Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment
2.2. Plant and Soil Analyses
2.2.1. Dry Matter Yield
2.2.2. 15N Abundance
2.2.3. Soil Inorganic N and pH
2.3. Nitrogen Acquisition
2.3.1. N2 Fixation and N Transfer
2.3.2. N Derived from Fertilizer and Soil
2.4. Intercropping Advantages and Interspecific Interactions
2.4.1. Relative Yield Total
2.4.2. Competitive Ratio
2.5. Statistical Analyses
3. Results
3.1. IWG and WC Dry Matter Yield
3.2. Intercropping Advantages and Interspecific Interactions
3.3. The Proportion of N Derived from Different N Sources
3.4. Nitrogen Accumulation and Transfer
3.4.1. Nitrogen Accumulation
3.4.2. N2 Fixation and Apparent Transfer of N
3.5. Soil Inorganic N Concentration after Harvest
4. Discussion
4.1. Dry Matter Production, Complementary Interactions, and RYT
4.2. Use of Different Nitrogen Sources
4.3. The Role of a White Clover Service Crop on Future N Supply
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smaje, C. The strong perennial vision: A critical review. Agroecol. Sust. Food 2015, 39, 471–499. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T.-I. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Ollenburger, M.; Basso, B.; DeHaan, L.R. Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agron. J. 2013, 105, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Wayman, S.; Debray, V.; Parry, S.; David, C.; Ryan, M.R. Perspectives on perennial grain crop production among organic and conventional farmers in France and the United States. Agriculture 2019, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Jungers, J.M.; DeHaan, L.H.; Mulla, D.J.; Sheaffer, C.C.; Wyse, D.L. Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agric. Ecosyst. Environ. 2019, 272, 63–73. [Google Scholar] [CrossRef]
- Dick, C.; Cattani, D.; Entz, M.H. Kernza intermediate wheatgrass (Thinopyrum intermedium) grain production as influenced by legume intercropping and residue management. Can. J. Plant Sci. 2018, 98, 1376–1379. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A.; Vlachostergios, D.N. Annual intercrops an alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, N.L.; Ammon, H.U. Cover crops and living mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Ogilvie, C.M.; Deen, W.; Martin, R.C. Service crop management to maximize crop water supply and improve agroecosystem resilience: A review. J. Soil Water Conserv. 2019, 74, 389–404. [Google Scholar] [CrossRef]
- Hayes, R.C.; Newell, M.T.; Crews, T.E.; Peoples, M.B. Perennial cereal crops: An initial evaluation of wheat derivatives grown in mixtures with a regenerating annual legume. Renew. Agr. Food Syst. 2016, 32, 276–290. [Google Scholar] [CrossRef] [Green Version]
- Tautges, N.E.; Jungers, J.M.; DeHaan, L.R.; Wyse, D.L.; Sheaffer, C.C. Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture v. bi-culture with alfalfa in the Upper Midwestern USA. J. Agric. Sci. 2018, 156, 758–773. [Google Scholar] [CrossRef]
- Favre, J.R.; Castiblanco, T.M.; Combs, D.K.; Wattiaux, M.A.; Picasso, V.D. Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Anim. Feed Sci. Technol. 2019, 258, 114298. [Google Scholar] [CrossRef]
- Li, S.; Barreiro, A.; Jensen, E.S.; Zhang, Y.; Mårtensson, L.-M.D. Early interspecific dynamics, dry matter production and nitrogen use in Kernza (Thinopyrum intermedium)—alfalfa (Medicago sativa L.) mixed intercropping. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 70, 165–175. [Google Scholar] [CrossRef]
- Dick, C. An investigation into ecological farming systems on the Canadian prairies. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2016. [Google Scholar]
- Wagoner, P.; Schaeffer, J.R. Perennial grain development: Past efforts and potential for the future. Crit. Rev. Plant Sci. 1990, 9, 381–408. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Frankow-Lindberg, B.E.; Dahlin, A.S. N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant Soil 2013, 370, 567–581. [Google Scholar] [CrossRef]
- Louarn, G.; Pereira-Lopès, E.; Fustec, J.; Mary, B.; Voisin, A.-S.; de Faccio Carvalho, P.C.; Gastal, F. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 2014, 389, 289–305. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Rasmussen, J.; Høgh-Jensen, H.; Eriksen, J.; Søegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 2011, 350, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Thilakarathna, M.S.; McElroy, M.S.; Chapagain, T.; Papadopoulos, Y.A.; Raizada, M.N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron. Sustain. Dev. 2016, 36, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2008; p. 258.
