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Abstract: On-farm experimentation (OFE) allows farmers to improve crop management over time.
The randomized complete blocks design (RCBD) with field-length strips as individual plots is
commonly used, but it requires advanced planning and has limited statistical power when only
three to four replications are implemented. Harvester-mounted yield monitor systems generate high
resolution data (1-s intervals), allowing for development of more meaningful, easily implementable
OFE designs. Here we explored statistical frameworks to quantify the effect of a single treatment strip
using georeferenced yield monitor data and yield stability-based management zones. Nitrogen-rich
single treatment strips per field were implemented in 2018 and 2019 on three fields each on two
farms in central New York. Least squares and generalized least squares approaches were evaluated
for estimating treatment effects (assuming independence) versus spatial covariance for estimating
standard errors. The analysis showed that estimates of treatment effects using the generalized
least squares approach are unstable due to over-emphasis on certain data points, while assuming
independence leads to underestimation of standard errors. We concluded that the least squares
approach should be used to estimate treatment effects, while spatial covariance should be assumed
when estimating standard errors for evaluation of zone-based treatment effects using the single-strip
spatial evaluation approach.

Keywords: on-farm experimentation; statistical design; spatio-temporal analysis; zone-based
management; precision agriculture; remote sensing

1. Introduction

Applied agricultural research traditionally has been conducted in research stations
with findings presented to farmers by extension staff or staff from other development
organizations [1]. On-farm experiments (OFE), however, allow for more seamless transfer
of research findings because the research is conducted in an environment relevant to the
farmer in terms of soil types, management, weather, etc., often resulting in more adoptable
and sustainable solutions for farmers [1,2]. In the past decade, OFE partnerships between
farmers and industry or university researchers have expanded, because the approach has
been shown to improve farmers’ crop and land management with increased productivity [3].
However, a valid experimental design is required to ensure the statistical validity of the
OFE outcome.

Blocking, randomization, and replication are employed to minimize external vari-
ability not resulting from the treatment that is being evaluated [4,5]. The most prevalent
research design for OFE is the randomized complete block design (RCBD) with field-length
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strips as individual plots, which facilitates the use of farm equipment for implementation
and harvest [6,7]. In this design, field-length strips are experimental units (EUs), the small-
est entities to which a treatment randomly can be assigned [8]. Multiple replications of the
treatment and control strips are then placed within a field, effectively blocking treatment
pairs to minimize variability within a block [6,9] (Figure 1). Analysis of variance (ANOVA)
traditionally has been used to test the statistical significance of the treatment.
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Figure 1. An example of a randomized compete block design (RCBD) to evaluate if a treatment
impacted outcomes, such as yield. In this example there is one control and one treatment strip per
block (replication), and the trial is replicated four times. When farm equipment permits, strips serve
as experimental units (EUs), which typically cover the length of a field [10].

The RCBD with field strips as EUs, however, poses challenges for both farmers and
scientists. For farmers, it requires planning, and when yield from individual strips needs to
be collected, it often slows down farm operations during planting and harvest, the busiest
and most labor-intensive time of the year, effectively discouraging farmers to conduct
OFE [11,12]. The design and its analysis pose challenges for scientists as well, because
fields may only allow for three to four blocks to be implemented, which results in limited
statistical power if each strip is one EU [7].

The arrival and more widespread adoption of yield monitoring systems now allow for
yield data collection at a much higher spatial resolution (collection of data within strips).
This enables documentation of spatial variability caused by a variety of different reasons,
including non-uniform distribution of soil properties, soil moisture, pest pressure, rooting
depth, and other factors [13]. For example, recent studies of corn (Zea mays L.) fields in
New York have shown large variability in yield within fields [14,15]. The existence of
such variability is well-recognized by both farmers and scientists [16]. However, until the
arrival of reliable yield monitoring systems, the only way to deal with such variability in
OFE was to conduct small plot research, where heterogeneity within fields is assumed to
be small [9,17], or on a carefully chosen field with the least amount of spatial variability,
based on farmers’ past experiences [18]. Results from such trials cannot be extended to
other fields unless they have the same underlying conditions as the trial field [18]. In
addition, it is quite possible for spatial variability within a field, even when selecting
smaller experimental units, to mask any treatment effects being tested in OFE [19,20].

A single-strip treatment trial, also known as a demonstration plot by many, where a
field is split into two (treatment versus control), is considerably easier to implement for
farmers than a replicated trial with multiple strips in a field [21–24]. A single-strip treatment
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trial results in one response value (such as yield) for the treatment and the control. Response
values are often derived by averaging multiple data points [7,21]. However, traditional
statistical analyses such as ANOVA cannot be performed on a single-strip treatment trial
as it only provides two to three EUs without replication. The validity of any inferences
based on single-strip treatment trial is highly debated. While many [6,7,25,26] argue that
concepts such as randomization, replications, and blocking should not be ignored for
appropriate statistical analysis, some [1,24,27] argue that given the limited resources of
farmers, single-strip treatment trials still provide useful information for decision making.

