Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Design
2.2. Paternity Testing
2.3. Mineral Nutrient Concentrations and Fatty Acid Composition
2.4. Statistical Analysis
3. Results
3.1. Cross- and Self-Paternity
3.2. Effect of Pollen Parentage on Kernel Size, Mineral Nutrient Concentrations and Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernardo, R. Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE. Heredity 2020, 125, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 2008, 18, 1572–1575. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, R.; Mohammadzedeh, M.; Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 2014, 173, 15–19. [Google Scholar] [CrossRef]
- Żurawicz, E.; Studnicki, M.; Kubik, J.; Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 2018, 235, 253–257. [Google Scholar] [CrossRef]
- Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 2009, 19, 915–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [Green Version]
- Frankel, R.; Galun, E.; Frankel, P.D.R.; Galun, P.D.E. Pollination Mechanisms, Reproduction and Plant Breeding; Springer International Publishing: Berlin, Germany, 1977; Volume 2. [Google Scholar]
- Batlle, I.; Dicenta, F.; Gradziel, T.M.; Wirthensohn, M.; Duval, H.; Vargas, F.J. Classical genetics and breeding. In Almonds: Botany, Production and Uses; Company, R.S.I., Gradziel, T.M., Eds.; CAB International: Oxfordshire, UK, 2017. [Google Scholar]
- Alagna, F.; Caceres, M.E.; Pandolfi, S.; Collani, S.; Mousavi, S.; Mariotti, R.; Cultrera, N.G.M.; Baldoni, L.; Barcaccia, G. The paradox of self-fertile varieties in the context of self-incompatible genotypes in olive. Front. Plant Sci. 2019, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Wirthensohn, M. New cultivars from the Australian almond breeding program. HortScience 2020, 55, 738–740. [Google Scholar] [CrossRef] [Green Version]
- Socias, R.; Alonso, J.M.; Aparisi, J.G. Fruit set and productivity in almond as related to self-compatibility, flower morphology and bud density. J. Hortic. Sci. Biotechnol. 2004, 79, 754–758. [Google Scholar] [CrossRef]
- Martínez-García, P.J.; Ortega, E.; Dicenta, F. Self-pollination does not affect fruit set or fruit characteristics in almond (Prunus dulcis). Plant Breed. 2010, 130, 367–371. [Google Scholar] [CrossRef]
- Tran, H.D.; Yen, C.R.; Chen, Y.K.H. Effect of pollination method and pollen source on fruit set and growth of red-peel pitaya (Hylocereus spp.) in Taiwan. J. Hortic. Sci. Biotechnol. 2015, 90, 254–258. [Google Scholar] [CrossRef]
- Zhang, L.; Ferguson, L.; Whiting, M.D. Temperature effects on pistil viability and fruit set in sweet cherry. Sci. Hortic. 2018, 241, 8–17. [Google Scholar] [CrossRef]
- Schneider, D.; Goldway, M.; Rotman, N.; Adato, I.; Stern, R.A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 2009, 122, 380–384. [Google Scholar] [CrossRef]
- Kämper, W.; Trueman, S.J.; Ogbourne, S.M.; Wallace, H.M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. under review.