- Hauggaard-Nielsen, H.; Andersen, M.K.; Jørnsgaard, B.; Jensen, E.S. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crop. Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Olorunmaiye, P.M.; Lagoke, S.T.; Adigun, J.A.; Orija, O.R. Effect of intercropping with maize on weed diversity in cassava. Environ. Exp. Biol. 2013, 11, 189–193. [Google Scholar]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop. Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Maiksteniene, S.; Sarunaite, L.; Kadziuliene, Z.; Deveikyte, I.; Zekaite, V.; Cesnuleviciene, R. Competitiveness and productivity of organically grown pea and spring cereal intercrops. Zemdirbyste 2011, 98, 339–348. [Google Scholar]
- Jensen, E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, Y.; Chai, Q.; Zhao, C.; Yu, A.; Coulter, J.A.; Gan, Y.; Cao, W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci. Rep. 2019, 9, 10954. [Google Scholar] [CrossRef] [Green Version]
- Neumann, A.; Werner, J.; Rauber, R. Evaluation of yield–density relationships and optimization of intercrop compositions of field-grown pea–oat intercrops using the replacement series and the response surface design. Field Crop. Res. 2009, 114, 286–294. [Google Scholar] [CrossRef]
- Chalk, P.M.; Peoples, M.B.; McNeill, A.M.; Boddey, R.M.; Unkovich, M.J.; Gardener, M.J.; Silva, C.F.; Chen, D. Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: A review of 15N-enriched techniques. Soil Biol. Biochem. 2014, 73, 10–21. [Google Scholar] [CrossRef]
- Frahm, C.S.; Tautges, N.E.; Jungers, J.M.; Ehlke, N.J.; Wyse, D.L.; Sheaffer, C.C. Responses of intermediate wheatgrass to plant growth regulators and nitrogen fertilizer. Agron. J. 2018, 110, 1028–1035. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.R.; Betts, K.J.; Sheaffer, C.C.; Wyse, D.L. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization. Agron. J. 2017, 109, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, C.W.; Ehlke, N.; Sheaffer, C.C.; Jungers, J.M. Effects of nitrogen fertilization and planting density on intermediate wheatgrass yield. Agron. J. 2020, 112, 4159–4170. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Hauggaard-Nielsen, H.; Høgh-Jensen, H.; Jensen, E.S. Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutr. Cycl. Agroecosyst. 2005, 73, 201–212. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Huang, G.; Zhang, R.; Yang, H. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: Summer maize cropping field in the North China Plain. Environ. Earth Sci. 2016, 75, 118. [Google Scholar] [CrossRef]
