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Abstract

:

Gullies are responsible for detaching massive volumes of productive soil, dissecting natural landscape and causing damages to infrastructure. Despite existing research, the gravity of the gully erosion problem underscores the urgent need for accurate mapping of gullies, a first but essential step toward sustainable management of soil resources. This study aims to obtain the spatial distribution of gullies through comparing various classifiers: k-dimensional tree K-Nearest Neighbor (k-d tree KNN), Minimum Distance (MD), Maximum Likelihood (ML), and Random Forest (RF). Results indicated that all the classifiers, with the exception of ML, achieved an overall accuracy (OA) of at least 0.85. RF had the highest OA (0.94), although it was outperformed in gully identification by MD (0% commission), but the omission error was 20% (MD). Accordingly, RF was considered as the best algorithm, having 13% error in both adding (commission) and omitting pixels as gullies. Thus, RF ensured a reliable outcome to map the spatial distribution of gullies. RF-derived gully density map reflected the agricultural areas most exposed to gully erosion. Our approach of using satellite imagery has certain limitations, and can be used only in arid or semiarid regions where gullies are not covered by dense vegetation as the vegetation biases the extracted gullies. The approach also provides a solution to the lack of laser scanned data, especially in the context of the study area, providing better accuracy and wider application possibilities.
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1. Introduction


Defined as the process of detachment, transportation and deposition of soil material by the erosive forces of raindrops and runoff [1], soil erosion by water remains a major form of land degradation. Globally, soil erosion poses a serious threat to natural and human environments owing to the resulting on-site and off-site problems [2,3,4]. The on-site problems include, but are not restricted to, reduction in soil fertility, loss of soil and nutrients, and destruction of man-made infrastructure (e.g., buildings, roads, bridges), whereas off-site problems include sedimentation of freshwater bodies, which in turn decreases water quality and quantity, leading to loss of freshwater biodiversity [5,6]. These effects further undermine the economic and ecological value brought about by the natural environment to societies. More importantly, soil erosion threatens food security. It is reported that almost 800 million people around the world directly depend on steep lands for their sustenance [7]. Owing to these concerns, the need for better understanding and assessment of soil erosion has never been so urgent.



The problem of soil erosion has long been recognized and its assessment using various methods is increasingly gaining momentum. Soil erosion by water results from the complex interactions between natural and anthropogenic factors, which vary over space and time [8]. Generally, rainfall and slope are regarded as the most important natural factors in erosion although anthropogenic activities like land use and soil management may have a considerable impact on erosion rates [9,10]. Most water erosion assessment methods such as the widely used Universal Soil Loss Equation (USLE) [11] only consider sheet and rill erosion in specific environments with certain climatic conditions. The important role of gullies in soil erosion is widely recognized in arid and semiarid parts of the world where gullies account for 50–80% of sediment production [12]. The assessment of gully erosion using remotely sensed data has received increased attention in the past few years [13,14,15,16,17,18], partly because of the free availability of remotely sensed data, which has substantially reduced the cost of soil erosion assessment. In some cases, satellite and airborne high resolution images have completely replaced fieldwork or in situ measurements. Furthermore, the availability of remotely sensed data together with the increased demand for accurate results has accelerated the development and application of machine learning algorithms in image processing.



Although random forest (RF) and support vector machines (SVMs) are possibly the most widely used algorithms, a considerable interest in the use of deep learning algorithms has been shown in recent years. Such algorithms include, but are not restricted to, artificial neural networks (ANNs) and convolutional neural networks (CNNs). Already, the latter has been successfully applied in visual recognition, outperforming most algorithms [19,20]. An important advantage of the aforementioned deep learning algorithms over traditional machine learning algorithms is their ability to deal with the complicated relationship between the original and the specific class label [19], but the deep learning architecture requires huge amount of training data for the algorithm to perform well [21,22,23]. In many remote sensing applications such as land cover classification, which do not typically require a sizable amount of data, the use of traditional machine learning still remains largely relevant. In remote sensing of land cover classification, RF and SVM are by far the most commonly used algorithms.



