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Abstract: The wastewater from washed rice water (WRW) is often recommended as a source of
plant nutrients in most Asian countries, even though most current research on WRW lack scientific
rigor, particularly on the effects of rice washing intensity, volumetric water-to-rice ratio (W:R), and
condition of the WRW before plant application. This research was thus carried out: (1) to determine
how various rice washing intensities, fermentation periods (FP), and W:R would affect the nutrient
content in WRW, and (2) to isolate, identify, and characterize the bacterial community from fermented
WRW. The WRW was prepared at several rice washing intensities (50, 80, and 100 rpm), FP (0, 3, 6,
and 9 days), and W:R (1:1, 3:1, and 6:1). The concentrations of all elements (except P, Mg, and Zn) and
available N forms increased with increasing FP and W:R. Beneficial N-fixing and P- and K-solubilizing
bacteria were additionally detected in WRW, which helped to increase the concentrations of these
elements. Monovalent nutrients NH+

4 -N, NO−3 −N, and K are soluble in water. Thus, they were
easily leached out of the rice grains and why their concentrations increased with W:R. The bacteria
population in WRW increased until 3 days of fermentation, then declined, possibly because there
was an insufficient C content in WRW to be a source of energy for bacteria to support their prolonged
growth. While C levels in WRW declined over time, total N levels increased then decreased after
3 days, where the latter was most possibly due to the denitrification and ammonification process,
which had led to the increase in NH+

4 -N and NO−3 −N. The optimum FP and W:R for high nutrient
concentrations and bacterial population were found to be 3 to 9 days and 3:1 to 6:1, respectively.
WRW contained nutrients and beneficial bacterial species to support plant growth.

Keywords: bacteria; fermentation; water to rice ratio; nutrients contents; wash rice water; soil amendments

1. Introduction

It is often claimed, but without strong scientific evidence, that washed rice water waste
is a beneficial plant fertilizer and soil amendment. Milled rice is very often washed prior
to cooking to remove the bran, dust, and dirt [1]. However, rice washing can also remove
a significant amount of water-soluble nutrients from the rice grains, and the water after
rice washing is often simply discarded into the environment. This discarded wastewater is
called washed rice water (WRW), and this wastewater has been found to contain several
essential plant nutrients, such as (in mg L−1) 40 to 150 of N, 4.19 to 10.14 NO−3 −N, 2.57 to
39.72 NH+

4 -N, 43 to 1630 P, 51 to 200 K, 8 to 2944 Ca, 36 to 1425 Mg, and 27 to 212 S [1–6].
In addition, several studies have shown that plant watering with WRW had increased

the height, stem diameter, and yield of tomato, water spinach, eggplants, pak choy, lettuce,
mushroom, adenium, chilli, and mustard green plants [7–14]. Furthermore, WRW was
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found to contain plant growth-promoting bacteria (PGPB), such as Bacillus and Lactobacillus
spp. [11]. Their presence in WRW is particularly noteworthy because these bacteria can
inhibit plant pathogens, produce phytohormones and siderophores, solubilize potassium
and phosphate, and fix nitrogen [15,16].

Unfortunately, nearly all WRW studies come from gray literature. Most of these
WRW studies either lacked scientific rigor or lacked essential information or additional
measurements needed to explain their experimental observations. There is also a dearth of
WRW studies. Nabayi et al. [5] found only 41 papers on the reuse of WRW specifically for
agriculture, and of this total, only 10% of them were published in indexed journals, and the
rest, either in non-indexed journals (61%) or undergraduate research reports (29%).

Consequently, the benefits of WRW remain inconclusive. Nevertheless, the advocacy
for its reuse for irrigation and liquid plant fertilizer remains popular, particularly in
Asia. In Indonesia, for instance, the village of Polo Geulis in Central Bogor practices a
centralized water-saving system where WRW is collected from the village citizens, after
which the water is used to irrigate and fertilize their neighborhood crops of herbs and
vegetables [17]. A similar WRW-reuse communal program is also implemented, as part of
the local government program, in the village of Lambangkuning, Indonesia [18].

WRW is wastewater, and like any other wastewater, it ought to be reused as part of
water governance. Large amounts of WRW are produced, as rice, the second most widely
grown cereal in the world is eaten by nearly half of the world’s population [19]. Between
2020 and 2021, about 504 million tons of rice were consumed worldwide [20], and the figure
is expected to increase with population growth. Even with a conservative estimate of using
only 1 L of water to wash every 1 kg of rice grains, this would work out to at least 504 billion
L of WRW being produced within this period. Furthermore, global freshwater demand
is expected to increase by 55% by 2050 [21]. This increase is mainly due to detrimental
climate change and increasing world population, driving WWAP [22] to advocate more
effective water governance so that wastewater, rather than just being discarded into the
environment, is instead reused, treated, or recycled. The AQUASTAT database of the Food
and Agriculture Organization of the United Nations (FAO) additionally estimated that
more than half of the global freshwater withdrawals are simply discarded as wastewater
into the environment [22]. Municipal water demand, in particular, corresponds to 11% of
the global freshwater withdrawal, but out of this, only 3% is consumed, with the remaining
8% simply discarded, unused, as wastewater.

But if WRW is to be advocated for reuse for agriculture, its benefits must be shown
in at least two stages: first, that the liquid WRW itself has the properties and nutrient
levels that are beneficial to plant growth, and second, that the application of WRW will
increase the crop growth and yield in both the short- and long-term, as well as improve the
biological and physicochemical soil properties [5].