Given the ease of implementation of single strip EUs, a couple of studies have com-
pared different statistical models for analyzing single strip evaluations, while taking into
account the intensity of yield data collected with a yield monitor system (many data points
per strip rather than just one value for the entire strip). Rudolph et al. [12] compared
wheat (Triticum aestivum L.) yields in England using three strips varying in nitrogen (N)
application (low, standard, and high). The entire field received a standard amount of N,
while two strips received either 60 kg N ha−1 more (high) or 60 kg N ha−1 less (low) than
the standard amount. The study compared outputs from statistical frameworks with and
without taking into account spatial correlation, concluding that standard errors on the
treatment effects were underestimated when spatial correlation is not considered. Lawes
and Bramley [28] worked with farmers in Australia to analyze the effect of more versus
less fertilizer for canola (Brassicus napus L.) and barley (Hordeum vulgare L.). For two fields,
two management zones (low yielding vs. high yielding) were arbitrarily classified, based
on the farmer’s intuition and past experience related to the field. For the third field, three
management zones were delineated based on relative yield and electrical conductivity.
In this study, ANOVA and ANOVA with spatial covariance, i.e., spatial ANOVA, were
compared for quantifying the effect of fertilizer per zone. Contrary to Rudolph et al. [12],
Lawes and Bramley [28] concluded that complex spatial analysis was not needed, as their
approach produced similar results to the traditional statistical analysis.

While Lawes and Bramley [28] accounted for spatial variability of yield within each
field using zones, they did not account for temporal yield variability, an important factor
for understanding results of on-farm experimentation [15]. Temporal yield variability—
heterogeneity in yield across multiple years at the field-level—can be caused by a variety
of factors, including weather, management, and topography [29–32]. With availability of
yield data from past years, both spatial and temporal yield variability over time can be
assessed [14,15]. The main challenge remains whether we can design a statistically sound
approach to treatment evaluation on farms, by farmers, given access to high resolution
yield data, as well as to quantify both spatial and temporal yield variability.

Here we propose a statistical framework for estimating the treatment effect and
standard error of the treatment effect (treatment versus control), based on yield monitor
data from a single strip on-farm research trial, taking into account both spatial and temporal
variability in yield to identify treatment signals, i.e., to reduce variability. It is important
to note that we are differentiating the estimation of treatment effects and estimation of
standard errors. For estimation of treatment effects, we explore two frameworks, namely
least squares (LS) and generalized least squares with spatial covariance (GLS), while for
estimation of standard errors, we explore two frameworks, that of assuming independence
(Independence) and assuming spatial covariance (Spatial).

2. Materials and Methods
2.1. Yield Monitor Datasets

One dairy farm and one cash grain operation in central New York, USA, participated
in this study. Single-strip N treatment trials were conducted in three site-years, two sites
in 2018 and one site in 2019, per farm (Table 1). Corn was harvested for grain on the cash
grain operation and for silage on the dairy farm. Yield monitor data on the six site-years,
as well as the historic yield records of the farms (seven years of corn silage yield records for
the dairy farm and five years of corn grain yield records for the cash grain operation), were
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used in the analysis. All yield data were collected using John Deere 3 (John Deere, Moline,
IL, USA) systems. Raw yield monitor data were cleaned to eliminate systematic and
random errors [33–35]. Pass overlap (driving over areas already harvested), incorrect yield
estimates due to harvesting equipment slowing down or speeding up, and inconsistencies
between sensor delays (flow and moisture delays) are examples of issues that contribute to
errors in the raw yield monitor data [34]. Data were transformed in AgLeader format and
exported in .CSV format using SMS Advanced Software (Ag Leader Technology, Ames, IA,
USA). Yield Editor [36,37] was used for post-harvest data cleaning, as described in Kharel
et al. [38] and based on Kharel et al. [34]. The yield cleaning protocol was used for all seven
years of silage data and five years for grain data.

Table 1. Crop type, year, field size, average yield production, number of data points from the yield monitor system,
information about nitrogen strips, soil types, and distribution of management zones, delineated as suggested by Kharel
et al. [15] for three fields on a grain operation (harvested for corn grain) and three on a dairy farm (harvested for corn silage).

