Lipid and Yield Evaluation in Salicornia bigelovii by the Influence of Chitosan-IBA, in Conditions of the Sonora Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Chitosan and Preparation of Indole Butyric Acid-IBA-
2.2. Treatment of Cuttings
2.3. Transplanting Cuttings in Micro-Basins
2.4. Variables Evaluated. Root Length (cm), Fresh and Dry Root Weight (Root g/Plant), and Number and Length of Shoots per Cutting (cm)
2.5. Nitrates in Sap
2.6. Seed Production
2.7. Physicochemical Analysis of the Seed (Ash, Protein and Lipid Ratios of the S. bigelovii Seed)
2.8. Statistical Analysis
3. Results
3.1. Root Length
3.2. Fresh and Dry Root Weight in S. bigelovii Cuttings
3.3. Number and Length of New Shoots in S. bigelovii Cuttings
3.4. Nitrates in Sap
3.5. Seed Production
3.6. Ash, Protein, and Lipid Ratios of the S. bigelovii Seed
3.7. Lipid Profile of S. bigelovii Seed
3.8. Chitosan and IBA Life Period in S. bigelovii
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beltrán, B.; Bianciotto, O.; López-Ahumada, G.; Vargas, J.; Hernández-Montiel, L.G.; Reyes-Pérez, J.; Nieto-Garibay, A.; Ruiz-Espinoza, F.; Alvarez, A.; Rueda-Puente, E.O.; et al. Salicornia bigelovii (Torr.): Un sistema modelo para incorporarse como cultivo agrícola en zonas árido-desérticos. Biotecnia 2017, XIX, 46–50. [Google Scholar] [CrossRef]
- Christiansen, A.H.C.; Lyra, D.A.; Jørgensen, H. Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Ind. Crop. Prod. 2021, 160, 113105. [Google Scholar] [CrossRef]
- Joshi, A.; Arora, J.; Kanthaliya, B. Halophytes: The Nonconventional Crops as Source of Biofuel Production. In Handbook of Halophytes; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–28. [Google Scholar] [CrossRef]
- El-Araby, R.; Rezk, A.I.; El-Enin, S.A.A.; Nofal, O.A.; El-Nasharty, A.B. Comparative evaluation of Salicornia bigelovii oil planted under different treatments. Bull. Natl. Res. Cent. 2020, 44, 133. [Google Scholar] [CrossRef]
- Farooq, A.; Bhanger, M.; Khalil, M.; Nasir, A.; Sarwat, I. Analytical Characterization of Salicornia bigelovii Seed Oil Cultivated in Pakistan. J. Agric. Food Chem. 2002, 50, 4210–4214. [Google Scholar] [CrossRef]
- López-Corona, B.E.; Mondaca-Fernández, I.; Gortáres-Moroyoqui, P.; Meza-Montenegro, M.M.; Balderas-Cortés, J.d.J.; Ruiz-Alvarado, C.; Rueda-Puente, E.O. Enraizamiento de esquejes de Salicornia bigelovii (Torr.) por quitosano como un bioproducto de origen marino. Terra Latinoam. 2019, 37, 361–369. [Google Scholar] [CrossRef]
- Bhaskara Reddy, M.V.; Arul, J.; Angers, P.; Couture, L. Chitosan Treatment of Wheat Seeds Induces Resistance to Fusarium graminearum and Improves Seed Quality. J. Agric. Food Chem. 1999, 47, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-W.; Han, Y.; Jo, Y.H.; Choi, M.; Kang, S.; Kim, S.-A.; Jung, W.-J. Extraction of chitin and chitosan from housefly, Musca domestica, pupa shells: Production of chitin from housefly. Entomol. Res. 2016, 46. [Google Scholar] [CrossRef]