This paper addressed the first stage; that is, to characterize the chemical and biological
properties of the liquid WRW to assess its use as plant fertilizer and for promoting soil
health. First, this study measured both the macro and micronutrients in WRW, as well as
the plant-available N forms of NH+

4 -N and NO−3 −N (typically, only the macronutrients are
analyzed by other studies). Second, this paper determined how washing rice with several
volumes of water and washing intensities would affect the chemical properties and nutrient
content in WRW. Third, WRW will ferment over time, so this study additionally determined
whether fermentation would lead to higher nutrient content and higher microbial count in
WRW, as well as encourage the presence of beneficial bacteria, particularly the N-fixing and
P- and K-solubilizing bacteria. That WRW could promote beneficial soil bacteria would
increase WRW’s worth as a natural fertilizer and soil amendment. The knowledge obtained
from this study will provide basic information on the potential use of WRW in agriculture,
and perhaps lead to follow-up studies that will rigorously evaluate the benefits of plant
watering with WRW on crop growth and yield.
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2. Materials and Methods
2.1. Chemicals and Media

All the chemicals and microbiological media utilized in the experiment were of ana-
lytical grade. Nutrient agar and nutrient broth were purchased from Merck (Darmstadt,
Germany) and supplied via Sigma-Aldrich (Selangor, Malaysia).

2.2. Sample Preparation

The rice brand used was ‘Rambutan’ (Padiberas Nasional Berhad, Malaysia), which is
a commercially available medium-grained rice in Malaysia. The WRW was prepared in a
volumetric water-to-rice (W:R) ratio of 1:1, 3:1, and 6:1. The mixture was obtained using a
stand mixer (Bossman Kaden matte BK-100S, Tokyo, Japan) and at three (3) different washing
intensity of 50 (0.139 g Force), 80 (0.357 g Force), and 100 (0.559 g Force) rpm at a constant time
of 90 s. The mixture (rice grains and water) was then separated using sieves (500-micron sizes).
For the fermented batches, the same water was kept at room temperature in a container for
periods of either 3, 6, or 9 days for fermentation before use. After every selected fermentation
cycle, the fermented water was subjected to chemical analyses.

2.3. Chemical Analyses

The total C, N, and S content of the rice samples were determined using CNS analyzer
(LECO Corp., St. Joseph, MI, USA); and P, K, Ca, Mg, Cu, Zn, and B were analyzed using
graphite furnace atomization atomic absorption spectrophotometer (AAS) (Perkin Elmer,
PinAAcle, 900T, Waltham, MI, USA) after dry ashing the rice samples following Nelson
and Sommers [23], where 1 g of the oven-dried (at 105 ◦C) ground rice grains were used.
The samples were put into a muffle furnace and subjected to a series of temperatures
from 200 ◦C, to 550 ◦C, for 6 hrs where complete ash was obtained for further assays.
Samples from the WRW at different speeds, fermentation periods, and W:R ratios were
filtered through a Whatman 1 filter paper (11 µm size) and analyzed for pH, EC, total
N, nitrate, ammonia, C, S, P, K, Ca, Mg, Cu, Zn, and B. Total N, C, and S were analyzed
using a CNS analyzer (LECO Corp., St. Joseph, MI, USA); and P, K, Ca, Mg, Cu, Zn,
and B were analyzed using atomic absorption spectrophotometer (AAS) (Perkin Elmer,
PinAAcle, 900T, Waltham, MI, USA). The detection and quantification limits of the AAS
were 0.01–1 ng mL−1 and 4 nM, respectively. Ammonium and nitrate were determined
by the Kjeldahl procedure [23]. pH and EC were measured using the 827 pH and EC lab
meter (Metrohm AG, Zurich, Switzerland) [24]. The different batches of the WRW were
also subjected to bacterial population, isolation, and characterization.

2.4. Culture Media and Bacterial Growth

Tryptic soy agar (TSA) was used for the bacterial population growth of the various
fermented washed rice water following Tan et al. [25]. The bacterial growth was counted
from each fermented WRW type (in triplicates) to determine the bacterial population. Each
plate with a range of 30 to 300 colonies was selected and counted as colony-forming units
(CFU) per mL of the sample [26].

2.5. Bacterial Isolations

Different bacteria were isolated from different samples (of different fermentation
periods) based on shape, color, and sizes following the bacterial growth and population
count. The isolates were sub-cultured several times to obtain the pure colony, which was
subsequently subjected to a series of tests. The isolated bacteria were grouped based on
fermentation period irrespective of the W:R ratio and washing intensity used.

2.6. N2 Fixation, Phosphate Solubilization, and Potassium Solubilization

The qualitative N2 fixation ability was ascertained by growing the isolates on Nfb
medium (N-free solid malate medium) following [27]. While phosphate and potassium
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solubilizing ability of the isolated microbes were determined using Pikovskaya [28] and
Aleksandrov agar media [29], respectively.

2.7. Bacterial Identification Using 16S rRNA Gene Sequence

The selected isolates were identified by partial sequencing of the 16S rRNA gene.
Genomic DNA was isolated from the (WRW) bacterial culture by using the Genomic DNA
Mini Kit (Favorgen) (Pingtung Agricultural Biotechnology Park, Pingtung, Taiwan). 16S
rRNA gene was amplified using universal forward 27F (5′-AGAGTTTGATCMTGGCTCAG-
3′) and reverse 1492R (5′-GGTTACCTTGTTACGACTT-3′) primers (Apical Science Sdn.
Bhd. Selangor, Malaysia). 30 µL reaction mixture was prepared, each containing 2 µL of
DNA template, 15 µL of Master mix (containing 10× PCR Reaction Buffer, dNTPs mix,
Taq polymerase, MgCl2 and ultra-pure water), 10 µL of Nuclease free water, 1.5 µL each of
forward and reverse primers. PCR reactions were carried out using a thermal cycler (MJ
Mini Personal Thermal Cycler, Bio-Rad) with cycles as follows: denaturation for 4 min at
95 ◦C, 45 s at 95 ◦C, 45 s at 58 ◦C for annealing, 1 min at 72 ◦C for initial extension and final
extension for 10 min at 72 ◦C. The amplified 16S rRNA gene was purified with a Gel/PCR
DNA Fragments Extraction Kit (Favorgen) (Pingtung Agricultural Biotechnology Park,
Pingtung, Taiwan) and outsourced for sequencing (Apical Scientific Sdn. Bhd., Selangor,
Malaysia). The sequenced data were aligned and analyzed to identify the bacterium and
its closest neighbors using BLAST (NCBI, Maryland, WA, USA).