The popularity of RF and SVM algorithms can be attributed to their relatively high classification accuracy compared to other algorithms. In contrast, simple and/or traditional classifiers such k-dimensional tree K-Nearest Neighbor (KNN), Minimum Distance (MD), and Maximum Likelihood (ML) are increasingly receiving less attention. Yet, there are some cases where either the KNN, MD or ML algorithm performs better than the SVM or RF [24,25]. The performance of a given algorithm depends on the study area, the feature being observed (i.e., how well a given feature can be discriminated from other surrounding features in a given area), the quality of imagery (identifiability of features), and the reliability of the training and testing data set (how well the assigned pixels represent a specific feature) [26]. When comparing different algorithms, most studies only rely on overall accuracies (OAs) of the applied models. Yet different land cover features including gullies yield varying accuracies with different algorithms. While mapping of gullies using machine learning is common, thus far, there has not been a direct comparison of the performance of KNN, MD, ML and RF algorithms in gully classification in an arid/semiarid agricultural area based on high spatial resolution image. In developing countries like South Africa with significant reliance on agriculture, gully erosion mapping and monitoring is essential for operational control or mitigation of erosion. Usually, decision makers are more interested in the spatial distribution of gullies, thus accurate mapping is the first but essential step in the fight against soil erosion and gullies in particular.



Although previous studies had relevant results on the remote sensing-based gully mapping, the potential of visual range (RGB—red, green, blue) imagery has not been exploited, especially in a semi-automatic classification manner. Instead, visual interpretation of high spatial resolution satellite images and/or aerial and Google Earth images have been considered [27,28,29,30]. Visual interpretation can be particularly useful in areas where gullies contain vegetation or occur in vegetated areas like forests with dense canopy cover. However, visually interpreted results are biased by the subjective views of the analysts, and also the process itself is tedious and time consuming. Apparently, the use of Light Detection and Ranging (LiDAR) data proved to be a viable alternative to optical data where gullies are covered by dense canopies. LiDAR-derived digital terrain models (DTMs) were successfully used to map gullies based on either automatic extraction, visual interpretation or both methods [30,31,32,33,34]. Whereas LiDAR data are desirable for gully mapping, the availability or costs associated with obtaining such data remains a challenge, especially in less developed countries like South Africa. Besides, most parts of South Africa affected by erosion, including our study area, fall under arid/semi-arid climate, and gullies in such areas are typically not covered by dense vegetation. Thus, readily available satellite images still remain an important source of data for gully mapping.



In this study, we evaluated the performance of KNN, MD, ML, and RF at class level, focusing on gully mapping while taking into account different gullies (in shape/appearance, size, depth and length) across various parts of the study area. We presented a gully density map showing gully hotspots across the study area. Based on published literature, there are no studies that have automatically mapped permanent gullies using a visual range satellite image, paying specific attention to gully morphological characteristics (shape, size, length, width, and depth) and their influence on gully classification results. Our hypotheses were the following: (i) gully features endangering agricultural areas can be extracted with desired accuracy from pan-sharpened visual range Systeme Pour l’Observation de la Terre (SPOT) image; (ii) different characteristics of gullies affect gully classification results.




2. Materials and Methods


2.1. Study Area


Approximately 70% of South African land is classified as degraded, with the Eastern Cape (EC) Province being the province most endangered by water erosion [35]. Our study area (1.47 km2) is located in the EC province and is one the erosion hotspots in the province (Figure 1). The most common type of water erosion occurring within the study area is gully erosion, particularly permanent gullies. These permanent gullies have varying lengths (30–274 m), depths (1.22–6.90 m), widths (4.66–15 m) and appearances (narrow, elongated, short, wide, linear) and are distributed across agricultural lands. These differences in appearance can be readily observed in four selected gully sites (#1–#4). Gullies in sites #1 and #4 share almost the same appearance/pattern (i.e., dense network of gullies forming a dendritic-like pattern) but generally differ in depth, i.e., steep-sided gullies (with shadows) are more frequent in site #1 than in site #4. In sites #2 and #3, gullies are mostly of linear pattern and elongated. The longest gully is located within site #3, whereas the deepest and widest gullies occur in site #2. The climate of the study area is semiarid with temperatures ranging from 7 °C to 30 °C and an annual rainfall of approximately 670 mm. The elevation ranges from 1445 m to 1584 m and the highest elevation values correspond to the western parts, whereas the lowest values are found in the far southeastern parts of the study area. The land use is predominately agriculture (crop and livestock farming). Heavily grazed by livestock, vegetation mainly consists of Highland Sourveld Grassland [36], occurring in hilly and mountainous parts of the area. Most agricultural areas are located on gentle sloping lands dissected by continuous and discontinuous gullies. Gully erosion in this area is driven by a host of factors, mainly anthropogenic-based, relating to unsustainable land use and inappropriate agricultural practices [37,38]. Shallow and potentially erodible soils of Mispath and Glenrose soil forms [39], and the prevalence of subsurface (piping) erosion also predispose the area to gully erosion [40]. The geology of the area is predominantly mudstone and sandstone of the Beaufort Group [41].