Unit Grain Operation Dairy Farm

Field name Field A Field B Field C Field D Field E Field F

Crop type Grain Grain Grain Silage Silage Silage

Year 2018 2018 2019 2018 2018 2019

Field size ha 2.59 2.02 2.99 22.74 42.41 33.63

Average yield * Mg ha−1 13.07 11.99 12.84 40.80 39.90 54.47

Number of
data points 827 753 553 3557 3229 5220

Nitrogen strip

Source UAN UAN UAN Urea Urea Urea

Method Injected Injected Injected Broadcast Broadcast Broadcast

Rate kg ha−1 56 56 56 121 121 121

Width m 9 9 9 24 24 24

Most common
soil type

Honeoye
(fine-loamy,

mixed,
semiactive,

mesic glossic
hapludalfs)

Honeoye
(fine-loamy,

mixed,
semiactive,

mesic glossic
hapludalfs)

Lima
(fine-loamy,

mixed,
semiactive,

mesic
oxyaquic

hapludalfs)

Ontario
(fine-loamy,

mixed, active,
mesic glossic
hapludalfs)

Ovid
(fine-loamy,

mixed, active,
mesic aeric

endo-
aqualfs)

Honeoye
(fine-loamy,

mixed,
semiactive,

mesic glossic
hapludalfs)

Second most
common soil

type

Lima
(fine-loamy,

mixed,
semiactive,

mesic
oxyaquic

hapludalfs)

Lima
(fine-loamy,

mixed,
semiactive,

mesic
oxyaquic

hapludalfs)

Kendaia
(fine-loamy,

mixed,
semi-active,

nonacid,
mesic aeric

endoaquepts)

Benson
(loamy-
skeletal,

mixed, active,
mesic lithic
eutrudepts)

Cazenovia
(fine-loamy,

mixed, active,
mesic

glossoboric
hapludalfs)

Ontario
(fine-loamy,

mixed, active,
mesic glossic
hapludalfs)

Distribution of management zones (%)

Zone 1 76.09 35.99 78.12 11.46 24.82 28.56

Zone 2 23.91 0.00 0.00 88.54 38.78 0.00

Zone 3 0.00 30.81 21.88 0.00 6.99 5.76

Zone 4 0.00 33.20 0.00 0.00 29.41 65.68

* Grain yield expressed at 85% dry matter; silage yield expressed at 35% dry matter.
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2.2. Zone Delineation

Yield stability-based management zones, described in Kharel et al. [15], were delin-
eated for each field with data through the year prior to strip implementation. Cleaned
historic yield monitor data were interpolated using kriging with the Matérn covariance
function with 2 × 2 m resolution [14]. Temporal average yield and standard deviation
of yield were determined at the farm-level for farm-specific zone delineation [15]. The
multi-year maps were compared against the farm-level average yield and the standard
deviation to classify yield pixels (2× 2 m) as high-yielding or low-yielding (above or below
the farm average) and stable or unstable (below or above the farm-level temporal standard
deviation). Pixels in Zones 1 and 4 represented stable yielding areas with high or low
yields, respectively. Yields in Zones 2 and 3 were variable over time with, on average, yield
above the farm average in Zone 2 and below average in Zone 3 (Table 1). Along with yield
at the trial year, geolocation (provided by the yield monitor data) and the N application
data points were assigned a zone based on yield of the past three or more years.

2.3. Single Strip Trial Design

For each site-year, a field-length single strip was placed where extra N was applied
at or before planting. The placement of the single strip was chosen to intersect with a
minimum of two management zones per field. The width of the strip was 9 m for the fields
at the cash grain operation (Fields A, B, and C) and 24 m for the fields at the dairy farm
(Field D, E, and F). At the grain operation, extra N was applied at a rate of 56 kg ha−1 as
urea ammonium nitrate (UAN). At the dairy farm, the application rate was 121 kg ha−1,
broadcasted as urea (Table 1). Two field-length strips located 10 m on the left and the right
side of the N strip were identified as control strips for statistical analyses (Figure 2). Strips
were at least two harvester widths wide (9 m for Field A, B, and C; 24 m for Field D, E,
and F). With the exception of the N strips, which received higher N application rates at
planting, fields were managed uniformly by the farmers, following land grant university
guidance.
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2.4. Statistical Modelling

Two approaches were explored for estimating the treatment effects: the least squares
estimation, and the generalized least squares estimation with spatial covariance. The
least squares estimation, ˆβLS, and the generalized least squares estimation, ˆβGLS, of the
treatment effects can be solved using the following formula:

ˆβLS =
(

XTX
)−1

XTy, (1)

ˆβGLS =
(

XTΣ−1 X
)−1

XTΣ−1y, (2)

where X is the design matrix containing data of the independent variables, y is a vector of
the response, and Σ is the covariance matrix modeling the spatial dependence structure
among data points. Isotropy, uniformity of variances in all directions, was assumed, and
the Matérn covariance function was used to model spatial covariance [14]. The Matérn
covariance function is parametrized as:

M
(
zi, zj

)
=

σ221−v

Γ(v)

(∣∣∣∣zi − zj
∣∣∣∣

α

)v

Kν

(∣∣∣∣zi − zj
∣∣∣∣

α

)
, (3)

where covariance parameters are variance, σ2, range, α, smoothness, ν and nugget, τ2,
for two GNSS co-ordinates zi and zj. The nugget value σ2τ2 is added to the diagonal of
the covariance matrix. Γ is a gamma function, and Kν is the modified Bessel function of
the second kind [14]. The parameters for the covariance function were estimated through
maximum likelihood estimation using the GpGp package [39]:

MLS =
(

XTX
)−1

XT , (4)

MGLS =
(

XTΣ−1 X
)−1

XTΣ−1, (5)

Both and MLS and MGLS are P × N matrices, where P is the number of explanatory
variables, and N is the number of data points. Multiplying MLS or MGLS by the response
vector, y, results in a vector of the beta coefficients with M elements. Standard errors, the
level of uncertainties around treatment effects estimation, can be calculated by using the
following general formula:

Standard Errors :
√

MKMT (6)

where M is either MLS or MGLS, depending on the treatment estimation approach, and K is a
covariance matrix. Two approaches were explored for estimating the standard errors, namely
assuming independence and assuming spatial covariance. If we assume independence, the
covariance matrix K would be σ̂2 I, where σ̂2 = 1

N ∑n
i=1
(
Yi − Ŷi

)2, where Yi is the response,
Ŷi is the model prediction, N is the number of data points, and I is the identity matrix. If we
take into account spatial covariance, K, would be Σ, as described above.

The estimation of treatment effects and standard errors often is treated as a single
problem instead of two independent ones. In statistics, least squares estimation refers
to the estimation of treatment effect via (1) and estimation of standard errors assuming

independence, which is
√

σ̂2MLS IMT
LS. In this study, however, we treated estimation of

treatment effects and standard errors as two separate problems to closely analyze each
approach. Treating treatment effects and standard errors as two separate problems is not
uncommon in the field of spatial statistics, as suggested by Cressie and Wikle [40], mainly
due to the heavy computational cost associated with estimating parameters for the spatial
covariance function. We argue that it also provides a more appropriate framework to
analyze single strip treatment trials.
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Four possible combinations of the treatment effects and standard errors estimations
exist: (a) the least squares estimation, with independence assumption for standard errors;
(b) the least squares estimation, with spatial covariance for standard errors; (c) the gener-
alized least squares estimation, with independence assumption for standard errors; and
(d) the generalized least squares estimation, with spatial covariance for standard errors.
Approach (a) is referred to as LS 1, (b) is referred to as LS 2, and (d) is referred to as GLS
from here on. Of the four approaches, (c) was excluded from the analysis because it was
deemed inferior to the other approaches, as explained in Results, Model Diagnostics.

2.5. Explanatory Variables Selection and Model Fitting

It is reasonable to believe, as these fields were managed uniformly by the same farm
over the past years, that yield data measured with a yield monitor system are both spatially
and temporally correlated, i.e., yield estimates that are located closer together tend to have
similar values when compared to points that are further apart. A location that is historically
high yielding over the past years and has consistently been that way, thus, is likely to
exhibit high yield in the following years.

Exploratory data analysis on the spatial and temporal yield distribution within the
field was performed to appropriately control for such spatial autocorrelation when estimat-
ing the effect of N treatment.

To account for intra-field spatial yield variation, relative latitude and longitude and
their linear interaction were treated as fixed effects. Relative latitude and longitude were
calculated by subtracting the average value of each, i.e., the goal was to anonymize the
location of the field. We could possibly control for linear yield trend across the field, due
to topographic factors within the field, by adding these factors as fixed effects. Spatial
yield variation also was considered under the statistical modeling. LS 2 considers the
spatial covariance structure, Σ, when estimating standard errors, while GLS uses it when
estimating both treatment effects and standard errors estimation. On the other hand, LS 1
assumes that each data point is independent when estimating both the treatment effects
and the standard errors.