The partial 16S rRNA gene sequences of the identified strains in this study were deposited
in GenBank database (http://www.ncbi.nlm.nih.gov/GenBank/index.html, accessed on
10 November 2021) on 15 December, 2020 under accession numbers; MW365555.1 (Enterobacter
ludwigii), MW365556.1 (Enterobacter sp.), MW365557.1 (Enterobacter sp.), MW365558.1 (Enterobac-
ter mori), MW365561.1 (Enterobacter sp.), MW365562.1 (Enterobacter mori), MW365564.1 (Pantoea
agglomerans), MW365565.1 (Stenotrophomonas maltophilia), MW365560.1 (Stenotrophomonas mal-
tophilia), MW365563.1 (Klebsiella pneumoniae), MW365554.1 (Bacillus velezensis), MW365559.1
(Bacillus velezensis).

2.8. Phylogenetic Analysis

All the 16S rRNA gene sequences were aligned using ClustalW2 with the most closely
related bacteria sequences obtained from the NCBI database using the MEGA software ver-
sion 7. The similarities between the nucleotide sequences were computed using Hasegawa–
Kishino–Yano model [30]. All positions containing gaps and missing data were eliminated
from the dataset. The reference sequences were downloaded in FASTA format from the
NCBI database, and a phylogenetic tree was constructed by the Maximum Likelihood
method using MEGA7 software [31]. Tree topologies were evaluated by performing boot-
strap analyzes using 1000 replications.

2.9. Data Analysis

Completely Randomized Design (CRD) in a factorial arrangement was used in the
analysis of the WRW nutrient content study. A two-factor analysis between rice washing
speed and W:R ratio was carried out to assess their effect on 0-day WRW (unfermented
WRW). To include the effect of the fermentation period (3, 6, and 9 days), three-factor analy-
sis was carried out with speed and W:R ratio factorially. All data were analyzed by analysis
of variance (ANOVA) using R software package (version 4.1.1). Means were separated by
the Tukey HSD test procedure at a threshold significance level of 5%. A uniform manifold
approximation and projection (UMAP) analysis and interaction trends were further carried
out on the measured chemical variables using the R-studio interface (version 1.4.1717)
using the ‘uwot’ package (version 0.1.10) to provide additional meaningful information to
the mean separation test [32].

http://www.ncbi.nlm.nih.gov/GenBank/index.html
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3. Results
3.1. Chemical Properties and Elemental Concentrations in WRW

Washing rice at different speeds and various water:rice volumetric ratios (W:R) had
leached out between 1.4 to 35.2% of all nutrients, with most of these losses from S (35.2%),
NO−3 −N (14.5%), and K (11.1%), while the least element leached was Zn with 1.4% (Table 1).
Specifically, washing rice lost nutrients by the following percentages: 35.2 S, 14.5 NO−3 −N,
11.1 K, 10.0 Mg, 9.7 C, 8.6 B, 8.1 NH+

4 -N, 4.9 P, 3.6 Cu, 3.3 Ca, 2.4 total N, and 1.4 Zn.
The unfermented WRW contained plant-available N forms, NH+

4 -N and NO−3 −N, at
24.1 and 19.9%, respectively, of its total N. As expected, tap water contained very little
nutrients, as this was the municipal tap water that had been treated for safe human drinking
and use, according to the National Water Standards [33].

Only the main effect of W:R was significant (p < 0.01) on the pH, C, C:N, NH+
4 -N,

NO−3 −N, Ca, and S (Table 2a). Washing rice with the highest water volume (6:1) leached
out the most C, available N (NH+

4 -N and NO−3 −N), Ca, and S, as well as producing the
least change in pH. This was generally followed by W:R of 3:1. Interaction between washing
intensity and W:R was significant on EC and the concentrations of total N, P, K, Mg, Cu,
and Zn (Table 2b). Averaging across all washing intensities revealed that increasing W:R
from 1:1 to 6:1 resulted in lower EC from 72 to 57.5% and lower concentrations in P, Mg,
and Zn from 80 to 41, 62.8 to 46.9, and 87.5 to 58.3%, respectively. However, for K and Cu,
their concentrations increased from 7.2 to 14.2% and 44 to 53%, respectively.

Table 1. Means (± SE) element analyzes of medium-grained rice and the tap water used for washing the rice.

