted genotypes based on these indices (Table 7).

Table 7. Ranking of the best ten stable and the least ten stable durum wheat genotypes identified using four non-parametric
stability indices.

Desirable

Rank 1 2 3 4 5 6 7 8 9 10
Si1 141984 142044 142053 cham5’S 142056 142067 142071 141976 142055 141969
Si2 141966 141995 142000 142071 141986 141996 142048 142069 142053 142018
Si3 141995 142009 129080 Marzak 142039 Faraj 141996 142053 142060 142005
Si6 129080 Marzak 142053 142009 141995 142060 Faraj 142005 141996 141966

Undesirable

Rank 68 69 70 71 72 73 74 75 76 77
Si1 142040 Icarachaz Marzak 142008 142045 142063 142068 141972 141990 142032
Si2 142007 142066 129081 141984 141990 142026 Icarachaz 141972 142067 142013
Si3 142063 142006 141984 142064 142057 142067 142062 142072 142007 141972
Si6 142003 141990 84859 142067 142057 142072 142062 142007 141972 141984

Si1, Mean of absolute rank difference over environment; Si2, Variance of the ranks; Si3, Sum of absolute deviations; Si6, Relative sum of
squares of rank for genotype.

3.3.3. AMMI Derived Stability

The two stability parameters derived from the AMMI model selected average perfor-
mance lines with low contribution to GEI as stable (Figure 6). The most stable lines with
low SIPC were 142008 (Cham5*3/T. dicoccoides), and 142071 and 142001, both derived from
T. urartu crossed with Cham5 and Haurani. The lines 142045 (Cham5*3/T. urartu), 142063
(Cham5*3/T. dicoccoides) and 142032 (Cham5*3/T. aegilopoides) had the lowest contribution
to GEI according to the ASV and were therefore the most stable. The inclusion of BLUPs
with SIPC and ASV resulted in the identification of desirable lines with high yield poten-
tial (Figure 6). The checks Louiza and the derivative lines 142074, 142009, 142060 can be
recommended for combining stability with high productivity. ASV and SIPC showed some
difference for the highest yielding lines, with Marzak and 129080 ranked differently by the
two parameters.

3.3.4. Association of the Stability Indices

The correlation between stability parameters formed two major groups of positively
correlated parameters and ranged from r2 = −0.95 (BLUPs and Pi) to r2 = 0.94 (BLUPs
and GAI; EV and Bi). The first group was formed by BLUPs, WAASY, GAI, Bi and
EV, with all indices positively correlated with the BLUPs. However, considering the
interpretation of different parameters, the lines selected by EV will have low yields. The
second group included the variance parameters (S2di and σi

2), the two AMMI-derived
stability indices, and the non-parametric index Si2 (Figure 7). ASV showed moderate
correlation with the other parameters of the second cluster, ranging from 0.46 with Si2 to
0.76 with σi

2. As they have the same interpretation, the parameters in this group would
select similar lines for stability. A strong positive correlation was found between Pi, Si3
and Si6. These parameters were negatively associated with the second cluster and showed
low to moderate correlation with the first group of parameters (Figure 7). WAASY was
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significantly correlated with all the other parameters except with Si1, which itself did not
correlate with any other parameter.

Pi, Superiority index; EV, Environment variance; GAI, Geometric adaptability index;
σi2, Shukla variance; BLUPs, Best linear unbiased predictions; Bi, Regression coefficients;
S2di, Squared deviation from the regression; CV, coefficient of variation; WAASY, superior-
ity index from the weighed average of absolute scores; ASV, AMMI stability value; SIPC,
sums of the absolute values of the IPCA scores, Si1, Mean of absolute rank difference over
environment; Si2, Variance of the ranks; Si3, Sum of absolute deviations; Si6, Relative sum
of squares of rank for genotype.

Agronomy 2021, 11, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 6. Plot of the best linear unbiased predictions (BLUPs) for grain yield versus the AMMI 
stability value (ASV) stability (A) and sum of the absolute value of the IPC scores (SIPC) (B) of tested 
durum genotypes. Vertical dashed line represents the average of BLUPs while the horizontal dashed 
lines represent the average of ASV (A) and SIPC (B). The green area represents the most desirable 
lines. Some labels were repelled using black arrows to avoid overlapping. 