Temporal yield variability, or heterogeneity in yield across multiple years, also needed
to be accounted for to accurately examine the effect of the treatment and its standard error.
Temporal average yield, estimated by averaging over the past years at the given location,
was treated as a fixed effect to control for the historic yield level of the field. In addition,
management zones, as described in Kharel et al. [15], and its interactions with N treatment
were treated as fixed effects to control for temporal yield level and its variation at the farm
level. The interaction term between four management zones and N treatment was added
because yield response to N was expected to differ among management zones. Thus, the
following model was fitted via three approaches, as mentioned above (LS 1, LS 2, and GLS),
using the R base package [41] and GpGp [39]:

Yield ∼ Zone + Nitrogen : Zone + AverageYield + Latitude ∗ Longitude (7)

where Yield is the response variable representing the yield at the site-year during the trial,
Zone is the management zone (Zone 1, 2, 3, or 4), Nitrogen is the binary variable representing
whether the data point was either located in the N strip (Nitrogen = 1) or one of the two
control strips (Nitrogen = 0), AverageYield is the temporal average yield, calculated based
on the past yield data at the given location, and Latitude and Longitude are the normalized
geolocation of the data points. A design matrix, X, and the response vector, y, were formed
based on Formula (6) and were used to estimate the treatment effects and their standard
errors (see Statistical Modelling under Materials and Methods). Treatment effects and standard
errors—estimated per LS 1, LS 2, and GLS—were first compared.

2.6. Model Output and Diagnostics

As noted, treatment effects for extra N per management zone were estimated using
two approaches: the LS approach (1), and the GLS approach (2). The treatment effects in
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both cases can be represented via a linear combination of the responses. This means that
the treatment effects, either ˆβLS or ˆβGLS, can be viewed as a weighted sum of the response
vector y. Under this framework, MLS, (3), for the LS approach and MGLS, (4), for the GLS
approach can be thought of as the aforementioned weights. In other words, for some entry,
j, of treatment effects vector, β̂:

β̂ j =
n

∑
i=1

ciyi, (8)

where ci is the amount of weight assigned to a response yi among n data points within a
field. Distributions of ci for the LS and the GLS approaches were analyzed to identify the
better approach for estimating the treatment effects of extra nitrogen per zone.

The stability of estimates using the LS approach (LS 1 and LS 2) and the GLS approach
also were measured. Given a sufficient number of data points to start with, the number of
data points should not significantly affect the estimated treatment effects. Additionally,
yield monitor data point can be missing, removed during the data-cleaning process, or
otherwise not recorded. Thus, the approach that provides stable estimates with respect to
missing values was deemed more appropriate. Difference in estimates, when a portion of
the data were used versus when all the data points were used, was compared to measure
stability of the estimate. The treatment effects estimated using the randomly selected 60%
of the data for a site year, using the two approaches (LS and GLS), were compared against
the treatment effects estimated using 100% of the data. The root mean squared error (RMSE)
was calculated by repeating this process 100 times:

MSE =

√
∑100

i=1(E60,i − E100)
2

100
, (9)

where E60,i represents the estimate using 60% of the data, indexed between i = 1 and 100,
and E100 represents the estimate using 100% of the data. The approach with the smaller
RMSE was deemed more stable and therefore more appropriate when estimating the
treatment effects for a single-strip treatment trial.

3. Results
3.1. Yield in Control and Nitrogen Strips

For the grain fields, the average yield in the N treatment strip was 0.22 and 0.26 Mg ha−1

(85% DM) higher for Field B and C, respectively, while for Field A it was 0.12 Mg ha−1

lower. For the silage fields, the treatment strip was higher yielding on average for field
D and E (2.38 and 5.20 Mg ha−1 higher at 35% DM, respectively), while for Field F, the
control strips yielded higher than the treatment strips by 2.32 Mg ha−1 (Figure 3). The
overall yield distributions were similar across fields, with a standard deviation between 0.5
and 1.0 Mg ha−1 for grain fields (Field A, B, and C) and between 10 and 13 Mg ha−1 for the
silage fields (Field D, E, and F).

The differences in yield between the N strips and their controls varied greatly among
zones (Figure 4). For example, while on average the control strips were higher yielding than
the N treatment for Field A, analysis per zone showed a positive response of 0.25 Mg ha−1

for Zone 2, while in Zone 1, yield in the N strip was 0.25 Mg ha−1 lower than in the
control. Similarly, for Field C, the yield in the N strip was higher across the field, primarily
because of a large yield increase in Zone 3 (1.66 Mg ha−1), while average yield in Zone
1 was 0.11 Mg ha−1 lower than in the control. For Fields B, D, E, and F, the difference
in average yield between treatment and control per zone was consistent with differences
measured at the field-level. For Field B, D, and E, where the treatment strips were higher-
yielding than the control strips on average, the yield from treatment strips were higher-
yielding than the control strips per zone as well. Field F exhibited lower yield in the N
strip, consistent for all zones in the field. The conclusion as to whether these differences
are statistically significant were analyzed through various statistical frameworks in the
following sections.
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for grain. Fields D, E, F (d–f) were harvested for silage.
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Figure 4. Density plots representing corn yield distribution of N treatment and control strips in individual fields, with up to
four yield stability zones, as per Kharel et al. [15]. The dotted and the solid vertical line represent the average yield for the
treatment and control strip, respectively. Fields A, B, C (a–c) were harvested for grain. Fields D, E, F (d–f) were harvested
for silage.
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3.2. Spatio-Temporal Yield Variation