Parameters Rice Grain WRW * Tap Water †

pH – 6.53 ± 0.02 6.58 ± 0.02
EC (µS cm−1) – 372.83 ± 34.53 125.36 ± 28.21

Ash (%) 0.95 ± 0.04 – –
TOC (%) 30.30 ± 0.21 2.64 ± 0.72 Trace

Moisture (%) 14.39 ± 0.06 99.32 ± 0.31 –
Total C (%) 40.30 ± 0.01 3.87 ± 0.24 0.03 ± 0.002

Total N (mg kg−1) 12,500 ± 100.70 80.50 ± 5.20 30.20 ± 4.12
NH+

4 -N (mg kg−1) 215.45 ± 4.41 18.88 ± 1.68 1.44 ± 0.04
NO−3 −N (mg kg−1) 100.82 ± 8.53 16.02 ± 1.41 1.45 ± 0.03

C:N 32.24 ± 0.02 48.3 ± 5.64 0.50 ± 0.001
S (mg kg−1) 1000 ± 38.12 452 ± 62.15 100 ± 9.64
P (mg kg−1) 1320.83 ± 34.04 64.64 ± 5.76 0.05 ± 0.02
K (mg kg−1) 1130.83 ± 22.64 130.66 ± 2.55 5.74 ± 0.15
Ca (mg kg−1) 427.08 ± 5.72 23.97 ± 2.68 10.95 ± 0.06
Mg (mg kg−1) 244.93 ± 10.26 25.23 ± 1.78 0.97 ± 0.06
Cu (µg kg−1) 5250 ± 120.40 188.52 ± 11.50 2.4 ± 1.02
Zn (µg kg−1) 5020 ± 97.04 73.77 ± 7.73 5.3 ± 1.30
B (µg kg−1) 1400 ± 96.45 121.18 ± 23.93 1.2 ± 1.02

Note: All % for rice grains are based on dry weight basis;—not determined; † measured in mg L−1; * unfermented washed rice water
averaged across all washing intensities (50, 80, and 100 rpm) and volumetric water-to-rice ratios (W:R) (1:1, 3:1, and 6:1).

Note that Table 2 is only for unfermented WRW. Our full data set involved three
W:R levels (1:1, 3:1, and 6:1), three washing intensities (50, 80, and 100 rpm), and four
fermentation periods (0-day, 3-day, 6-day, and 9-day, with 0-day as the unfermented WRW).
These many levels of factors and their various combinations had resulted in very intricate
and unclear trends (3-way ANOVA results not shown). Consequently, a data visualization
technique known as Uniform Manifold Approximation and Projection (UMAP) [34] was
used to determine the influence of W:R, washing intensity, and fermentation on the chemical
properties of WRW (Figure 1). This technique was much more effective in revealing trends.
UMAP works similarly to Principle Component Analysis (PCA) in reducing large datasets
by representing the data with fewer components or factors. Unlike PCA, however, UMAP
does not assume data linearity.
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Table 2. Chemical properties of unfermented washed rice water (WRW) due to the: (a) main effect W:R and (b) interaction
effect between washing intensity (R) and volumetric water-to-rice ratio (W:R).

(a)

W:R pH C C:N NH+
4 -N NO−

3 −N Ca S

% mg kg−1

1:1 6.48b 2.48c 35.17b 9.94c 9.78b 9.05c 110.68c
3:1 6.47b 3.76b 38.68b 17.74b 14.94b 21.02b 449.33b
6:1 6.63a 5.37a 68.05a 28.95a 23.35a 41.84a 797.13a

SE (±) 0.04 0.13 5.35 1.23 1.48 0.55 49.80

(b)

Washing
Intensity

(R)
W:R EC TN P K Mg Cu Zn

rpm µS cm−1 mg kg−1

100 1:1 607.0b 115.0a 98.0a 129.7c 35.4a 0.111e 0.105ab
80 551.3c 67.0bc 90.8ab 118.1de 34.9a 0.112e 0.101ab
50 671.7a 56.6c 93.3ab 117.5de 36.5a 0.133de 0.144a

100 3:1 332.0d 101.0ab 82.0b 141.9b 25.7bc 0.243a 0.060bcd
80 291.1d 93.0ab 57.7c 123.8cd 19.3cd 0.193bc 0.060bcd
50 283.4d 100.6ab 79.2b 139.6b 30.0ab 0.161cd 0.089bc

100 6:1 223.5e 50.0c 19.6e 112.9e 13.5d 0.244a 0.046cd
80 212.7e 47.0c 35.4d 153.1a 17.2d 0.260a 0.040d
50 182.7e 35.4c 25.3de 138.9b 14.2d 0.240ab 0.018d

W:R *** *** ns * ns * ns
R *** *** *** *** *** *** ***

R × (W:R) *** *** ** *** ** *** *

SE (±) 10.90 7.14 3.13 1.76 1.47 0.0098 0.0095

Within the same column, means with the same letters are not significantly different from one another according to the Tukey test (p > 0.05).
*** significant at 0.1%, ** significant at 1%, * significant at 5%.

UMAP shows that W:R and fermentation largely explained the data variance, with
washing intensity having little or no impact on explaining the data variance (Figure 1).
The UMAP revealed there were three main clusters, distinguished by the three W:R of
1:1 (solid line), 3:1 (long dashed line), and 6:1 (dotted line). Additionally, within each
of these clusters, there were further four subclusters that were distinguished by the four
fermentation groups: 0d (⊗marker), 3d (•), 6d (�), and 9d (N), where 0d, 3d, 6d and 9d
denote fermentation at 0 (unfermented), 3, 6, and 9 days, respectively.

Longer WRW fermentation led to higher levels of NH+
4 -N, NO−3 −N, P, K, Ca, Mg,

and Zn in the WRW (Figure 2). Longer WRW fermentation also increased EC (Figure 2) but
decreased pH (Figure 3). Unlike other nutrients, longer WRW fermentation lowered Cu
levels (Figure 3). C levels also generally declined with increased fermentation. How W:R
affected the nutrient levels depending on the nutrient type. Generally, higher W:R ratios
led to higher levels in WRW for NH+

4 -N, NO−3 −N, K, Ca, C, Cu, and S but lower levels for
P, Mg, Zn, and EC.
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all units are in mg kg−1.
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Figures 2 and 3 reveal that washing intensity had little to no effect on the nutrient
levels, agreeing with the earlier UMAP analysis (Figure 1) and that data variance was
mostly explained only by W:R and fermentation factors. One exception was total N
(Figure 3). Total N levels peaked at 3d of fermentation, then declined thereafter, and total N
level was the highest for 3:1 W:R. This was exceptional because the levels of other nutrients
either increased or decreased with increasing W:R or fermentation period.