3.3.4. Association of the Stability Indices 
The correlation between stability parameters formed two major groups of positively 

correlated parameters and ranged from r2 = −0.95 (BLUPs and Pi) to r2 = 0.94 (BLUPs and 
GAI; EV and Bi). The first group was formed by BLUPs, WAASY, GAI, Bi and EV, with 
all indices positively correlated with the BLUPs. However, considering the interpretation 
of different parameters, the lines selected by EV will have low yields. The second group 
included the variance parameters (S²di and σi²), the two AMMI-derived stability indices, 
and the non-parametric index Si2 (Figure 7). ASV showed moderate correlation with the 
other parameters of the second cluster, ranging from 0.46 with Si2 to 0.76 with σi². As they 
have the same interpretation, the parameters in this group would select similar lines for 
stability. A strong positive correlation was found between Pi, Si3 and Si6. These parameters 
were negatively associated with the second cluster and showed low to moderate 

Figure 6. Plot of the best linear unbiased predictions (BLUPs) for grain yield versus the AMMI
stability value (ASV) stability (A) and sum of the absolute value of the IPC scores (SIPC) (B) of tested
durum genotypes. Vertical dashed line represents the average of BLUPs while the horizontal dashed
lines represent the average of ASV (A) and SIPC (B). The green area represents the most desirable
lines. Some labels were repelled using black arrows to avoid overlapping.
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4. Discussion
4.1. Dissection of the Genotype by Environment Interaction

The analysis of variance showed the complexity of the GEI and the crossover interac-
tion, meaning that genotypes responded differently to the changes in environment. High
GEI is common in multi-environment trials [68,71,72], which reduces selection accuracy
and genetic gains [18]. The dissection of the GEI and proper characterization of the en-
vironments and germplasm is therefore essential to improve genetic gains [73]. In this
study, the genetic correlation allowed us to understand the relationships between pairs
of environments and their interaction. The small contribution of Marchouch to the GEI
showed its suitability for efficient selection of superior genotypes for other environments.
Despite the climatic differences between years, the same superior genotypes can be selected
for the three seasons at Marchouch, and also for other locations. The crossover interaction
due to year effects was more pronounced in the other locations; these effects were mainly
associated with the total and distribution of rainfall and temperature for rainfed trials.
These findings confirm previously reported effects of weather conditions on the GEI in
durum wheat in the Mediterranean basin [3,74,75]. Annoceur was characterized by low
heritability during both seasons, and it was among the locations where low genetic gain
for durum wheat was achieved [76]. The testing environments exposed durum wheat to
favorable conditions, drought, and heat stresses, in addition to disease pressure, mainly
leaf rust at Allal Tazi and tan spot at Annoceur. In addition, the contrasting environments
at Tessaout and Melk Zher showed their effectiveness to select for drought tolerance [77].
The genetic correlation showed that some genotypes can be selected simultaneously for
drought and heat tolerance. This approach of using different environments was reported
to be useful to select for productivity and tolerance to major biotic and abiotic stresses
simultaneously [42].
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4.2. Considerations for the Use of Durum Wheat Wild Relatives

Much of the progress in durum wheat breeding and genetic gains was achieved at the
cost of a reduction in genetic diversity [76]. Maintaining the level of genetic gains requires
a diverse gene pool for the breeders to select for adaptive traits [78]. The use of crop wild
relatives (CWR), therefore, is strategic as it allows several traits to be increase simultane-
ously, while recovering lost diversity [79]. In this context, the present study investigated
the potential contribution of wild relatives to yield stability in durum wheat. The choice
of wild parents from the primary gene pool was of high importance, as several barriers
are associated with the use of species from the secondary and tertiary gene pool [80,81].
The primary gene pool allows a higher frequency of recombination, which can be useful
for quantitative traits [82]. Interestingly, the performance of the derivative lines from
the four wild parents was not affected by the number of backcrosses, which suggests the
possibility of maintaining a certain level of diversity while using these species by reducing
the backcrossing. Instead, more care should be given to the selection scheme and intensity
to reduce the frequency of undesirable linkages. Our results showed that the same crosses
with T. dicoccoides and T. aegilopoides produced lines outperforming the recurrent parents,
but also lines with very low yields. El Haddad et al. [83] reported that no linkage drag
on agronomic performance was associated with the use of wild relatives in durum wheat.
In the case of bread wheat, the adoption of an appropriate selection strategy resulted in
the elimination of unfavorable traits and the release of high-yielding and stable varieties
from synthetic hexaploid-derived lines [84]. This is where pre-breeding becomes crucial in
the process of gene introgression from CWR. Pre-breeding should retain favorable alleles
while returning the background of the elite parent through reasonable top crossing [78].