- Denney, J.O. Xenia includes metaxenia. HortScience 1992, 27, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Kendall, L.K.; Gagic, V.; Evans, L.J.; Cutting, B.T.; Scalzo, J.; Hanusch, Y.; Jones, J.; Rocchetti, M.; Sonter, C.; Keir, M.; et al. Self-compatible blueberry cultivars require fewer floral visits to maximize fruit production than a partially self-incompatible cultivar. J. Appl. Ecol. 2020, 57, 2454–2462. [Google Scholar] [CrossRef]
- Arquero, O.; Jarvis-Shean, K. Orchard management. In Almonds: Botany, Production and Uses; Company, R.S.I., Gradziel, T.M., Eds.; CAB International: Oxfordshire, UK, 2017. [Google Scholar]
- Trueman, S.J.; Richards, S.; McConchie, C.A.; Turnbull, C.G.N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 2000, 40, 859. [Google Scholar] [CrossRef]
- López, M.; Vargas, F.J.; Batlle, I. Self-(in)compatibility almond genotypes: A review. Euphytica 2006, 150, 1–16. [Google Scholar] [CrossRef]
- Dicenta, F.; Ortega, E.; Cánovas, J.A.; Egea, J. Self-pollination vs. cross-pollination in almond: Pollen tube growth, fruit set and fruit characteristics. Plant Breed. 2002, 121, 163–167. [Google Scholar] [CrossRef]
- Vargas, F.J.; Clavé, J.; Romero, M.A. Fruit size in self and open pollination conditions in self-compatible almond seedlings. In Proceedings of the IVth International Symposium on Pistachios and Almonds, Tehran, Iran, 22–25 May 2005; pp. 61–62. [Google Scholar]
- Kodad, O.; Company, R.S.I. Fruit quality in almond as related to the type of pollination in self-compatible genotypes. J. Am. Soc. Hortic. Sci. 2008, 133, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.V.; Fazekas, A.J.; Hebert, P.D.N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 2008, 26, 186–198. [Google Scholar] [CrossRef]
- Shapcott, A.; Forster, P.I.; Guymer, G.P.; McDonald, W.J.F.; Faith, D.P.; Erickson, D.; Kress, W.J. Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS ONE 2015, 10, e0122164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández i Martí, A.; Alonso, J.M.; Espiau, M.T.; Rubio-Cabetas, M.J.; Company, R.S.I. Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. J. Am. Soc. Hortic. Sci. 2009, 134, 535. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- McGeehan, S.; Naylor, D. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 1988, 19, 493–505. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata: Melbourne, Australia, 1992. [Google Scholar]
- Martinie, G.D.; Schilt, A.A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Munter, R.C.; Grande, R.A. Plant tissue and soil extract analysis by ICP-atomic emission spectrometry. In Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic emission Spectrometry; Byrnes, R., Ed.; Heyden: London, UK, 1981; pp. 653–672. [Google Scholar]
- Bai, S.H.; Brooks, P.; Gama, R.; Nevenimo, T.; Hannet, G.; Hannet, D.; Randall, B.; Walton, D.; Grant, E.; Wallace, H.M. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 2019, 56, 792–798. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Ortega, E.; Martínez-García, P.; Dicenta, F. Influence of self-pollination in fruit quality of autogamous almonds. Sci. Hortic. 2006, 109, 293–296. [Google Scholar] [CrossRef]
- Greenleaf, S.S.; Kremen, C. Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biol. Conserv. 2006, 133, 81–87. [Google Scholar] [CrossRef]
- Brittain, C.; Williams, N.; Kremen, C.; Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 2013, 280, 20122767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallinger, R.E.; Gratton, C. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pol-linator-dependent crop. J. Appl. Ecol. 2015, 52, 323–330. [Google Scholar] [CrossRef]
- Burd, M. “Excess” flower production and selective fruit abortion: A model of potential benefits. Ecology 1998, 79, 2123. [Google Scholar] [CrossRef]
- Degani, C.; Stern, R.A.; El-Batsri, R.; Gazit, S. Pollen parent effect on the selective abscission of ‘Mauritius’ and ‘Floridian’ ly-chee fruitlets. J. Am. Soc. Hortic. Sci. 1995, 120, 523. [Google Scholar] [CrossRef]
- Alizadeh Salteh, S.; Arzani, K. Xenia in almonds: Pollen source effect on characteristics of some Iranian late-blooming almonds and their self-incompatibility. J. Nuts 2014, 5, 33–38. [Google Scholar]
- Almond Board of California; Almond Almanac: Modesto, CA, USA, 2019.