3.2. Bacterial Population and Identification of the WRW

The bacterial population declined with increasing W:R (Figure 4). The bacterial
population also peaked at 3 days of fermentation, then declined thereafter. Washing rice at
either 80 or 100 rpm had a similar effect on the bacterial population (Figure 4a,b), but both
of them produced a higher bacteria population than at the 50 rpm (Figure 4c).

Based on 16S rRNA gene sequencing (Table 3), the 12 total strains found were identified
under several genera of Bacillus, Enterobacter, Pantoea, Klebsiella and Stenotrophomonas. The
phylogenetic tree of the identified microbes was clustered into clades to their respective
genus and species, as shown in Figure 5. It is worth noting that at 0-day fermentation, only
Enterobacter sp. strain was found in the WRW. However, after further fermentation, in the 3-
day fermentation, five different strains were found: Bacillus velezensis, Enterobacter ludwigii,
Enterobacter sp., Klebsiella pneumoniae and Pantoea agglomerans. Similarly, Enterobacter mori,
Bacillus velezensis and Stenotrophomonas maltophilia were isolated from a 6-day fermentation,
while Enterobacter sp., Enterobacter mori and Stenotrophomonas maltophilia were isolated
from the 9-day fermentation. Interestingly, Enterobacter spp. was the common strain
found irrespective of the fermentation period (Table 3). However, Pantoea agglomerans
and Klebsiella pneumoniae were unique to only 3-day fermentation, similar to the presence
of only Stenotrophomonas maltophilia in 6-day and 9-day fermentation. In addition, the
presence of Bacillus velezensis was only found in the 3-day and 6-day fermentation.



Agronomy 2021, 11, 2391 9 of 21

Agronomy 2021, 11, x FOR PEER REVIEW 9 of 21 
 

 

3.2. Bacterial Population and Identification of the WRW 
The bacterial population declined with increasing W:R (Figure 4). The bacterial pop-

ulation also peaked at 3 days of fermentation, then declined thereafter. Washing rice at 
either 80 or 100 rpm had a similar effect on the bacterial population (Figure 4a,b), but both 
of them produced a higher bacteria population than at the 50 rpm (Figure 4c). 

 

 

 
Figure 4. Interaction means (±SE) of total bacterial population in WRW at different W:R ratio within 
fermentation periods of (a) 100 rpm, (b) 80 rpm and (c) 50 rpm. Means with the same letters within 
the same column are not statistically different from each other based on Tukey test (p > 0.05). 

0 3 6 9

Ba
ct

er
ia

l p
op

ul
at

io
n 

(C
FU

 m
L−1 )

1:1

3:1

6:1

102

104

106

108

1010 a

a

a

a a

b

b

b

a a

c

c

a

0 3 6 9

Ba
ct

er
ia

l p
op

ua
lti

on
 (C

FU
 m

L−1 )

1:1

3:1

6:1

102

104

106

108

1010 a

b

c a
b

c a a
b

a a a

b

0 3 6 9

Ba
ct

er
ia

l p
op

ul
at

io
n 

(C
FU

 m
L−1 )

Fermentation period (days)

1:1

3:1

6:1
104

106

108

1010

102

c

a

a
a

a a a

b

b b
b b

c

Figure 4. Interaction means (±SE) of total bacterial population in WRW at different W:R ratio within
fermentation periods of (a) 100 rpm, (b) 80 rpm and (c) 50 rpm. Means with the same letters within
the same column are not statistically different from each other based on Tukey test (p > 0.05).
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Table 3. Bacterial identification using 16S rRNA gene amplification.

Molecular Identification

Strain Fermentation Period Accession Number Close Relatives in NCBI Similarity (%)

WRW-1 3d MW365554.1 Bacillus velezensis strain HSB1 99.35
WRW-3 3d MW365555.1 Enterobacter ludwigii strain SDI-19 98.75
WRW-4 3d MW365556.1 Enterobacter sp. Strain LSB19 99.10
WRW-6 0d MW365557.1 Enterobacter sp. Strain LSB3 97.59
WRW-7 6d MW365558.1 Enterobacter mori strain BC1 98.51
WRW-8 6d MW365559.1 Bacillus velezensis strain 2656 99.70
WRW-9 6d MW365560.1 Stenotrophomonas maltophilia strain JM11 99.87
WRW-10 9d MW365561.1 Enterobacter sp. Strain LSB10 99.49
WRW-11 9d MW365562.1 Enterobacter mori strain BC1 99.19
WRW-12 3d MW365563.1 Klebsiella pneumoniae strain LB-AMP3KSU 99.87
WRW-13 3d MW365564.1 Pantoea agglomerans stain SVMR 97.92
WRW-14 9d MW365565.1 Stenotrophomonas maltophilia strain F41 99.47

All the broth containing isolates showed a decrease in pH upon bacterial inoculation
from 6 to 12 days of incubation (Figure 6). Generally, however, there was a slight (but
non-significant) decrease in the culture pH with an increase in the incubation days. To
assess whether the 12 strains in the WRW fermented at different period possessed N2
fixation and nutrient solubilizing potential, these strains were screened for N2 fixation
and P and K solubilization activities using the appropriate media (as mentioned in the
methodology). The results of the strains’ capability as N2 fixation and P and K solubilizers
are shown in Table 4. Only 8 out of the total 12 showed were positive to N2 fixation based
on the N-free solid malate medium (Nfb medium) after 5 days incubation period. Four
strains from 3-day showed N2 fixation ability, followed by 9-day with two strains, whereas,
for 0-day and 6-day fermentation had one strain each. The amount of ethylene produced by
the WRW strains ranged from 2.1–11.2 nmol C2H4 mL−1 h−1 (Figure 7). The significantly
higher ethylene was produced by Enterobacter sp. Strain WRW-10 with 11.2 nmol C2H4
mL−1 h−1, which differ significantly (p < 0.01) from other strains, while the least was
produced by Stenotrophomonas maltophilia strain WRW-9 (2.1 nmol C2H4 mL−1 h−1).
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Table 4. Qualitative biochemical characterizations of the screened strains.