2.2. Data and Pre-Processing


The data set used consisted of a cloud-free Systeme Pour l’Observation de la Terre (SPOT-7) RGB (Red, Green, Blue) image acquired on 25 June 2017. The image was acquired from the South African National Space Agency (SANSA) and had already been orthorectified and pan-sharpened to 1.3 m spatial geometric resolution by the supplier. Reflectance values were obtained using the Apparent Reflectance module in ArcGIS. A 30 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) was downloaded on 26 January 2021 from Earth Explorer website (https://earthexplorer.usgs.gov/).




2.3. Classification and Accuracy Assessment


We identified four land cover classes: grassland (GL), stressed vegetation (SV), gully (G), and bare soil (BS). High resolution Google Earth images together with aerial images available in ArcGIS Online were used to collect ground truth data (Figure 2). Using random sampling, we collected 200 points for four land cover classes: GL (78), SV (54), G (41), and BS (27). The points were prepared in ArcGIS and later exported to Google Earth. Image classification was performed on 10 October 2020 in the Sentinels Application Platform (SNAP) software (http://step.esa.int) using four classifiers, including k-dimensional tree K-Nearest Neighbor (k-d tree KNN), Minimum Distance (MD), Maximum Likelihood (ML), and Random Forest (RF). A description of each classifier is summarized in Table 1. Although this study focused on mapping gullies, involving other land cover categories in the classification was necessary for discriminating gullies from the surrounding land cover. Also, the SNAP software required four land cover categories as minimum input training data. Although the Normalized Green Red Difference Index (NGRDI) was not involved directly in the classification, we computed it to gain insight on vegetation distribution in relation to gullied areas. We calculated the NGRDI in ArcMap based on the formula: (G − R)/(G + R), where G is the Green band and R is the Red band. We extracted the NGRDI spectral profiles of gullies based on gully transects ranging from 20 m to 100 m in length using ENVI 5.3.



In order to obtain a gully map, we reclassified the land cover map into binary level (gully and non-gully class). This gully map was clipped into four selected gully sites to further investigate the influence of gully characteristics, i.e., shape, size, length, width, and depth. We manually digitized gullies based on high resolution (0.5 m) aerial photography for each of the selected four sites. Digitization was carried out in ArcMap at a scale of 1:500. The digitized polygons were then converted to raster format. These manually digitized gullies were used to check how well automatically extracted gullies compare to the actual extent of gullies.



The accuracy of the automatic classification was assessed using the confusion matrix [46,47], a widely used method that provides various accuracy metrics such as the overall accuracy (OA), kappa coefficient, user’s accuracy (UA), and producer’s accuracy (PA). OA refers to a ratio of correctly classified pixels. OA is computed by dividing the sum of correctly classified pixels by the sum of reference pixels. PA is calculated by dividing the number of correctly classified pixels in each class by the column total representing reference data. UA is calculated like PA except that the row total representing predicted classes is used to divide the number of correctly classified pixels. PA indicates how well reference pixels of the ground cover type represent the classified class, while UA represents the probability that a given pixel was classified into the class that actually represents it on the ground.



The gully density map was computed to visualize the intensity or severity of gullies across the study area. We computed the gully density map in ArcGIS software using the Line Density tool. We calculated the lengths of the gullies and determined their density per unit area. We chose RF-classified gullies since the algorithm provided good gully classification results. We chose meters as a unit of measure for both length and area, i.e., gully length (m)/m2. Input data were the gully map (RF classification) having the best overall and class-level accuracies.