4.3. Impact of Wild Relatives on Yield Potential

The use of two contrasting recurrent parents, the landrace Haurani with low yield
potential and high tolerance to drought, and Cham 5, a high yielding cultivar released in
several countries, was useful. Haurani derivatives showed an important advantage in both
yield and stability, and they overpassed their recurrent parent in most of the environments.
For instance, line 142001, derived from T. Urartu, had significantly higher BLUPs associated
with higher stability, according to both Bi and S2di. The same line showed a yield increase
under drought stress, combined with earliness and cooler canopy under heat stress [77,85].
Under favorable conditions, some Haurani derivatives (142064 for example) can yield twice
as much as the recurrent parent, which indicates a high contribution to yield potential. In
the case of Cham5, which is high yielding, the expected contribution of wild relatives can
be more pronounced under stressed environments. The top yielding lines under drought
stress at TSRF-17 were Cham5 derivatives crossed with the four wild parents. In fact, line
142026 (Cham5*3/T. urartu) outyielded Cham5 under optimal conditions (TSIR-17) and was
subject to lower yield losses due to drought. Similarly to our results, a significant increase in
yield and stability was also reported using T. dicoccoides and T. monococcum under drought
and terminal stress [42]. The value of CWR in Cham5 derivatives was even greater under
heat stress during both seasons. The contribution to heat tolerance was observed at the
level of yield and its components (T. dicoccoides and T. urartu), phenology (T. urartu) and
physiological response (T. aegilopoides, T. urartu, and T. dicoccoides) [77,85–87]. The results
from MCH-18, which was the most favorable environment, were interesting. Cham5 had
the highest yield, followed by four of its derivatives, with yields above 9 tones/ha. This
finding showed that the use of CWR from the primary gene pool does not always come with
a penalty on yield. These findings confirm that the increase in yield from crosses with wild
relatives is mainly attributed, but not restricted, to the improvement of resistance/tolerance
to biotic and abiotic stresses [25,26].

4.4. Yield Stability of the Durum Wheat Derivatives

Our study used different stability approaches to select stable genotypes for both
biological (static) and agronomic (dynamic) stability. It was not surprising that most of
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the checks had high agronomic stability, especially that Cham1 (syn. 129080), Cham5 (syn.
129081), Louiza and Marzak had wide adaptation combined with moderate to high yield
potential. When balancing productivity and stability, several lines derived from crosses
with T. aegilopoides, T. dicoccoides, T. urartu and Ae. speltoides were identified. For example,
lines 141995 (Cham5*4/Ae. speltoides) and 141966 (Cham5*2/T. dicoccoides) had yields above
average, lower variance (σi

2) and deviation from regression (S2di). In addition, they were
highly stable according to SIPC, WAASY and the non-parametric indices (Si2, Si3 and Si6).
These lines are desirable under unpredictable weather conditions, as they can maintain
average performance during poor seasons and respond positively to favorable conditions.
The line 142074 (Cham5*3/T. dicoccoides) can also be recommended for its dynamic stability,
as it was highly ranked for Pi, BLUPs, GAI, Si6 and had average stability for WAASY. These
findings are in line with the reported contribution of T. dicoccoides and Ae. speltoides to yield
stability while conserving high yield potential [83,88]. Simmonds et al. [89] reported the
release of a bread wheat variety derived from a cross with T. dicoccoides, which exhibited
high stability under different environments and cultural practices. The contribution of
CWR to yield stability can be the result of the simultaneous improvement of yield and its
components under unfavorable environments [90–96]. Our results showed that the use
of wild relatives can supply lines with wide adaptation, and lines specifically adapted to
unfavorable or favorable environments.

4.5. Association between Different Stability Parameters

Selection from multi-environment trials is an important component for plant breeders,
and the adoption of appropriate statistical analysis is crucial to improve the selection
accuracy. The use of a linear mixed model provided a significant advantage as it accounted
for the heterogeneity of the variance between environments. The advantage of mixed
models in increasing the prediction accuracy has been reported in other studies [59,97].
Interestingly, BLUPs did not correlate significantly with the SIPC and ASV from the AMMI
model. The reason behind this is that these indices select lines with low contribution to GEI,
which will favor lines with average yield performance. This also explains why SIPC and
ASV were clustered with the S2di and σi

2 and confirms the positive association previously
reported by Sneller et al. [56]. The negative correlation between CV and BLUPs was useful,
as it allowed the elimination of the less stable lines combining low yield potential with
high variation. The value of the regression coefficient to select for agronomic stability was
confirmed by its correlation with Pi, BLUPs and GAI. Different and sometimes opposite cor-
relations between the stability statistics have been reported by other studies [21,68,98–100].
These correlations varied based on the population structures and environmental charac-
teristics. In this view, flexible stability statistics such as the superiority index WAASY can
be more useful. The weights of productivity and stability can be adjusted depending the
yield, size of the population, and the environment to select superior genotypes.

5. Conclusions

The backcrossing population of durum wheat provided a view on the performance of
different lines derived from similar crosses with regard to linkage drag. Many lines can be
selected for the unpredictable climatic conditions of the Mediterranean region. These lines
combine high productivity and stability. It was concluded that it is possible to develop
diverse adapted high-yielding germplasm using CWR. This can be achieved by deploying
the proper selection schemes at the pre-breeding level. WAASY can be recommended as a
flexible stability index to select for stable and highly productive germplasm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11101992/s1, Table S1: List of accessions and checks used in the trials with accession
number, DOIs and pedigree.
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