Strains N2 Fixation PS KS PSI KSI Gram Stain

Bacillus velezensis strain WRW-1 − + + 1.3 1.2 −
Enterobacter ludwigii strain WRW-3 ++ + − 1.4 0 +

Enterobacter sp. strain WRW-4 ++ + − 1.2 0 −
Enterobacter sp. strain WRW-6 + + − 1.2 0 −

Enterobacter mori strain WRW-7 − ++ − 1.2 0 +
Bacillus velezensis strain WRW-8 − + + 1.4 1.3 +

Stenotrophomonas maltophilia strain WRW-9 ++ + ++ 1.5 1.3 −
Enterobacter sp. strain 10 ++ + − 1.6 0 −

Enterobacter mori strain WRW-11 − + − 1.16 0 −
Klebsiella pneumoniae strain WRW-12 ++ ++ ++ 1.50 2.3 −

Pantoea agglomerans strain 13 ++ ++ ++ 1.53 1.2 −
Stenotrophomonas maltophilia strain WRW-14 + + + 1.2 1.1 −

Note: PS is phosphorus solubilization, PSI is phosphorus solubilization index, KS potassium solubilization, KSI is potassium solubilization
index, −is negative, +, ++, +++ indicates the intensity as low, moderate, and high of the color or clarity of the halo zones.
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Figure 7. Means (±SE) of acetylene reduction assay of selected strains. Means with different letters
are significantly different from one another using HSD at 5% level of significance.
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However, based on the agar test, all the 12 strains in the WRW, irrespective of the
fermentation periods, showed signs of P solubilization. Similarly, the phosphorus solu-
bilization index (PSI) increased gradually with an increase in incubation days. Overall,
at the 6 days of the incubation, higher PSI was observed in Stenotrophomonas maltophilia
strain WRW-9, Enterobacter sp. strain WRW-10, Klebsiella pneumoniae strain WRW-12, and
Pantoea agglomerans strain WRW-13 with 1.50, 1.6, 1.50, and 1.53, respectively. The quan-
titative P solubilization increased with time irrespective of the strains (Figure 8A). The
Enterobacter mori strain WRW-7 had higher P solubilization of 38 mg L−1, with 37.1–91.0%
increased than other strains, while the least was recorded in Stenotrophomonas maltophilia
strain WRW-14 with 3.57 mg L−1. In terms of potassium solubilization index (KSI) only six
strains were positive based on the agar test (Table 4) with 3-day, 6-day and 9-day fermenta-
tion periods having three, two and one positive microorganisms, respectively. Klebsiella
pneumoniae strain WRW-12 produced the highest KSI of 2.3, while the least was recorded
in Stenotrophomonas maltophilia strain WRW-14 with 1.1. The amount of K solubilized
(quantitatively) by the bacterial strains ranged between 1.65 mg L−1 and 11.16 mg L−1,
from 5 to 15 days of incubation (Figure 8B). However, across the same strain, a significant
difference (p < 0.05) between the incubation days (15d, 10d, 5d) was observed. However,
the highest K solubilization was produced by Pantoea agglomerans strain WRW-13 with a
range of percent increased between 10.1 and 71.9% than other strains (Figure 8B).
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Figure 8. Means (±SE) of solubilized phosphorus (A) and potassium (B) of the isolated microbes at
different days. Means with different letters within the same chart are significantly different using
HSD at 5%. 6d, 12d, 5d, 10d, and 15d represent 6-, 12-, 5-, 10-, and 15-day of incubation period.

4. Discussion
4.1. Chemical Characteristics of WRW

The nutrient levels in WRW (Table 1) were near or within the range obtained by
other studies [1–4,6]. The elements NH+

4 -N, NO−3 −N, P, K, Ca, Mg, Zn, and EC increased
(except Cu) with longer fermentation due to the activity of the microorganisms in the WRW.
However, B was not significantly affected by either fermentation or W:R, possibly because
rice is low in B (Table 1). Atique-ur-Rehman et al. [35] reported that rice is deficient in
B due to their cultivation in either highly acidic or alkaline soils which are classified as
B deficient soils. NH+

4 −N, NO−3 −N, K, and C increased with higher W:R, which could
be due to their high solubility in water. Monovalent elements or ions, such as NH+

4 -N,
NO−3 −N, and K have a higher solubility in water due to their weaker bonds than divalent
cations [36], and therefore, easier to be leached out.

The increase in P and K with the increase in fermentation was because of the presence
of P and K solubilizing bacteria (Figure 8). Bacillus and Enterobacter species are PGPB that
could solubilize P and K [16,25,37]. Furthermore, the increase in P and K with fermentation
also agrees with the total bacterial population (Figure 4) which shows an increasing trend
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with the increase in fermentation periods until 3 days, then decline thereafter. The results
agree with several studies of cereals fermentation that reported an increase in P, Ca, Mg, Zn
with an increase in fermentation period mainly due to the loss of dry matter as microbes
mineralized the carbohydrate and protein contents of the cereals, leading to the availability
of these elements [38–40].