3. Results


3.1. Land Cover Distribution


Different classifiers resulted in varying outcomes in terms of land cover classification (Figure 3). In all classifiers, grassland (GL) contributed the largest proportion (47–57%) of land cover, followed by the stressed vegetation (SV) class ranging from 27–31%. The gully (G) class (5–8%) was the least land cover and the bare soil (BS) class (5%) in the case of the MD classifier. Of all classifiers, the ML recorded the highest BS (19%) and G (8%) whereas RF and KNN accounted for the largest proportions of GL (57%) and SV (31%) classes, respectively. In contrast, the MD classifier had the lowest coverage (5%) in terms of gully classification.




3.2. Gully Distribution in Selected Sites


Generally, site #1 had the largest proportion of gullied area although different classifiers had varied results, lying within the range of 12–19% (9321–10344 m2; Figure 4, Table 2). Sites #3 and #4 were the least gullied sites with a spatial extent of 1668 m2 to 3147 m2 (3–6%) for the latter and 1039 m2 to 1774 m2 (2–3%) for the former. In all selected gully sites, the MD classifier consistently obtained the least gully area. Other classifiers recorded the same results in four selected sites with the exception of site #1 where the ML had the highest areal extent of gully erosion (19%), followed by RF and KNN both recording 17%, and then MD (12%).



Different algorithms did not differ relevantly regarding the classified gullies from the actual (digitized) gullies, at least in terms of their spatial distribution patterns, but there was a clear lack of agreement in the proportion of areas classified as gullies. In all sites, the algorithms missed gullies by a considerable amount, and the most remarkable difference was at site #3, where KNN, ML and RF classified 1774 m2 as gullied area whereas MD only resulted in 1039 m2, compared to the actual gullied area (8064 m2).




3.3. Overall and Class-Level Accuracies


All classifiers recorded overall accuracies above 0.80. The ML classifier obtained the lowest OA (0.83) and kappa (0.72), while RF (0.94) had the highest OA and kappa (0.89), followed by KNN, which recorded 0.92 (OA) and 0.86 (kappa), and then MD, which obtained 0.86 (OA) and 0.76 (kappa). Results revealed considerable differences in user’s accuracy (UA) and producer’s accuracy (PA) obtained by various classifiers (Figure 5). Generally, KNN, MD and RF showed exceptional performance in classifying BS class, all recording 1.00 (100%) UA. In contrast, the ML classifier achieved a relatively low UA (0.60), but had the highest PA (100%) relative to other classifiers. MD outperformed other classifiers in gully (G) classification with 100% UA, although the corresponding PA was only 0.80. RF achieved the highest OA (0.94), UA was only 87% in classifying gullies.





4. Discussion


4.1. SPOT-7 RGB Bands and Gully Extraction


Results showed that the SPOT-7 image, even with limited spectral information (e.g., RGB), can effectively help to discriminate gullies from other land cover types, which is in line with findings of previous research [18]. The absence of near-infrared (NIR) band did not have a direct bearing on gully classification as the spatial resolution was sufficiently high (1.3 m) to detect most gullies. NGRDI proved that gullies can be discriminated from vegetation and other surrounding land cover classes (Figure 6). This is evident in both the NGRDI map and the corresponding spectral profiles of gullies: a typical V-shaped gully morphology in site #3 is apparent in the spectral profile. Dendritic network of gullies in sites #1 and #4, typified by a series of V-shapes, are also evident in the corresponding spectral profiles. However, the absence of the near-infrared (NIR) band presented a challenge in vegetation identification during the training data selection stage. This challenge was exacerbated by the fact that the image was acquired during the dry season, making it difficult to visually identify vegetation, particularly sparse and short vegetation cover. The use of high resolution Google Earth images of the same month as the SPOT image helped in the identification of vegetation cover during the training phase.




4.2. Efficacy of Machine Learnining Algorithms


Usually, an overall accuracy (OA) rates of at least 0.85 and 0.70 for class-specific accuracies, i.e., producer’s accuracy (PA) and user’s accuracy (UA), are recommended as a benchmark accuracy for operational purposes [48]. Excepting the ML classifier, which had the lowest OA (0.83), all other classifiers crossed the 0.85 benchmark, with RF (0.94) and KNN (0.92) recording above 0.90, whereas MD had an OA of 0.86. The higher performance of RF compared to other methods was not surprising; similar findings have been reported [49]. Although different classifiers have different advantages over one another, the RF classifier, as an ensemble learning algorithm, appears to be more advantageous than other classifiers for a number of reasons. The idea behind classifier ensembles is based upon the basic premise that a set of classifiers do perform better classifications than an individual classifier does [50].