- Jørgensen, F.V.; Jensen, E.S.; Schjoerring, J.K. Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution method. Plant Soil 1999, 208, 293–305. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Papadopoulos, Y.A.; Rodd, A.V.; Grimmett, M.; Fillmore, S.A.E.; Crouse, M.; Prithiviraj, B. Nitrogen fixation and transfer of red clover genotypes under legume–grass forage based production systems. Nutr. Cycl. Agroecosyst. 2016, 106, 233–247. [Google Scholar] [CrossRef]
- FAO/IAEA Agriculture and Biotechnology Laboratory and Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Use of Isotope and Radiation methods in Soil and Water Management and Crop Nutrition; International Atomic Energy Agency: Vienna, Austria, 2001; pp. 27–36. [Google Scholar]
- Izaurralde, R.C.; McGill, W.B.; Juma, N.G. Nitrogen fixation efficiency, interspecies N transfer, and root growth in barley-field pea intercrop on a Black Chernozemic soil. Biol. Fert. Soils 1992, 13, 11–16. [Google Scholar] [CrossRef]
- Somado, E.A.; Kuehne, R.F. Appraisal of the 15N-isotope dilution and 15N natural abundance methods for quantifying nitrogen fixation by flood-tolerant green manure legumes. Afr. J. Biotechnol. 2006, 5, 1210–1214. [Google Scholar]
- Willey, R.W.; Rao, M.R. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 2008, 16, 117–125. [Google Scholar] [CrossRef]
- Hunter, M.C.; Sheaffer, C.C.; Culman, S.W.; Jungers, J.M. Effects of defoliation and row spacing on intermediate wheatgrass I: Grain production. Agron. J. 2020, 112, 1748–1763. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Rao, M.R.; Rego, T.J.; Willey, R.W. Response of cereals to nitrogen in sole cropping and intercropping with different legumes. Plant Soil 1987, 101, 167–177. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Høgh-Jensen, H.; Schjorring, J.K. Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency. Plant Soil 1997, 197, 187–199. [Google Scholar] [CrossRef]
- Gylfadóttir, T.; Helgadóttir, Á.; Høgh-Jensen, H. Consequences of including adapted white clover in northern European grassland: Transfer and deposition of nitrogen. Plant Soil 2007, 297, 93–104. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Genard, T.; Etienne, P.; Laine, P.; Yvin, J.C.; Diquelou, S. Nitrogen transfer from Lupinus albus L., Trifolium incarnatum L. and Vicia sativa L. contribute differently to rapeseed (Brassica napus L.) nitrogen nutrition. Heliyon 2016, 2, e00150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boller, B.C.; Nösberger, J. Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of 15N-fertilization. Plant Soil 1987, 104, 219–226. [Google Scholar] [CrossRef]
- Kendall, W.A.; Stringer, W.C. Physiological aspects of clover. In Clover Science and Technology; Taylor, N.L., Ed.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1985; Volume 25, pp. 111–159. [Google Scholar] [CrossRef]