Yield, as well as the spatial distribution of yield, varied greatly within each field
(Figure 5). The standard deviation of yield, a measure of spatial yield variation, was
between 0.5 and 0.8 Mg ha−1 for the grain fields (Fields A, B, and C) and 8 and 12 Mg ha−1

for the silage fields (Fields D, E, and F). Linear relationships between spatial coordinates
and yield were present in Field A. Data points on the west side of the field tended to be
higher-yielding than the data points on the eastside of the field (Figure 5a). Because of a
risk of such within-field trends, spatial coordinates and their linear interaction were added
as fixed effects in the overall statistical model.
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Figure 5. Spatial distribution of yield (a), historic average yield (b), temporal standard deviation (c), and management
zones (d), as estimated based on previous years of yield produced for six fields (A through F). Yield stability management
zones were delineated as described in Kharel et al. [15]. Zone 1 represents high-yielding-stable, Zone 2 represents high-
yielding–unstable, Zone 3 represents low-yielding–unstable, and Zone 4 represents low-yielding–stable areas of the field.

Overall, yield estimates that were in closer proximity tended to have similar values
(Figure 5a). Some data points, however, exhibited distinctly different yield estimates when
compared against nearing data points. Such data points were often, but not always, located
at intersections of main areas in a field and headland areas where compaction, pest pressure,
and shading could impact yield [42]. Spatial autocorrelation of yield estimates was also
evident from the semi-variograms (Figure 6). All six fields, especially Field C, E, and F,
exhibited spatial autocorrelation consistent with the Matérn covariance function. At large
spatial lags, all six fields showed unusual values. This was due to the low number of data
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points separated by large distances, and thus the variogram estimator was known to be
inaccurate at large distances.
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Figure 6. An empirical variogram for corn yield for six fields (Fields A–F) based on the yield estimates from the yield
monitor and their corresponding spatial coordinates. Fields A, B, C (a–c) were harvested for grain. Fields D, E, F (d–f) were
harvested for silage.

The spatial distribution of temporal average yields, calculated using the yield data
prior to the trial, showed a similar yield distribution when compared against the spatial
distribution of yield during the trial year (Figure 5a,b). For example, the middle strip in
Field C yielded higher than the rest of the field, both historically (Figure 5b) and in the trial
year. It is important to note that the middle strip was the location where the extra nitrogen
was applied during the trial year. Temporal average yield was included as fixed effect in
the overall statistical model, to control for the historic level of production at the field-level.

Within the same farm, the temporal average yield differed by field (Figure 5b). For
corn grain, Fields A and C were high-yielding, while Field B had a wide range in yield
within the field. For corn silage, Field D was high-yielding, Field E had yields similar to
the average yield production of the farm, and Field F was lower-yielding. Yield temporal
variation was also noticeably different, especially for grain fields (Figure 5c). For all three
silage fields, temporal yield variation was generally low across the field. For grain fields,
Field D had high temporal yield variation, while Field F had low yield variation. The
temporal average yield and its variation at the farm-level were captured by the four yield
stability-based management zones, as described by Kharel et al. [15] (Figure 5d). Such
management zones can be used to account for both the average level of production and its
variation across time at the farm-level. Thus, management zones, as well as their interaction
with N treatment, were added as fixed effects in the overall statistical model.

3.3. Model Outputs

Treatment effects per zone for each field were noticeably different, depending on the
method used for the estimation (LS 1 and 2 vs. GLS; Table 2). For example, the N effect
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for Zone 1 for Field A via LS was −0.23 Mg ha−1, implying that addition of N decreased
yield by 0.23 Mg ha−1 for Zone 1. However, it was 0.45 Mg ha−1 when the GLS approach
was used, suggesting a higher yield for the N strip. The treatment effects of LS 1 and LS 2
were both estimated using the least squares approach, thus resulting in the same outputs.
Standard errors estimated assuming independence (LS) and spatial correlation (LS 2 and
GLS) also showed noticeable difference. For all fields, standard errors assuming spatial
covariance (LS 2 and GLS) were greater, providing a more conservative estimation when
compared to those estimated assuming independence (LS). Such differences were likely due
to spatial autocorrelation, as evident in Figures 5 and 6. The differences in standard error
between LS 2 and GLS also were noticeable. For all cases, GLS led to smaller estimations of
standard error than LS 2, and such difference was due to the property of the GLS estimator.
The GLS estimator of treatment effects (4) was proven to have the smallest error variance
among all possible linear combinations of the data, including LS (1) [43].