While OA is one of the most widely used metrics with easy interpretation and practical value [23], an important setback is that it hides class-specific performance [51]. Considering 0.70 class-level accuracy benchmark, the algorithms successfully classified gullies, recording PAs and UAs above the benchmark. It is also worth noting that the classification of a relatively large gully area does not equate to higher accuracies. This is especially true with respect to the MD classifier which, of all classifiers, obtained the smallest proportion of gully area in all four selected sites (Figure 4), but had no commission error (e.g., 100% UA) and obtained 20% omission error. KNN and ML had the same commission (19%) and omission (13%) errors, while RF recorded 13% in both omission and commission errors. In general, these errors are relatively low, compared to those of previous studies conducted in South Africa [14,16,52]. However, it is worth exploring and understanding possible sources of these errors relevant to this study.



The different characteristics of gullies had a strong bearing on gully classification. Results showed that classifiers were most efficient in areas where gullies took a dendritic pattern, like site #1. However, in site #4, which was also characterized by a network of dendritic gullies like site #1, classifiers were not efficient in detecting gullies. This may be because gullies are a bit shallow in site #4 compared to site #1. The deepest and widest gullies occurred in site #2. Depth (present of shadows) appeared to be more important in gully discrimination than width. Wider and shallow-sided gullies were difficult to detect especially if they occurred on bare soil. Length of the gully was not that important when it came to gully detection. Site #3 had the longest gully, but because of the shallow gully walls, classifiers were less efficient. Results showed a discrepancy between the actual (digitized) gullies and those derived by the algorithms in all sites. There are two possible reasons for such a discrepancy. First, the classifiers mostly detected gullies with steep-sided walls (or at least with some shadows), whereas digitized gullies were captured in their correct shape with exact boundaries. Second, differences in resolutions between the aerial photograph (0.5 m) used to digitize gullies and SPOT (1.3 m) used to classify gullies might have contributed to the observed discrepancy. Similar findings were reported in another study [53], where the pixel resolution of the chosen input data was not fine enough to sufficiently capture the flat parts of the gullies, leading to under-classification of gullies.




4.3. Gully Density Map


Gullies represent a serious threat to sustainable agriculture, potentially undermining food security, particularly in developing countries. Gullies change spatially and temporally, requiring continuous mapping and monitoring, hence, the need for suitable automatic methods for gully erosion assessment. A gully density map can be an important index for gully severity evaluation. The gully density for this study ranged from 0.12 m/m2 to 0.61 m/m2 (Figure 7). We found that different appearances/pattern of gullies exhibited different gully densities. For example, site #1, dissected by a dendritic network of gullies, had the highest gully density. This was exacerbated by lack of vegetation cover in between the dense network of gullies. Linear and V-shaped gullies with steep-sided walls in site #2 also appeared to have high density, although this varied across the study area. Other studies found that the slope steepness plays an important role in gully density. For instance, Zhang et al. [54] reported a significant positive correlation between slope gradient and gully density on the hillslope. Similarly, Munoz-Robles et al. [55] found that most parts of their study area with gullies had steeper slopes. Although the topography of this study had some hilly areas, the studied gullies were distributed on gentle sloping agricultural land, thus, slope was not the overriding factor.



The findings presented in this study can be a useful source of information regarding the location of vulnerable agricultural areas, thereby assisting decision makers and land managers in combating soil erosion. In South Africa, the need to map gullies using remote sensing data was identified [56], and many researchers have since heeded the call [16,29,57]. SPOT images proved to be effective in gully mapping [18], even at a national scale [29]. However, multi-date and multi-season SPOT images, which were not available in the present study, can be particularly important in monitoring gullies. Further research should focus on testing RF, KNN, ML and MD classifiers on images acquired in different seasons. In our study, these algorithms were applied with their default parameters, fine tuning parameters could improve the classification outcome.