Date | Agronomic Practices | Description |
---|---|---|
16 February | Sowing | Seeds of intermediate wheatgrass (IWG) and white clover (WC) were sown simultaneously. |
From 25 February | Watering | 500 mL water was irrigated to each pot weekly to keep soil moisture at 70% water holding capacity. |
3 to 10 March | Thinning | Five species-relative frequencies were formed by thinning seedlings. |
From 19 March | Watering | 1 L water was irrigated once every four days to keep soil moisture at 70% water holding capacity. |
2 April | First N fertilizer application | 15NH415NO3 (10.1% 15N) and KCl were applied for 15N-labeled treatments, and KNO3 and NH4Cl were applied for controls. |
6 April | Spraying pesticides | Pesticide thiosemicarbazide was sprayed on plants to control pest aphid. |
28 April | Second N fertilizer application | 15NH415NO3 (10.1% 15N) and KCl were applied for 15N-labeled treatments, and KNO3 and NH4Cl were applied for controls. |
4 May | Spraying pesticides | Pesticide avermectin was sprayed on plants to control pest red spiders. |
From 8 May | Watering | 2 L water was irrigated once every two days to keep soil moisture at 70% water holding capacity. |
6 June | Third N fertilizer application | 15NH415NO3 (10.1% 15N) and KCl were applied for 15N-labeled treatments, and KNO3 and NH4Cl were applied for controls. |
16 June | Spraying pesticides | Pesticide bifenthrin was sprayed on plants to control pest pieris brassicae. |
2 July | Harvest and sampling | Shoots and roots of IWG and WC and soil samples were collected. |
N | IRF | Total Yields (g Pot−1) | IWG Root/Shoot | WC Root/Shoot | RYT | CRIWG | CRWC |
---|---|---|---|---|---|---|---|
N0 | 100%IWG | 32.5 ± 1.13cD | 0.63 ± 0.00A | ||||
75%IWG | 37.6 ± 1.15cD | 0.51 ± 0.11A | 0.15 ± 0.01b | 1.05 ± 0.04aA | 7.04 ± 2.02A | 0.17 ± 0.05a | |
50%IWG | 51.0 ± 2.59bD | 0.57 ± 0.03A | 0.18 ± 0.01ab | 1.31 ± 0.03aA | 8.16 ± 1.13A | 0.13 ± 0.02a | |
25%IWG | 55.4 ± 1.99bB | 0.51 ± 0.07A | 0.19 ± 0.01a | 1.30 ± 0.01aA | 9.43 ± 1.48A | 0.11 ± 0.02a | |
0%IWG | 79.0 ± 5.23aA | 0.15 ± 0.01b | |||||
N1 | 100%IWG | 60.8 ± 2.34cC | 0.60 ± 0.03A | ||||
75%IWG | 63.8 ± 2.76cC | 0.46 ± 0.04A | 0.15 ± 0.02a | 1.07 ± 0.03aA | 5.12 ± 2.36A | 0.28 ± 0.09a | |
50%IWG | 70.5 ± 0.85bcC | 0.44 ± 0.03AB | 0.16 ± 0.01a | 1.13 ± 0.02aB | 4.84 ± 0.58A | 0.21 ± 0.03a | |
25%IWG | 91.8 ± 8.82aA | 0.47 ± 0.02A | 0.17 ± 0.00a | 1.39 ± 0.15aA | 6.77 ± 1.08A | 0.16 ± 0.03a | |
0%IWG | 87.5 ± 0.57abA | 0.14 ± 0.00a | |||||
N2 | 100%IWG | 84.5 ± 1.37bB | 0.45 ± 0.03B | ||||
75%IWG | 91.6 ± 1.70abB | 0.46 ± 0.01A | 0.21 ± 0.01a | 1.10 ± 0.02aA | 6.47 ± 2.57A | 0.22 ± 0.09a | |