- Kodad, O.; Estopañán, G.; Juan, T.; Company, R.S.I. Xenia effects on oil content and fatty acid and tocopherol concentrations in autogamous almond cultivars. J. Agric. Food Chem. 2009, 57, 10809–10813. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High–monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
Locus | Primer Sequences (5′ to 3′) | Fluorescent Label | Ta | Allele Sizes |
---|---|---|---|---|
BPPCT001 | F: AATTCCCAAAGGATGTGTATGAG | NED | 57 | 121–178 |
R: CAGGTGAATGAGCCAAAGC | ||||
BPPCT007 | F: TCATTGCTCGTCATCAGC | NED | 57 | 125–162 |
R: CAGATTTCTGAAGTTAGCGGTA | ||||
BPPCT025 | F: TCCTGCGTAGAAGAAGGTAGC | FAM | 57 | 156–193 |
R: CGACATAAAGTCCAAATGGC | ||||
CPDCT025 | F: GACCTCATCAGCATCACCAA | PET | 62 | 156–193 |
R: TTCCCTAACGTCCCTGACAC | ||||
CPDCT045 | F: TGTGGATCAAGAAAGAGAACCA | NED | 62 | 132–181 |
R: AGGTGTGCTTGCACATGTTT | ||||
CPPCT006 | F: AATTAACTCCAACAGCTCCA | FAM | 59 | 156–216 |
R: ATGGTTGCTTAATTCAATGG | ||||
CPPCT022 | F: CAATTAGCTAGAGAGAATTATTG | VIC | 50 | 221–260 |
R: GACAAGAAGCAAGTAGTTTG | ||||
CPPCT044 | F: TTCTCTTTGGCGTATCAAGGA | FAM | 58 | 153–200 |
R: GGTCCCATATCAGCTGAACC | ||||
CPSCT012 | F: ACGGGAGACTTTCCCAGAAG | NED | 62 | 145–183 |
R: CTTCTCGTTTCCTCCCTCCT | ||||
PMS40 | F: TCACTTTCGTCCATTTTCCC | VIC | 55 | 88–135 |
R: TCATTTTGGTCTTTGACCTCG |
Cultivar | Orchard | Number of Visitors |
---|---|---|
‘Monterey’ | Orchard 1 | 4.8 ± 1.4 |
‘Nonpareil’ | Orchard 1 | 3.9 ± 1.0 |
‘Capella’ | Orchard 2 | 4.0 ± 1.1 |
‘Carina’ | Orchard 2 | 11.3 ± 2.9 |
‘Peerless’ | Orchard 2 | 5.2 ± 2.4 |
‘Rhea’ | Orchard 2 | 7.4 ± 1.8 |
‘Vela’ | Orchard 2 | 10.2 ± 2.9 |
Cultivar | ‘Carmel’ | ‘Monterey’ | ‘Nonpareil’ (Orchard 1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pollen Parent Sample Number | ‘Nonpareil’ n = 19 | ‘Price’ n = 14 | ‘Carmel’ n = 16 | ‘Nonpareil’ n = 33 | ‘Carmel’ n = 41 | ‘Price’ n = 10 | ||||||
In-shell mass (g) | 1.74 ± 0.04 | 1.82 ± 0.03 | 2.56 ± 0.06 | 2.41 ± 0.02 | 1.99 ± 0.07 | 1.91 ± 0.08 | ||||||
Kernel mass (g) | 1.13 ± 0.03 | b | 1.20 ± 0.03 | a | 1.44 ± 0.05 | 1.38 ± 0.01 | 1.34 ± 0.04 | 1.32 ± 0.05 | ||||