- Beaney, P.; Lizardi-Mendoza, J.; Healy, M. Comparison of chitins produced by chemical and bioprocessing methods. J. Chem. Technol. Biotechnol. 2005, 80, 145–150. [Google Scholar] [CrossRef]
- Kumari, S.; Rath, P.; Sri Hari Kumar, A.; Tiwari, T.N. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 2015, 3, 77–85. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Si Trung, T.; Bao, H.N.D. Physicochemical Properties and Antioxidant Activity of Chitin and Chitosan Prepared from Pacific White Shrimp Waste. Int. J. Carbohydr. Chem. 2015, 2015, 706259. [Google Scholar] [CrossRef] [Green Version]
- Rasti, H.; Parivar, K.; Baharara, J.; Iranshahi, M.; Namvar, F. Chitin from the Mollusc Chiton: Extraction, Characterization and Chitosan Preparation. Iran. J. Pharm. Res. 2017, 16, 366–379. [Google Scholar]
- Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int. J. Biol. Macromol. 2017, 105, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.; Nápoles García, M.; Arteaga, J.; Cruz, L.; Martínez, I.; Falcón, A.; Aguilera, L. Evaluación de la aplicación de quitosana sobre plántulas de tabaco (Nicotiana tabacum L.) Evaluation of the application of chitosan on tobacco seedlings (Nicotiana tabacum L.). Centro Agrícola 2017, 44, 34–40. [Google Scholar]
- Sansano, M.; Heredia, A.; Glicerina, V.; Balestra, F.; Romani, S.; Andrés, A. Influence of chitosan on thermal, microstructural and rheological properties of rice and wheat flours-based batters. LWT 2018, 87, 529–536. [Google Scholar] [CrossRef]
- Pitoyo, A.; Hani, R.; Anggarwulan, E. Application of chitosan spraying on acclimatization success of tiger orchid (Grammatophyllum scriptum) plantlets. Nusant. Biosci. 2015, 7, 179–185. [Google Scholar] [CrossRef]
- Rahman, M.; Mukta, J.A.; Sabir, A.A.; Gupta, D.R.; Mohi-Ud-Din, M.; Hasanuzzaman, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE 2018, 13, e0203769. [Google Scholar] [CrossRef]
- Mehebub, M.; Mahmud, N.; Rahman, M.; Surovy, M.; Gupta, D.; Hasanuzzaman, M.; Rahman, M.; Islam, T. Chitosan biopolymer improves the fruit quality of litchi (Litchi chinensis Sonn.). Acta Agrobotica 2019, 72. [Google Scholar] [CrossRef]
- Hernández Cocoletzi, H.; Águila Almanza, E.; Flores Agustin, O.; Viveros Nava, E.L.; Ramos Cassellis, E. Obtención y caracterización de quitosano a partir de exoesqueletos de camarón. Superf. Vacío 2009, 22, 57–60. [Google Scholar]
- Arenas, N.; Pinilla Plata, A.; Henao Martínez, J.A. Arcilla bentonítica modificada con quitosano para materiales compuestos biodegradables. Dyna 2011, 78, 59–65. [Google Scholar]
- Dias, J.P.T.; Ono, E.O.; Duarte Filho, J. Enraizamento de estacas de brotações oriundas de estacas radiculares de amoreira-preta1. Rev. Bras. Frutic. 2011, 33, 649–653. [Google Scholar] [CrossRef] [Green Version]