50%IWG | 92.4 ± 2.05abB | 0.37 ± 0.01B | 0.20 ± 0.02a | 1.10 ± 0.02aB | 5.56 ± 0.74A | 0.19 ± 0.02a | |
25%IWG | 99.9 ± 3.70aA | 0.42 ± 0.03A | 0.18 ± 0.01a | 1.16 ± 0.04aA | 6.61 ± 0.41A | 0.15 ± 0.01a | |
0%IWG | 97.4 ± 2.85aA | 0.15 ± 0.01a | |||||
N3 | 100%IWG | 100 ± 1.34aA | 0.36 ± 0.03B | ||||
75%IWG | 103 ± 3.06aA | 0.43 ± 0.08A | 0.15 ± 0.03a | 1.03 ± 0.03aA | 4.00 ± 0.59A | 0.26 ± 0.04a | |
50%IWG | 110 ± 3.69aA | 0.38 ± 0.06B | 0.17 ± 0.01a | 1.10 ± 0.04aB | 5.23 ± 0.39A | 0.19 ± 0.01a | |
25%IWG | 107 ± 4.36aA | 0.36 ± 0.04A | 0.18 ± 0.02a | 1.07 ± 0.04aA | 5.83 ± 0.79A | 0.18 ± 0.02a | |
0%IWG | 98.9 ± 6.54aA | 0.15 ± 0.01a | |||||
F-statistic | |||||||
Source of variation | |||||||
N | 213 *** | 10.5 *** | 2.72 | 5.39 ** | 3.03 * | 2.06 | |
IRF | 26.4 *** | 2.16 | 5.04 ** | 10.2 ** | 1.33 | 3.60 * | |
N*IRF | 6.77 *** | 1.06 | 1.04 | 2.99 * | 0.20 | 0.11 |
N | IRF | Total N (g Pot−1) | IWG N (g Pot−1) | WC N (g Pot−1) | N2 Fixation (g Pot−1) | N Transfer (g Pot−1) |
---|---|---|---|---|---|---|
N0 | 100%IWG | 0.37 ± 0.03dD | 0.37 ± 0.03D | |||
75%IWG | 0.47 ± 0.06cdC | 0.36 ± 0.02C | 0.09 ± 0.03cA | ND | ND | |
50%IWG | 0.72 ± 0.05bcD | 0.46 ± 0.01D | 0.24 ± 0.03bcA | ND | ND | |
25%IWG | 0.91 ± 0.04bC | 0.42 ± 0.01C | 0.49 ± 0.05bA | ND | ND | |
0%IWG | 1.56 ± 0.10aA | 1.56 ± 0.10aA | ND | ND | ||
N1 | 100%IWG | 0.70 ± 0.02cC | 0.70 ± 0.02C | |||
75%IWG | 0.80 ± 0.05bcB | 0.65 ± 0.02B | 0.15 ± 0.05dA | 0.12 ± 0.04cA | 0.06 ± 0.03 | |
50%IWG | 1.03 ± 0.02bC | 0.70 ± 0.01C | 0.33 ± 0.03cA | 0.28 ± 0.02cA | 0.08 ± 0.03 | |
25%IWG | 1.43 ± 0.12aB | 0.74 ± 0.10B | 0.69 ± 0.05bA | 0.57 ± 0.05bA | 0.12 ± 0.01 | |
0%IWG | 1.71 ± 0.01aA | 1.71 ± 0.01aA | 0.89 ± 0.04aA | |||
N2 | 100%IWG | 1.08 ± 0.03cB | 1.08 ± 0.03B | |||
75%IWG | 1.33 ± 0.02bcA | 1.20 ± 0.06A | 0.13 ± 0.05cA | 0.09 ± 0.04cA | 0.11 ± 0.02 | |
50%IWG | 1.35 ± 0.04bB | 1.05 ± 0.05B | 0.30 ± 0.03cA | 0.20 ± 0.02cA | 0.18 ± 0.06 | |
25%IWG | 1.69 ± 0.08aAB | 1.04 ± 0.05A | 0.64 ± 0.04bA | 0.48 ± 0.05bA | 0.07 ± 0.02 | |
0%IWG | 1.81 ± 0.08aA | 1.81 ± 0.08aA | 0.75 ± 0.09aA | |||
N3 | 100%IWG | 1.40 ± 0.03bA | 1.40 ± 0.03A | |||
75%IWG | 1.47 ± 0.04bA | 1.33 ± 0.05A | 0.14 ± 0.02cA | 0.08 ± 0.00bA | 0.08 ± 0.03 | |
50%IWG | 1.65 ± 0.05abA | 1.34 ± 0.04A | 0.31 ± 0.02cA | 0.17 ± 0.03bA | 0.07 ± 0.04 | |
25%IWG | 1.84 ± 0.07aA | 1.17 ± 0.03A | 0.67 ± 0.08bA | 0.40 ± 0.06aA | 0.12 ± 0.04 | |
0%IWG | 1.84 ± 0.08aA | 1.84 ± 0.08aA | 0.47 ± 0.04aB | |||
F-statistic | ||||||
Source of variation | ||||||
N | 192 *** | 369 *** | 5.91 ** | 16.6 *** | 0.78 | |
IRF | 133 *** | 1.03 | 722 *** | 106 *** | 0.50 | |
N*IRF | 6.40 *** | 3.12 ** | 1.00 | 3.65 * | 1.75 |
N | IRF | Recovery Total (%) | Recovery IWG (%) | Recovery WC (%) | Soil Mineral N (mg kg−1) | pH |