Kernel length:width ratio | 1.76 ± 0.02 | 1.77 ± 0.02 | 1.98 ± 0.03 | 1.92 ± 0.02 | 1.67 ± 0.02 | 1.66 ± 0.02 | ||||||
Shelling percentage | 65.39 ± 0.60 | 65.90 ± 0.95 | 56.34 ± 1.22 | 57.51 ± 0.83 | 67.75 ± 0.82 | 69.29 ± 1.74 | ||||||
C–Carbon (%) | 62.51 ± 0.13 | 62.89 ± 0.15 | 63.27 ± 0.45 | a | 61.99 ± 0.31 | b | 62.69 ± 0.38 | a | 61.11 ± 0.46 | b | ||
N–Nitrogen (%) | 3.52 ± 0.12 | 3.61 ± 0.04 | 3.29 ± 0.14 | 3.51 ± 0.11 | 3.47 ± 0.08 | 3.67 ± 0.08 | ||||||
Al–Aluminium (mg/kg) | 5.47 ± 0.22 | 5.19 ± 0.27 | 4.35 ± 0.35 | 4.87 ± 0.31 | 4.60 ± 0.31 | b | 17.46 ± 9.11 | a | ||||
B–Boron (mg/kg) | 34.67 ± 3.47 | 33.99 ± 1.99 | 40.00 ± 1.18 | 43.28 ± 1.29 | 27.23 ± 1.17 | 30.56 ± 1.95 | ||||||
Ca–Calcium (mg/kg) | 0.26 ± 0.01 | 0.24 ± 0.01 | 0.23 ± 0.03 | 0.26 ± 0.01 | 0.19 ± 0.01 | b | 0.22 ± 0.02 | a | ||||
Cu–Copper (mg/kg) | 7.62 ± 0.70 | 7.13 ± 0.16 | 7.32 ± 0.44 | 7.40 ± 0.33 | 8.73 ± 0.18 | 9.38 ± 0.22 | ||||||
Fe–Iron (mg/kg) | 29.58 ± 1.46 | 28.77 ± 1.94 | 33.15 ± 1.61 | 33.60 ± 1.98 | 33.39 ± 1.27 | b | 41.83 ± 2.26 | a | ||||
K–Potassium (mg/kg) | 0.72 ± 0.02 | 0.75 ± 0.04 | 0.70 ± 0.03 | 0.70 ± 0.02 | 0.69 ± 0.01 | 0.69 ± 0.01 | ||||||
Mg–Magnesium (mg/kg) | 0.25 ± 0.01 | 0.26 ± 0.01 | 0.26 ± 0.004 | 0.28 ± 0.01 | 0.26 ± 0.002 | b | 0.27 ± 0.01 | a | ||||
Mn–Manganese (mg/kg) | 31.13 ± 1.86 | 28.21 ± 1.69 | 23.66 ± 2.07 | b | 29.96 ± 2.15 | a | 29.11 ± 1.90 | b | 34.30 ± 2.74 | a | ||
Na–Sodium (mg/kg) | 18.09 ± 0.84 | 18.96 ± 1.47 | 17.07 ± 0.81 | 19.42 ± 1.61 | 10.47 ± 2.53 | 14.38 ± 4.94 | ||||||
P–Phosphorus (mg/kg) | 0.47 ± 0.01 | 0.50 ± 0.02 | 0.47 ± 0.01 | 0.47 ± 0.004 | 0.47 ± 0.01 | 0.49 ± 0.02 | ||||||
S–Sulphur (mg/kg) | 0.09 ± 0.004 | 0.08 ± 0.003 | 0.10 ± 0.003 | b | 0.12 ± 0.004 | a | 0.13 ± 0.01 | 0.13 ± 0.01 | ||||
Zn–Zinc (mg/kg) | 24.27 ± 0.55 | 25.09 ± 1.32 | 23.94 ± 1.34 | 24.01 ± 0.82 | 28.44 ± 0.58 | 29.38 ± 1.33 | ||||||
Palmitic acid-C16:0 (%) | 4.76 ± 0.11 | 4.56 ± 0.13 | 5.17 ± 0.08 | 5.19 ± 0.11 | 5.28 ± 0.10 | 4.94 ± 0.18 | ||||||
Palmitoleic acid-C16:1 cis (%) | 0.08 ± 0.004 | 0.06 ± 0.003 | 0.08 ± 0.02 | 0.09 ± 0.01 | 0.14 ± 0.01 | a | 0.11 ± 0.01 | b | ||||