- Ramírez Arrebato, M.; Rodriguez Pedroso, A.; Alfonso, L.; Peniche, C. Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnol. Apl. 2010, 27, 270–276. [Google Scholar]
- Ruiz, G.R.; Vargas, H.J.; Cetina, A.V.; Villegas, M. Effect of indol-butiric acid (iba) and type of cutting on rooting of Gmelina arborea Roxb. Rev. Fitotec. Mex. 2005, 28, 319–326. [Google Scholar]
- Coombs, J.; May, S.; Long, D.; Scurlock, J. Técnicas en Fotosíntesis y Bioproductividad; Asociación de Postgraduados: Chapingo, Mexico, 1988; pp. 1–204. [Google Scholar]
- Wood, E. Determination of nitrate in sea water by cadmium cooper reduction to nitrite. J. Mar. Biol. Assoc. U. K. 1967, 47, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Arredondo, V.; Cordero, E.; Herrero, C.; Abalde, J. Manual de Técnicas Bioquímicas Aplicadas en Ficología; Centro de Investigación Científica y Estudios Superiores de Ensenada, Centro de Investigaciones Biológicas del Noroeste y Universidad de Coruña: La Paz, Baja California Sur, Mexico, 1997; p. 70. [Google Scholar]
- Sato, N.; Murata, N. Membrane lipids. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1988; Volume 167, pp. 251–259. [Google Scholar]
- De la Paz, N.; Fernández, M.; López, O.; Nogueira, A.; García, C.; Pérez, D.; Díaz, D. Optimización del proceso de obtención de quitosana derivada de quitina de langosta. Rev. Iberoam. Polímeros 2002, 13, 103–116. [Google Scholar]
- Vargas-Torres, G.; Taquez-Bueno, L. Obtención y Evaluación del Quitosano a Nivel Laboratorio para la Depuración de Aguas Residuales Industriales Provenientes de un Laboratorio Cosmético. Available online: https://repository.unad.edu.co/bitstream/handle/10596/18323/53094495.pdf?sequence=1&isAllowed=y (accessed on 21 January 2021).
- Varamin, J.; Fanoodi, F.; Sinaki, J.M.; Rezvan, S.; Damavandi, A. Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 2228–2243. [Google Scholar] [CrossRef]
- Mármol, Z.; Gutiérrez, E.; Páez, G.; Ferrer, J.; Rincón, M. Desacetilación termoalcalina de quitina de conchas de camarón. Multiciencias 2004, 4, 123–134. [Google Scholar]
- Báez-Pérez, A.; González-Molina, L.; Solís Moya, E.; Bautista-Cruz, A.; Bernal-Alarcón, M.d.l.Á. Efecto de la aplicación del ácido indol-3-butiríco en la producción y calidad de trigo (Triticum aestivum L.). Rev. Mex. Cienc. Agrícolas 2015, 6, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Zerpa, J.; Marinela, C.; Rincón, D.; Colina, J. Efecto del uso de quitosano en el mejoramiento del cultivo del arroz (Oryza sativa L. variedad sd20a). Rev. Investig. Agrar. Ambient. 2017, 8, 151–165. [Google Scholar] [CrossRef]
- Jiménez, N.; Jiménez, M.; Falcón, A.; Gonzáles, G.; Silvente, J. Evaluación de tres dosis de quitosano en el cultivo de pepino en un periodo tardío. Rev. Electrón. Cienc. Granma 2009, 13, 1–6. [Google Scholar]
- Mota Urbina, C. Revista Claridades Agropecuarias. Available online: https://info.aserca.gob.mx/claridades/revistas/003/ca003.pdf#page=24 (accessed on 14 January 2021).