Table 2. A regression model with the yield as the response variable, temporal average yield, latitude,
longitude, linear interaction between latitude and longitude, and four corn management zones,
delineated as suggested by Kharel et al. [15], and their interaction with N treatment as the explanatory
variables (see Equation (7) for the model details) were summarized for six fields (Fields A, B, C, D, E,
and F). Each nitrogen effect per management zone was estimated. For LS 1, least squares was used
for treatment effects, and independence was assumed for standard errors. For LS 2, least squares was
used for treatment effects, and spatial covariance was used for standard errors. For GLS, generalized
least squares was used for treatment effects, and spatial covariance was used for standard errors.
Fields A, B, and C were harvested for grain. Fields D, E, and F were harvested for silage.

Field/Model
N-Effect in

Zone 1
N-Effect in

Zone 2
N-Effect in

Zone 3
N-Effect in

Zone 4

Estimate SE Estimate SE Estimate SE Estimate SE

Field
A

LS 1 −0.23 0.06 0.16 0.11 - - - -
LS 2 −0.23 0.24 0.16 0.34 - - - -
GLS 0.45 0.16 0.52 0.18 - - - -

Field B
LS 1 0.20 0.06 - - 0.36 0.09 0.38 0.07
LS 2 0.20 0.18 - - 0.36 0.26 0.38 0.17
GLS 0.14 0.13 - - 0.35 0.16 0.24 0.13

Field
C

LS 1 −0.16 0.07 - - 1.13 0.14 - -
LS 2 −0.16 0.24 - - 1.13 0.41 - -
GLS 0.00 0.18 - - 0.93 0.24 - -

Field
D

LS 1 0.38 0.74 1.62 0.25 - - - -
LS 2 0.38 3.31 1.62 1.78 - - - -
GLS 0.53 1.05 0.07 0.97 - - - -

Field E
LS 1 3.48 0.56 4.12 0.44 7.51 1.01 4.70 0.56
LS 2 3.48 2.22 4.12 2.37 7.51 2.98 4.70 2.36
GLS 1.01 1.22 1.00 1.22 1.89 1.32 1.68 1.24

Field F
LS 1 −3.29 0.52 - - −9.70 1.35 −4.46 0.37
LS 2 −3.29 3.14 - - −9.70 6.54 −4.46 2.58
GLS −0.42 1.14 - - 0.18 1.43 −0.57 1.10

3.4. Model Diagnostics

The coefficients for the LS approach, MLS, showed relatively uniform values across the
field, when compared to coefficients for the GLS approach, MGLS (Figure 7). The coefficient
for the GLS approach presented unusual outliers across the fields. These outliers were
attributed to sharp changes between explanatory variables that were in close proximity.
Unlike the LS approach, which puts equal weight across data points due to the indepen-
dence assumption, GLS puts more weight on two data points that are in close proximity
but have a drastic difference in their explanatory variables (i.e., management zones). As
we observed in Figure 5, there are many data points that are close in distance but occupy
different management zones.
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Figure 7. Spatial distribution of coefficients for estimating treatment effect of N treatment per yield stability-based
management zone (Zone 1, 2, 3, and 4) via the least squares method (LS) and generalized least squares (GLS) method for

Field A. Coefficients for LS were calculated by solving
(
XT X

)−1XT and for GLS by solving
(

XTΣ−1 X
)−1

XTΣ−1, where X
represents the design matrix and Σ the spatial covariance.

The challenge of estimating the treatment effect with a categorical explanatory variable,
while also accounting for spatial covariance structure, was noted by Griffin et al. [21]. The
authors called it the “neighboring observation problem” and pointed out that observations
that are located on the edge of different treatments influence the power of estimating
the treatment differences. To bypass this problem, the LS approach was proposed for
estimating the treatment effects per management zone.

The LS approaches (LS 1 and LS 2) also were shown to be more stable than the
GLS approach for estimating the treatment effects (Table 3). For all six fields and four
management zones, the RMSEs, comparing estimates using 60% and 100% of the data,
were smaller for the LS approach than those of the GLS approach. This observation also
is corroborated by the comparison between MLS and MGLS in Figure 7. Based on these
observations, the LS estimation for the treatment effect is more appropriate when compared
against the GLS estimation, as LS is more robust in its estimation, regardless of the number
of observations.

Table 3. Root mean squared errors (RMSEs) were calculated per management zones (Zone 1, 2, 3, and 4) and field (Field A,
B, C, D, E, and F) comparing treatment effect estimates using 60% and 100% of the data. Two approaches, least squares (LS)
and generalized least squares (GLS) approaches, were used to estimate the treatment effects.