5. Conclusions


The selection of an appropriate classifier is a critical step in remote sensing of land cover, particularly gully erosion. This study examined four (KNN, MD, ML, and RF) well known but different classifiers (parametric and non-parametric) in mapping permanent gullies within an agricultural area. Key conclusions were as follows:




	
Different characteristics of gullies, most notably, shape/pattern (e.g., dendritic) and depth, had a strong bearing on gully classification;



	
No single classifier outperformed other classifiers in all accuracy metrics (e.g., OA, UA, and PA);



	
All classifiers except ML had OA values that exceeded the 0.85 benchmark. RF showed the best performance regarding the OA (i.e., 0.94);



	
MD was the most effective classifier in gully mapping based on UA (100%) but obtained the lowest PA (0.80), while KNN, ML, and RF classifiers equally recorded a PA value of 0.87;



	
Despite the differences in UA and PA values, all classifiers crossed the 0.70 class-specific benchmark for gullies, but RF outperformed the other algorithms regarding the class-level accuracy metrics (UA and PA);



	
Remote sensing, with the aid of appropriate machine learning algorithms, is a useful tool for gully density mapping;



	
Although there are limitations to the usage of satellite images, this approach works well if there is no vegetation inside the gullies. Thus, the approach is suitable for arid/semiarid regions.
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Figure 1. Location of study area, Eastern Cape (EC), South Africa. Selected gully sites (#1–#4). 
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Figure 2. Ground truth points distributed across the study area: (a) Google Earth and (b) aerial photograph (ArcGIS Online). 
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Figure 3. Land cover classification (GL: grassland, SV: stressed vegetation, G: gully, BS: bare soil) based on different algorithms (KNN: k-nearest neighbor, MD: minimum distance, ML: maximum likelihood, RF: random forest). 
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Figure 4. Selected gully sites (1–4) showing the spatial distribution of the classified gullies by different algorithms (KNN: k-nearest neighbor, MD: minimum distance, ML: maximum likelihood, RF: random forest) and actual (digitized) gullies. 
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Figure 5. User’s accuracy and producer’s accuracy (dashed black line indicates class accuracy benchmark of 0.70; GL: grassland, SV: stressed vegetation, G: gully, BS: bare soil). 
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Figure 6. Gully transects (20–100 m) with Normalized Green Red Difference Index (NGRDI)-based spectral profiles of selected gullies. 
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Figure 7. Gully density (m/m2) map of the study area. 
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Table 1. Description of the classifiers used (k-d tree KNN: k-dimensional tree k-nearest neighbor, MD: minimum distance, ML: maximum likelihood, RF: random forest).
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	Classifier
	Brief Description





	k-d tree KNN
	This is one of the simplest non-parametric algorithms that classify features based on distance functions. The classifier does this by finding the closest pixels to unknown pixels [42]. The classifier was run with five neighbors, which is the default.



	MD
	A non-parametric algorithm, MD uses the mean vectors of each endmember and calculates the Euclidean distance from each unknown pixel to the mean vector for each class [43]. Minimum and maximum power set size parameters were left at their default values: two and seven, respectively.



	ML
	This algorithm is among the most popular parametric classification methods, whereby a pixel with the highest probability of membership is classified into the corresponding class [44]. Like the MD classifier, ML was applied with minimum and maximum power set size parameters defaulting to two and seven, respectively.



	RF
	RF is a non-parametric classification and regression tree-based technique, which randomly samples the data and variables to generate a large group (forest) of classification and regression trees [45]. An important parameter of the algorithm is ntree (number of trees) which was set to 100 in this study.
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Table 2. Aerial extent (m2) of actual gullies (digitized) and classified gullies based on different algorithms (KNN: k-nearest neighbor, MD: minimum distance, ML: maximum likelihood, RF: random forest).
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Site #1

	
Site #2

	
Site #3

	
Site #4




	
Method

	
Pixels

	
Area (m2)

	
Pixels

	
Area (m2)

	
Pixels

	
Area (m2)

	
Pixels

	
Area (m2)






	
KNN

	
911

	
9321

	
547

	
5601

	
173

	
1774

	
306

	
3129




	
MD

	
632

	
6463

	
393

	
4026

	
102

	
1039

	
163

	
1668




	
ML

	
1011

	
10,344

	
558

	
5706

	
157

	
1610

	
302

	
3088




	
RF

	
898

	
9193

	
548

	
5607

	
171

	
1747

	
308

	
3147




	
Digitized

	
1750

	
17,908

	
1210

	
12,382

	
788

	
8064

	
556

	
5690
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