Stearic acid-C18:0 (%) | 0.68 ± 0.07 | 0.61 ± 0.04 | 0.89 ± 0.06 | 0.79 ± 0.04 | 0.79 ± 0.04 | 0.75 ± 0.05 | ||||||
Oleic acid-C18:1 cis (%) | 67.77 ± 1.32 | 66.63 ± 1.24 | 70.59 ± 0.90 | 70.99 ± 0.98 | 72.65 ± 0.97 | 74.83 ± 0.80 | ||||||
Elaidic acid-C18:1 trans (%) | -- | -- | -- | -- | -- | -- | ||||||
Linoleic acid-C18:2 (%) | 26.71 ± 1.22 | 28.13 ± 1.19 | 23.27 ± 0.89 | 22.94 ± 0.92 | 21.14 ± 0.88 | 19.38 ± 0.87 | ||||||
Saturated fatty acids (SFA) | 5.44 ± 0.14 | 5.18 ± 0.15 | 6.06 ± 0.06 | 5.98 ± 0.13 | 6.07 ± 0.11 | 5.69 ± 0.21 | ||||||
Unsaturated fatty acids (UFA) | 94.56 ± 0.14 | 94.82 ± 0.15 | 93.94 ± 0.06 | 94.02 ± 0.13 | 93.93 ± 0.11 | 94.31 ± 0.21 | ||||||
UFA:SFA | 17.74 ± 0.52 | 18.46 ± 0.55 | 15.64 ± 0.20 | 16.02 ± 0.36 | 15.60 ± 0.27 | 16.78 ± 0.70 |
Cultivar | ‘Capella’ | ‘Mira’ | ||||||
---|---|---|---|---|---|---|---|---|
Pollen Parent Sample Number | Cross n = 13 | Self n = 41 | Cross n = 20 | Self n = 27 | ||||
In-shell mass (g) | 4.53 ± 0.60 | 4.13 ± 0.30 | 3.98 ± 0.30 | a | 3.66 ± 0.30 | b | ||
Kernel mass (g) | 1.38 ± 0.06 | 1.28 ± 0.03 | 1.57 ± 0.04 | 1.47 ± 0.02 | ||||
Kernel length:width ratio | 1.46 ± 0.01 | 1.44 ± 0.01 | 1.53 ± 0.01 | b | 1.58 ± 0.02 | a | ||
Shelling percentage | 30.81 ± 0.97 | 31.30 ± 0.95 | 39.63 ± 0.86 | 40.48 ± 0.62 | ||||
C–Carbon (%) | 61.41 ± 0.22 | a | 60.08 ± 0.39 | b | 64.30 ± 0.14 | a | 63.31 ± 0.33 | b |
N–Nitrogen (%) | 4.24 ± 0.12 | 4.31 ± 0.13 | 4.08 ± 0.05 | 4.09 ± 0.03 | ||||
Al–Aluminium (mg/kg) | 3.87 ± 0.30 | 5.14 ± 0.42 | 7.09 ± 2.26 | 4.75 ± 0.14 | ||||
B–Boron (mg/kg) | 21.02 ± 0.69 | 21.39 ± 0.47 | 21.94 ± 1.58 | 21.63 ± 1.25 | ||||
Ca–Calcium (mg/kg) | 0.23 ± 0.02 | 0.26 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.02 | ||||
Cu–Copper (mg/kg) | 8.84 ± 0.51 | 9.13 ± 0.61 | 25.59 ± 12.47 | 10.97 ± 0.44 | ||||
Fe–Iron (mg/kg) | 36.38 ± 1.57 | 36.62 ± 1.23 | 43.38 ± 2.33 | 46.52 ± 1.83 | ||||
K–Potassium (mg/kg) | 0.90 ± 0.01 | 0.94 ± 0.02 | 0.73 ± 0.02 | b | 0.83 ± 0.04 | a | ||
Mg–Magnesium (mg/kg) | 0.27 ± 0.01 | 0.27 ± 0.003 | 0.24 ± 0.003 | 0.25 ± 0.01 | ||||
Mn–Manganese (mg/kg) | 30.50 ± 3.01 | b | 37.46 ± 1.71 | a | 31.88 ± 2.22 | 39.09 ± 3.74 | ||