Higher P, Mg, and Zn concentrations at lower W:R were mainly due to their low
solubility in water [36]. Similarly, the decrease in P, Mg and Zn at higher W:R could also be
attributed to their precipitations by Ca. Diaz [41] reported that Ca affected the availability
of P by precipitation. Significant correlations between Mg and water-extractable P obtained
by Kleinman et al. [42] supported our observations on the possible association of Mg and P
in WRW. In this study, we also found a significant (p < 0.01) positive correlation between
the P and Mg (r = 0.93), P and Zn (0.95), and Mg and Zn (0.93), and this indicates that the
availability of one element could lead to the availability of the other. For instance, Mg and
Zn content in laundry wastewater in the study by Tan [43] were found to decrease with
higher water volume. Phytate is the main form of organic P in grains (including rice) and
the phytate form of P is not soluble [44]. Phytate binds strongly to many elements during
fermentation, and phytates are non-soluble in water [38,45,46].

The decrease in C content with an increase in fermentation periods was due to the
bacterial activity in the WRW. Bacteria use C as an energy source [47], which leads to a
reduction in C as fermentation progressed. Similarly, the decrease in C and total bacterial
population (Figure 4) led to the increase in NH+

4 -N, NO−3 −N, P, K, Mg and Cu indicated
the utilization of the C content by the microbes for the mineralization process, as reported
by Pranoto et al. [38].

The higher N at 3-day was because of the presence of N-fixing bacteria (Bacillus and
Enterobacter spp.) when the bacterial population was high (Figure 4 and Table 3). The
decrease in N with longer fermentation (3 to 9-day) could partly be attributed to the lower
initial N content of the rice. Osman [46] and Pranoto et al. [38] reported a decrease in
the protein content of cereals with fermentation due to the lower initial protein content
of cereals. The decrease in N as fermentation progressed was most possibly because of
the denitrification and ammonification process which had led to an increase in NH+

4 -N
and NO−3 −N (Figure 2). In addition, however, the decrease in the N corresponded to the
increase in the NH+

4 -N and NO−3 −N content (Figure 3), which agrees with Neina [48] who
reported that N can be converted to NH+

4 and NO−3 during mineralization. A concurrent
decrease in WRW pH with an increase in NH+

4 -N and NO−3 −N observed in this study
agrees with Musa et al. [49], where they reported a negative relationship between nitrate
production and the pH of the soil. In this study, the higher the W:R ratio, the greater the
pH, and the longer the fermentation, the lower the pH. The decrease in pH was because
of organic acids formation, such as bicarbonate acids [44,49,50]. The decrease in pH with a
longer fermentation period corresponded to the decrease in the bacterial population (Figure 4).
Rousk et al. [51] likewise reported a decrease in bacterial growth with pH reduction.

EC increased with fermentation because the concentrations of nearly all elements
increased (only Cu declined). The formation of organic acids through the decomposition of
organic substances increases EC [52]. The EC, however, decreased with higher W:R because
of greater dilution. Volatilization of ammonia and precipitation of mineral salts would lead
to lower EC values [53]. EC indicates plant-available nutrients [54,55], which in this study
showed that increasing the water proportion in the water and rice mixture had led to the
dilution of the nutrient concentrations in WRW.

4.2. Identification and Characterization of the Bacterial Strains

In this study, 12 different PGP strains (Bacillus velezensis WRW-1, Enterobacter ludwigii
WRW-3, Enterobacter sp. WRW-4, Enterobacter sp. WRW-6, Enterobacter mori WRW-7, Bacillus
velezensis WRW-8, Stenotrophomonas maltophilia WRW-9, Enterobacter sp. WRW-10, Enter-
obacter mori WRW-11, Klebsiella pneumoniae WRW-12, Pantoea agglomerans WRW-13 and
Stenotrophomonas maltophilia WRW-14) were isolated from fermented WRW (0-, 3-, 6-, and
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9-day). The phylogenetic tree clearly showed there are two main clusters with Bacillus
velezensis and Stenotrophomonas maltophilia as one cluster, and the second cluster composed
of genus of Enterobacter, Pantoea and Klebsiella. The lower fermentation period (3-day)
had higher bacterial diversity which decreased as the fermentation progressed. The pres-
ence of the unique bacteria at 3-day (Pantoea agglomerans and Klebsiella pneumoniae) agrees
with Figure 4 which shows a higher bacterial population at the same fermentation period.
The decrease in C content with progression of fermentation could be the reason for the
absence of Pantoea agglomerans and Klebsiella pneumoniae at the higher fermentation period
(6- and 9-day) which might be attributed to their inability to resist competition as com-
pared to Bacillus velezensis, Enterobacter spp. and Stenotrophomonas maltophilia. Adugna [56]
reported that the effectiveness and availability of microbes depend on a supply of available
carbon. The identified Bacillus velezensis have higher similarities (99%) with Bacillus spp.
of siamensis and subtilis which agrees with Dunlap [57] who reported Bacillus velezensis
to synonymized with Bacillus subtilis and Bacillus siamensis due to their texa’s high pheno-
typic and genotypic coherence. The Enterobacter spp. [58], Bacillus velezensis [59], Klebsiella
pneumoniae [60], Pantoea agglomerans [61], and Stenotrophomonas maltophilia [62] strains have
been identified as PGP microorganisms employed in the cultivation of a variety of crops.

Therefore, the utilization of microbes as components of biofertilizers is considered an
alternative to chemical fertilizers to improve soil health and crop productivity [63]. Park
and DuPonte [64] opined that PGP microorganisms have considerable biopotentials and
are a new means for providing substantial benefits to agriculture because the organisms
can colonize roots and rhizospheres to stimulate the growth and development of plants.
Similarly, Yadav et al. [65] reported that PGP microorganisms possess tremendous char-
acteristics that are directly related to plant growth via the production of plant growth
hormones and N2 fixation and the solubilization of P, K, and Zn or indirectly by the pro-
duction of ammonia, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, antibiotics,
siderophores, hydrocyanic acid, and lytic enzymes.