---|---|---|---|---|---|---|
N0 | 100%IWG | 3.14 ± 0.22aB | 8.16 ± 0.02aA | |||
75%IWG | 3.44 ± 0.24aA | 8.10 ± 0.04abA | ||||
50%IWG | 2.86 ± 0.32aB | 8.00 ± 0.05bcA | ||||
25%IWG | 2.98 ± 0.18aA | 7.93 ± 0.02cA | ||||
0%IWG | 2.64 ± 0.09aB | 8.21 ± 0.01aA | ||||
N1 | 100%IWG | 49.2 ± 1.66A | 49.2 ± 1.66aA | 4.34 ± 0.57aAB | 7.88 ± 0.04bB | |
75%IWG | 43.5 ± 2.15B | 42.0 ± 1.83aB | 1.50 ± 0.33b | 3.58 ± 0.03aA | 7.86 ± 0.03bBC | |
50%IWG | 47.0 ± 2.39A | 43.7 ± 2.85aA | 3.34 ± 0.51b | 3.28 ± 0.44aB | 7.95 ± 0.01bA | |
25%IWG | 52.4 ± 5.20A | 43.8 ± 6.47aA | 8.66 ± 2.12b | 3.19 ± 0.20aA | 7.96 ± 0.07bA | |
0%IWG | 58.4 ± 2.73A | 58.4 ± 2.73a | 3.51 ± 0.42aAB | 8.39 ± 0.03aA | ||
N2 | 100%IWG | 56.6 ± 0.27A | 56.6 ± 0.27aA | 5.64 ± 0.87aA | 7.78 ± 0.02aB | |
75%IWG | 59.2 ± 1.90A | 57.4 ± 2.35aA | 1.82 ± 0.51d | 4.01 ± 0.43aA | 7.73 ± 0.05aC | |
50%IWG | 51.3 ± 2.70A | 46.2 ± 2.34bA | 5.08 ± 0.46c | 4.24 ± 0.28aAB | 7.78 ± 0.04aA | |
25%IWG | 60.0 ± 1.08A | 51.2 ± 1.68abA | 8.85 ± 0.90b | 4.63 ± 0.40aA | 7.93 ± 0.16aA | |
0%IWG | 56.4 ± 0.71A | 56.4 ± 0.71a | 3.84 ± 0.22aAB | 7.94 ± 0.23aA | ||
N3 | 100%IWG | 55.4 ± 2.52A | 55.4 ± 2.52aA | 5.64 ± 0.14aA | 7.92 ± 0.08aB | |
75%IWG | 51.5 ± 2.63AB | 49.1 ± 3.10abAB | 2.36 ± 0.50c | 4.76 ± 0.40aA | 7.92 ± 0.03aAB | |
50%IWG | 56.5 ± 2.25A | 51.0 ± 3.06abA | 5.43 ± 0.81c | 5.16 ± 0.27aA | 7.91 ± 0.10aA | |
25%IWG | 52.0 ± 1.49A | 41.5 ± 2.09bA | 10.6 ± 0.71b | 4.75 ± 0.77aA | 8.17 ± 0.02aA | |
0%IWG | 54.1 ± 1.86A | 54.1 ± 1.86a | 4.21 ± 0.29aA | 8.12 ± 0.17aA | ||
F-statistic | ||||||
Source of variation | ||||||
N | 9.75 ** | 8.10 ** | 0.01 | 23.3 *** | 7.61 *** | |
IRF | 2.34 | 4.73 * | 1252 *** | 4.47 ** | 6.57 *** | |
N*IRF | 3.10 * | 1.90 | 1.50 | 0.82 | 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Jensen, E.S.; Liu, N.; Zhang, Y.; Dimitrova Mårtensson, L.-M. Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop. Agronomy 2021, 11, 388. https://doi.org/10.3390/agronomy11020388
Li S, Jensen ES, Liu N, Zhang Y, Dimitrova Mårtensson L-M. Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop. Agronomy. 2021; 11(2):388. https://doi.org/10.3390/agronomy11020388
Chicago/Turabian StyleLi, Shoujiao, Erik Steen Jensen, Nan Liu, Yingjun Zhang, and Linda-Maria Dimitrova Mårtensson. 2021. "Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop" Agronomy 11, no. 2: 388. https://doi.org/10.3390/agronomy11020388
APA StyleLi, S., Jensen, E. S., Liu, N., Zhang, Y., & Dimitrova Mårtensson, L. -M. (2021). Species Interactions and Nitrogen Use during Early Intercropping of Intermediate Wheatgrass with a White Clover Service Crop. Agronomy, 11(2), 388. https://doi.org/10.3390/agronomy11020388