- Hadwiger, L.A.; Fristensky, B.; Riggleman, R.C. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. In Chitin, Chitosan, and Related Enzymes; Zikakis, J.P., Ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 291–302. [Google Scholar] [CrossRef]
- Guan, Y.-J.; Hu, J.; Wang, X.-J.; Shao, C.-X. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. B 2009, 10, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.-H.; Vo, T.-S.; Ngo, D.-N.; Kang, K.-H.; Je, J.-Y.; Pham, H.N.-D.; Byun, H.-G.; Kim, S.-K. Biological effects of chitosan and its derivatives. Food Hydrocoll. 2015, 51, 200–216. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, D.; Dutta, P.; Kalita, J.; Wann, S.B.; Manna, P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr. Polym. 2020, 247, 116594. [Google Scholar] [CrossRef]
- Hadwiger, L.A. Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci. Int. J. Exp. Plant Biol. 2013, 208, 42–49. [Google Scholar] [CrossRef] [PubMed]
- López, M.; Ruiz-Cruz, S.; Navarro-Preciado, C.; Ornelas-Paz, J.; Estrada, M.; Gassos-Ortega, L.; Rodrigo-Garcia, J. Efecto de recubrimientos comestibles de quitosano en la reducción microbiana y conservación de la calidad de fresas. Biotecnia 2012, 14, 33. [Google Scholar] [CrossRef]
- Cheah, L.H.; Page, B.B.C.; Shepherd, R. Chitosan coating for inhibition of sclerotinia rot of carrots. N. Z. J. Crop Hortic. Sci. 1997, 25, 89–92. [Google Scholar] [CrossRef]
- Liu, J.; Tian, S.; Meng, X.; Xu, Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol. 2007, 44, 300–306. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.; Bhowmik, P.; Mahmud, N.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chapter 1—Enzymic synthesis of chitin and chitosan. In Chitin; Muzzarelli, R.A.A., Ed.; Pergamon: Oxford, UK, 1977; pp. 5–44. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004, 21, 703–714. [Google Scholar] [CrossRef]
- Hewajulige, I.; Sultanbawa, Y.; Wijeratnam, S.; Wijesundara, R. Mode of action of chitosan coating on anthracnose disease control in papaya. Phytoparasitica 2009, 37, 437–444. [Google Scholar] [CrossRef]
Treatments | |
---|---|
QUI 50% | QUI 50% + IBA 0.937 g·kg−1 |
QUI 100% | QUI 50% + IBA 1.25 g·kg−1 |
IBA 0.937 g·kg−1 | QUI 100% + IBA 0.937 g·kg−1 |
IBA 1.25 g·kg−1 | QUI 100% + IBA 1.25 g·kg−1 |
Control (Irrigation drinking water) |
Phenological Stage/1st Experiment | T °C | RH (%) | Par (me m−2 s−1) | Aai· h |
---|---|---|---|---|