Enterobacter sp. strain WRW-10 had a range of percent increase in ethylene production
of 43.7 to 81.2% than other strains, which shows a greater nitrogenase activity as compared
to the other strains. The ability to fix N2 is a vital criterion for characterization because it is
crucial to the plants as a potential alternative to applying chemical N fertilizer. Only eight
of the 12 bacterial strains (66%) are able to perform biological N2 fixation (Table 4). PGP
and rhizobia play more important roles, particularly in providing plants with nutrients in
less fertilized soils [25]. Bacillus sp. was reported to have provided 67% of the nitrogen to a
young oil palm via biological N2 fixation [66]. The ethylene produced by these bacterial
strains were within those reported by Tan et al. [25], ranging from 2.1 to 11.2 nmol C2H4
mL−1 h−1 but much higher than those reported by Katupitiya et al. [67] and Naher et al. [68]
with 2.3 nmol C2H4 plant−1 h−1, and 6.1 × 10−8 to 1.2 × 10−3 nmol C2H4 cfu−1 h−1 from
Azosprillum inoculation and a diazotroph isolates from rice, respectively.

Studies have shown that certain bacteria function as PGP through soil nutrient sol-
ubilizing ability [69,70]. Bacteria that can solubilize nutrients, such as P and K are vital
because they can convert insoluble P and K in soils into soluble P and K. The increase in
the P and K release is associated with the production of acids, alkalis, or chelates by the
bacterial strains [25]. Talaat et al. [71] and Yadav et al. [65] reported that soluble P and
K, which are converted by beneficial microorganisms, can be easily taken up by plants
for growth and development. The decrease in culture pH is directly proportional to the
inorganic phosphate solubilization [72] which is attributed to the organic acids and acid
phosphatases production by the microbes [73,74]. Meanwhile, the gradual increase in
phosphate solubilization index value for invariably all the strains (excepts Klebsiella pneu-
moniae strain WRW-12 and Stenotrophomonas maltophilia strain WRW-13) showed that more
insoluble phosphate could still be solubilized beyond 6 days incubation time. Therefore,
these isolates could benefit the plants more considering the longer period the insoluble
phosphate takes (relatively immobile) before been solubilized. Potassium solubilization
rates for these bacterial strains were all lower than the strains used by Tan et al. [25], which
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solubilized a range of 10.7 to 14.15 mg L−1 after 5 days of incubation. Conversely, the
solubilized K in this study was higher than 4.29 mg L−1 solubilized by Bacillus mucilaginous
MCRCp1 reported by Sugumaran and Janarthanum [75] after 4 days of incubation. The use
of fermented WRW could reduce the need for inorganic fertilizer as the WRW contained
beneficial microorganisms that can solubilize the insoluble P and K into the available form.
The differences in the availability and activity of the microorganisms indicate that there is
a higher probability that the same raw materials and techniques used to produce the WRW
may not produce common species as the ones isolated in this study.

4.3. Potential Use of WRW for Agriculture

Domestic and municipal wastewaters have been used for plant fertilization, and they
are reported to have element concentrations in the ranges of (in mg L−1): 39.3–53 TN,
3.7–25 TP, 2.84–12.0 PO2−

4 , 0.51–41.0 K, 10–44 NH+
4 -N, 0.3–18.05 NO−3 −N, 45–130 Ca, and

18–39 Mg [76–84]. The fermented WRW nutrient concentrations are generally within the
range of the reported values obtained in the domestic and municipal wastewater and palm
oil mill effluent (POME). WRW has lower N and K by 43.9 and 45.2%, respectively than
that in POME. However, WRW has a higher P (64.64 mg L−1) than POME by 82% [85].
Interestingly, WRW has a higher C than in POME and domestic wastewaters by between
67.9 to 89.1%.

C is a source of energy for microorganisms [47,86], and this study showed that the
nutrient contents of WRW increased (except C) with fermentation (Figures 2 and 3). This
shows that WRW has the potential to be used as a source of plant nutrients similar to
municipal and domestic wastewater, POME, and other wastewaters.

Over 95% of WRW composition is water. Therefore, for WRW reuse, the wastewater must
be applied in small doses but applied frequently to minimize leaching losses and to gradually
build up soil health. Our study showed that, if applied correctly, the benefits of WRW can be
consequential over the long term, where WRW has the potential to gradually build up both
the soil nutrient concentrations and beneficial soil biota. Nevertheless, it is important to note
here that the reuse of WRW is not to replace or even substitute other amendments.

5. Conclusions

WRW contained essential nutrients to support plant growth and development. Fer-
mentation and W:R were the two most important factors in determining the WRW nutrient
contents. The concentrations of C, K, Ca, S, NH+

4 -N, and NO−3 −N increased while P, Mg,
and Zn decreased with higher W:R, indicating elements with higher solubility in water
would increase in higher W:R. However, with a higher fermentation period, all the mea-
sured elements (except C) increased, indicating the mineralization of WRW. Fermented
WRW (as compared with unfermented WRW) had higher elemental concentrations, partic-
ularly, N, P, and K with 59.7, 60.2, and 25.0%, respectively, due to the presence of beneficial
microorganisms, such as Bacillus velezensis, Klebsiella pneumoniae, and the variety of Enter-
obacter spp. which are N fixing, and P- and K-solubilizing bacteria. However, to validate
the potential of WRW as an organic amendment, field trials involving various crops and
soils are required to evaluate the effects of WRW, particularly against conventional mineral
fertilizers, on improving soil health and increasing crop growth and yield in both the short
and long term (such as over several planting cycles).
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