Na–Sodium (mg/kg) | 20.20 ± 1.36 | 39.53 ± 16.78 | 19.64 ± 1.40 | 20.77 ± 0.88 | ||||
P–Phosphorus (mg/kg) | 0.58 ± 0.01 | 0.57 ± 0.01 | 0.49 ± 0.01 | 0.54 ± 0.02 | ||||
S–Sulphur (mg/kg) | 0.16 ± 0.01 | 0.16 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.01 | ||||
Zn–Zinc (mg/kg) | 38.64 ± 1.64 | 40.83 ± 1.07 | 40.25 ± 1.83 | 44.60 ± 0.77 | ||||
Palmitic-C16:0 (%) | 3.77 ± 0.14 | a | 3.22 ± 0.19 | b | 5.73 ± 0.11 | b | 6.28 ± 0.04 | a |
Palmitoleic-C16:1 cis (%) | 0.08 ± 0.01 | 0.08 ± 0.004 | 0.22 ± 0.02 | 0.24 ± 0.02 | ||||
Stearic-C18:0 (%) | 0.98 ± 0.12 | 1.22 ± 0.07 | 0.81 ± 0.03 | 0.74 ± 0.04 | ||||
Oleic-C18:1 cis (%) | 83.63 ± 0.88 | 85.81 ± 1.02 | 71.64 ± 0.79 | 70.82 ± 0.72 | ||||
Elaidic-C18:1 trans (%) | -- | -- | 2.05 ± 0.05 | 2.04 ± 0.09 | ||||
Linoleic-C18:2 (%) | 11.54 ± 0.77 | 9.68 ± 0.82 | 19.55 ± 0.65 | 19.86 ± 0.78 | ||||
Saturated fatty acids (SFA) | 4.76 ± 0.23 | 4.44 ± 0.23 | 6.54 ± 0.11 | b | 7.03 ± 0.06 | a | ||
Unsaturated fatty acids (UFA) | 95.24 ± 0.23 | 95.56 ± 0.23 | 93.46 ± 0.11 | a | 92.97 ± 0.06 | b | ||
UFA:SFA | 20.32 ± 1.10 | 22.24 ± 1.22 | 14.36 ± 0.25 | a | 13.30 ± 0.12 | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kämper, W.; Thorp, G.; Wirthensohn, M.; Brooks, P.; Trueman, S.J. Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars. Agronomy 2021, 11, 326. https://doi.org/10.3390/agronomy11020326
Kämper W, Thorp G, Wirthensohn M, Brooks P, Trueman SJ. Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars. Agronomy. 2021; 11(2):326. https://doi.org/10.3390/agronomy11020326
Chicago/Turabian StyleKämper, Wiebke, Grant Thorp, Michelle Wirthensohn, Peter Brooks, and Stephen J. Trueman. 2021. "Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars" Agronomy 11, no. 2: 326. https://doi.org/10.3390/agronomy11020326
APA StyleKämper, W., Thorp, G., Wirthensohn, M., Brooks, P., & Trueman, S. J. (2021). Pollen Paternity Can Affect Kernel Size and Nutritional Composition of Self-Incompatible and New Self-Compatible Almond Cultivars. Agronomy, 11(2), 326. https://doi.org/10.3390/agronomy11020326