Collection of cuttings and rooting (Nov/2018) | 39 ± 2 | <45 | 510.33 | 8 |
Pre-flowering (Dec/2018–Feb/2019) | 30 ± 4 | <35 | 485.22 | 7 |
Flowering (March–April/2019) | 38 ± 3 | <15 | 580.32 | 10 |
Physiological maturity (seed production) (May–July/2019) | 48 ± 4 | <10 | 589.43 | 11 |
Phenological stage/2nd experiment | ||||
Rooting (Oct/2019) | 48 ± 3 | <45 | 550.12 | 9 |
Pre-flowering (Nov/2019–Jan/2020) | 30 ± 4 | <35 | 495.22 | 8 |
Flowering (Feb–March/2020) | 38 ± 3 | <15 | 560.12 | 8 |
Physiological maturity (seed production) (April–June/2020) | 45 ± 4 | <10 | 576.43 | 11 |
Texture | pH | CE dS·m | O.M. % | SAR | NO3 mg·kg−1 | NO2 mg·kg−1 | Ca mg·kg−1 | Mg mg·kg−1 | K g·L−1 | Na g·L−1 |
---|---|---|---|---|---|---|---|---|---|---|
Sandy | 7.0 | 2.5 | 0.02 | 8.82 | 0.09 | 0.01 | 5.80 | 19.36 | 0.1 | 1.6 |
Treatment | Root length (cm) | Fresh Weight | Dry Weight | |||||
---|---|---|---|---|---|---|---|---|
dat 30 | dat 60 | dat 90 | dat 120 | dat 150 | dat 180 | (g·root/plant) | (mg·root/plant) | |
QUI 50% | 0 | 13.9 ± 0.8 | 13.2 ± 1.9 | 27.2 ± 2.6 | 30.1 ± 2.7 | 42.2 ± 2.9 ab | 358.09± 12.02 ab | 89.9± 12.18 ab |
QUI 100% | 0 | 14.3 ± 0.6 | 14.6 ± 2.1 | 26.7 ± 2.8 | 30.1 ± 2.0 | 45.3 ± 2.8 a | 361.11 ± 10.21 a | 90.2 ± 9.33 ab |
IBA 0.937 g·kg−1 | 0 | 10.9 ± 0.4 | 13.3 ± 0.7 | 25.9 ± 1.8 | 30.6 ± 2.9 | 41.4 ± 2.3 ab | 311.3 ± 11.09 c | 88.8 ± 8.08 b |
IBA 1.25 g·kg−1 | 0 | 10.7 ± 0.3 | 14.3 ± 1.3 | 26.1 ± 1.8 | 30.3 ± 2.6 | 40.4 ± 2.5 ab | 362.6 ± 9.11 a | 90.60 ± 11.18 ab |
QUI 50% + IBA 0.937 g·kg−1 | 0 | 16.1 ± 0.4 | 14.2 ± 2.1 | 26.7 ± 2.3 | 32.8 ± 2.8 | 47.4 ± 2.9 a | 362.7 ± 7.28 a | 90.65 ± 9.11 ab |
QUI 50% + IBA 1.25 g·kg−1 | 0 | 16.0 ± 0.9 | 13.2 ± 1.8 | 26.2 ± 2.1 | 39.2 ± 3.1 | 44.3 ± 2.1 a | 356.7 ± 11.33 ab | 88.93 ± 6.98 ab |
QUI 100% + IBA 0.937 g·kg−1 | 0 | 12.2 ± 1.1 | 13.0 ± 1.2 | 27.1 ± 2.8 | 31.2 ± 1.8 | 47.8 ± 2.6 a | 366.7 ± 7.21 a | 91.0 ± 7.45 ab |
QUI 100% + IBA 1.25 g·kg−1 | 0 | 9.0 ± 0.5 | 12.9 ± 0.8 | 25.9 ± 1.3 | 39.9 ± 1.9 | 45.4 ± 2.1 a | 291.1 ± 5.87 d | 81.4 ± 12.01 b |
Control | 0 | 4.0 ± 1.5 | 10.8 ± 0.2 | 21.9 ± 0.4 | 32.3 ± 1.2 | 34 ± 3.9 c | 271.7 ± 8.80 e | 112.3 ± 9.37 a |
Treatment | Shoot 1st Cycle | Shoot 2nd Cycle | Nitrates in Sap | |||
---|---|---|---|---|---|---|
Long (cm) | Number | Long (cm) | Number | N-NO3 mg·mL−1 | ||
1st Cycle | 2nd Cycle | |||||
QUI 50% | 17.28 ± 1.7 b | 17 ± 3 a | 19.31 ± 1.6 ab | 18 ± 3 a | 498.91 ± 47 ab | 477.31 ± 38 ab |