Field A Field B Field C Field D Field E Field F

LS GLS LS GLS LS GLS LS GLS LS GLS LS GLS

————————————————————– Mg ha−1————————————————————–

Zone 1 0.038 0.688 0.044 0.232 0.069 0.840 0.921 2.748 0.470 2.341 0.293 2.427
Zone 2 0.099 0.551 - - - - 0.176 1.443 0.307 2.243 - -
Zone 3 - - 0.066 0.347 0.140 0.954 - - 0.926 5.143 1.415 3.259
Zone 4 - - 0.055 0.306 - - - - 0.474 4.645 0.316 2.672

4. Discussion

In this work, we proposed an alternative statistical framework to analyze a non-
replicated single strip treatment trial. By leveraging high resolution spatial yield monitor
data as well as temporal variability in yield, we aim to make OFE more feasible for farmers
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while gaining as much insight as possible from un-replicated strips. We differentiated
the estimation of treatment effects and estimation of standard errors. For estimation of
treatment effects, we explored two frameworks, namely least squares (LS) and generalized
least squares with spatial covariance (GLS), while for estimation of standard errors, we
explored two frameworks, that of assuming independence (Independence) and assuming
spatial covariance (Spatial). Our conclusion was that LS is more appropriate in estimating
the treatment effect while Spatial provides more reasonable estimation of standard error
than Independence.

Literature such as Rudolph et al. [12] also compared outputs from statistical frame-
works with and without taking into account spatial autocorrelation and concluded that
standard errors of the treatment effects were underestimated when spatial correlation was
not considered; our results corroborated this finding. For all six fields, standard errors
estimated with spatial covariance were distinctively larger than standard errors estimated
assuming independence. This finding also corroborates many studies that evaluated the
importance of spatial yield variability at the field level [14,15,21,33]. However, our re-
sults contradicted those by Lawes and Bramley [28], who concluded that a comparison
between data points, without taking into account spatial covariance, and linear model
estimation with spatial covariance, did not produce significantly different results. Our
analysis suggests that the effects of N are drastically different when the LS approach, a
model that assumed independence, or the GLS approach, a model that considers spatial
covariance, are used. The noticeable difference between our analysis and that of Lawes
and Bramley [28] may be attributed to the use of yield stability-based management zones
in our study. We analyzed the impact of N per yield stability-based management zones,
delineated according to Kharel et al. [15], which provides information about both the
temporal average yield and its variation in relation to the farm-level temporal average
yield and its variation. While Lawes and Bramley [28] used management zones, they did
not take into account spatial yield trends nor yield variability caused by a variety of factors,
including the weather, management, and topography [29–32]. Temporal and spatial yield
variation within a field can be high in New York, and it is crucial to take into account this
variability to appropriately estimate the effect of a treatment from an OFE.

We acknowledge that historic yield record or other data channels are not always
available for researchers and farmers to generate management zones. In such case, concepts
such as randomization, replications, and blocking should be implemented to accurately
estimate the treatment effect, as suggested by [6,7,25,26], to prevent biased estimation of
treatment effects. Additionally, our analysis assumed isotropy, uniformity of variances
in all directions, and uniform spatial correlation across all three strips. While Matérn
isotropic covariance was able to account for spatial variability in yield shown in the data,
one may want to implement a non-stationary spatial model as shown in Jin et al. [44], for
example, to account for potentially more complicated spatial covariance structures. Jin
et al. [44] proposed the use of sampling-based localized co-kriging developed in Cressie
and Wikle [40].

5. Conclusions

It remains obvious, from a practical perspective, that for farmers interested in on-farm
evaluation of a change in management, a single strip field evaluation is much easier to
implement than multi-strip trials. We thus explored approaches for estimating the effect
of the treatment and uncertainty around that estimation (standard error) for a single strip
treatment trial. The results of this study show that when yield is documented using yield
monitor systems that collect georeferenced yield data per second, variability within a field
can be quantified per management zones. With high resolution zone maps and spatial
covariance, treatment effects from a single-strip treatment trial effectively can be estimated.
We therefore propose the use of LS 2, i.e., estimation of treatment effects using the LS
approach and standard errors with spatial covariance, for analyzing responses, such as
yield or other desired outcomes, from a specific management change or treatment. Through
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this approach, we can estimate the effect of a treatment and standard errors from any un-
replicated, single-strip OFE, based on historic yield monitor data and yield stability-based
management zones. Moreover, it allows for more field trial data to be added over time for
better understanding of drivers for outcomes such as yield and the need for site-specific
management in unstable yielding zones.
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