QUI 100% | 22.50 ± 1.9 a | 22 ± 3 a | 24.76 ± 1.8 a | 20 ± 4 a | 511.9 ± 33 a | 521.84 ± 31 a |
IBA 0.937 g·kg−1 | 10.29 ± 1.7 d | 18 ± 2 a | 19.11 ± 1.9 ab | 20 ± 4 a | 502.11 ± 39 a | 532.79 ± 32 a |
IBA 1.25 g·kg−1 | 21.50 ± 1.5 a | 23 ± 3 a | 23.11 ± 1.7 a | 23 ± 3 a | 498.77 ± 39 ab | 509.11 ± 23 a |
QUI 50% + IBA 0.937 g·kg−1 | 22.52 ± 1.9 a | 22 ± 3 a | 24.42 ± 2.9 a | 25 ± 2 a | 505.81 ± 15 a | 512.33 ± 21 a |
QUI 50% + IBA 1.25 g·kg−1 | 19.38 ± 1.8 b | 21 ± 2 a | 21.12 ± 1.8 a | 23 ± 3 a | 525.13 ± 24 a | 523.02 ± 21 a |
QUI 100% + IBA 0.937 g·kg−1 | 21.58 ± 1.5 a | 16 ± 4 a | 23.18 ± 2.7 a | 19 ± 4 a | 587.29 ± 33 a | 543.65 ± 29 a |
QUI 100% + IBA 1.25 g·kg−1 | 14.93 ± 1.7 c | 17 ± 3 a | 21.11 ± 1.5 ab | 17 ± 4 a | 565.33 ± 31 a | 577.08 ± 29 a |
Control | 9.37 ± 1.9 d | 18 ± 2 a | 14.43 ± 1.9 c | 20 ± 3 a | 334.17 ± 29 c | 421.11 ± 16 bc |
Treatments | Seed Production (g) | Seed | ||||||
---|---|---|---|---|---|---|---|---|
g·plant−1 | g·m−2 | kg·ha−1 | Dry Matter g·m−2 | Ash (%) | Proteins (%) | Humidity (%) | Lipids (mg/g) | |
QUI 50% | 1.30 ± 0.09 b | 51.1 ± 4.1 b | 511.0 ± 4.1 b | 1495 ± 146 bc | 18.6 ± 1.1 b | 21.1 ± 1.9 b | 4.6 ± 0.1 b | 89.0 ± 3.3 ab |
QUI 100% | 1.52 ± 0.09 a | 64.2 ± 3.9 a | 642.2 ± 3.9 a | 1799 ± 202 b | 22.5 ± 1.1 a | 20.1 ± 1.9 bc | 4.6 ± 0.3 b | 89.7 ± 3.1 ab |
QUI 0.937 g·kg−1 | 0.55 ± 0.04 d | 21.0 ± 8.8 c | 210.8 ± 8.8 c | 1582 ± 162 bc | 18.1 ± 1.3 b | 21. ± 1.98 b | 4.1 ± 0.4 b | 86.1 ± 2.1 b |
QUI 1.25 g·kg−1 | 1.53 ± 0.10 a | 60.0 ± 6.3 a | 600.3 ± 6.3 a | 1497 ± 276 bc | 23.4 ± 1.4 a | 22.0 ± 1.9 b | 4.5 ± 0.9 a | 83.4 ± 2.2 c |
QUI 50% + IBA 0.937 g·kg−1 | 1.55 ± 0.09 a | 65.0 ± 6.1 a | 650.9 ± 6.1 a | 1775 ± 123 b | 22.5 ± 1.0 a | 24.6 ± 0.9 a | 4.0 ± 0.9 b | 95.1 ± 4.9 a |
QUI 50% + IBA 1.25 g·kg−1 | 1.34 ± 0.8 b | 55.0 ± 3.9 b | 550.2 ± 3.9 b | 1512 ± 215 bc | 21.6 ± 1.3 a | 23.6 ± 0.9 ab | 4.2 ± 0.2 b | 94.4 ± 4.1 a |
QUI 100% + IBA 0.937 g·kg−1 | 1.56 ± 0.11 a | 67.1 ± 7.1 a | 671.3 ± 7.1 a | 2213 ± 189 a | 14.3 ± 1.1 c | 25.9 ± 1.3 a | 4.9 ± 0.2 ab | 93.1 ± 3.9 a |
QUI 100% + IBA 1.25 g·kg−1 | 1.02 ± 0.07 c | 23.0 ± 9.9 c | 230.9 ± 9.9 c | 2098 ± 119 a | 12.1 ± 0.3 d | 21.4 ± 0.2 b | 4.3 ± 0.5 b | 88.0 ± 1.4 ab |
Control | 0.54 ± 0.11 d | 19.1 ± 10.9 c | 191.1 ± 10.9 c | 1441 ± 129 c | 21.12 ± 0.9 b | 19.0 ± 0.3 c | 4.7 ± 0.3 b | 92.2 ± 2.7 a |
Treatments | Fatty Acids (%) | |||||
---|---|---|---|---|---|---|
Palmitic | Stearic | Oleic | Linoleic | Linolenic | Life Time * | |
QUI 50% | 11.51 ± 1.3 c | 1.87 ± 0.10 b | 14.85 ± 0.31 ab | 66.55 ± 1.39 b | 2.32 ± 0.69 a | 233 ± 10 ab |
QUI 100% | 10.36 ± 1.1 c | 1.62 ± 0.12 c | 13.24 ± 1.53 b | 67.00 ± 1.13 b | 2.58 ± 0.25 a | 227 ± 10 b |
IBA 0.937 g·kg−1 | 10.61 ± 1.1 c | 1.21 ± 0.40 c | 13.18 ± 1.69 b | 67.00 ± 1.09 a | 2.55 ± 0.29 a | 221 ± 9 b |
IBA 1.25 g·kg−1 | 14.26 ± 0.7 ab | 1.00 ± 0.41 c | 14.14 ± 0.32 ab | 67.00 ± 0.94 b | 2.50 ± 0.37 a | 220 ± 8 b |
QUI 50% + IBA 0.937 g·kg−1 | 15.67 ± 0.9 a | 2.11 ± 0.12 a | 13.18 ± 0.39 b | 66.65 ± 1.54 b | 2.49 ± 0.41 b | 244 ± 9 a |
QUI 50% + IBA 1.25 g·kg−1 | 12.76 ± 0.4 bc | 1.99 ± 0.13 b | 13.87 ± 0.69 b | 68.55 ± 1.11 b | 2.83 ± 0.28 a | 249 ± 7 a |
QUI 100% + IBA 0.937 g·kg−1 | 13.71 ± 0.3 b | 1.09 ± 0.33 c | 15.21 ± 1.07 a | 67.98 ± 1.34 b | 2.01 ± 0.53 a | 251 ± 9 a |
QUI 100% + IBA 1.25 g·kg−1 | 15.46 ± 0.9 a | 1.11 ± 0.22 c | 12.98 ± 0.39 c | 68.32 ± 1.03 b | 2.13 ± 0.59 a | 254 ± 10 a |
Control | 9.58 ± 1.9 c | 1.44 ± 0.20 c | 13.90 ± 0.11 c | 72.09 ± 0.78 a | 2.99 ± 0.56 a | 188 ± 1.9 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Sifuentes, G.; Preciado-Rangel, P.; Guillén-Enríquez, R.R.; Bernal, F.S.; Holguin-Peña, R.J.; Borbón-Morales, C.; Rueda-Puente, E.O. Lipid and Yield Evaluation in Salicornia bigelovii by the Influence of Chitosan-IBA, in Conditions of the Sonora Desert. Agronomy 2021, 11, 428. https://doi.org/10.3390/agronomy11030428
Zapata-Sifuentes G, Preciado-Rangel P, Guillén-Enríquez RR, Bernal FS, Holguin-Peña RJ, Borbón-Morales C, Rueda-Puente EO. Lipid and Yield Evaluation in Salicornia bigelovii by the Influence of Chitosan-IBA, in Conditions of the Sonora Desert. Agronomy. 2021; 11(3):428. https://doi.org/10.3390/agronomy11030428
Chicago/Turabian StyleZapata-Sifuentes, Gerardo, Pablo Preciado-Rangel, Reyna Roxana Guillén-Enríquez, Francisca Sánchez Bernal, Ramon Jaime Holguin-Peña, Carlos Borbón-Morales, and Edgar Omar Rueda-Puente. 2021. "Lipid and Yield Evaluation in Salicornia bigelovii by the Influence of Chitosan-IBA, in Conditions of the Sonora Desert" Agronomy 11, no. 3: 428. https://doi.org/10.3390/agronomy11030428
APA StyleZapata-Sifuentes, G., Preciado-Rangel, P., Guillén-Enríquez, R. R., Bernal, F. S., Holguin-Peña, R. J., Borbón-Morales, C., & Rueda-Puente, E. O. (2021). Lipid and Yield Evaluation in Salicornia bigelovii by the Influence of Chitosan-IBA, in Conditions of the Sonora Desert. Agronomy, 11(3), 428. https://doi.org/10.3390/agronomy11030428