
agronomy

Article

Thermomagnesium: A By-Product of Ni Ore Mining as a Clean
Fertilizer Source for Maize

João William Bossolani , Luiz Gustavo Moretti , José Roberto Portugal, Ricardo Rossi and
Carlos Alexandre Costa Crusciol *

����������
�������

Citation: Bossolani, J.W.; Moretti,

L.G.; Portugal, J.R.; Rossi, R.; Crusciol,

C.A.C. Thermomagnesium: A

By-Product of Ni Ore Mining as a

Clean Fertilizer Source for Maize.

Agronomy 2021, 11, 525. https://

doi.org/10.3390/agronomy11030525

Received: 11 February 2021

Accepted: 7 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), Botucatu,
SP 18610-034, Brazil; bossolani.agro@gmail.com (J.W.B.); souzamoretti@gmail.com (L.G.M.);
jose.portugal@unesp.br (J.R.P.); ricardo.rossi@cmagfert.com.br (R.R.)
* Correspondence: carlos.crusciol@unesp.br

Abstract: This study explores whether Thermomagnesium (TM), a by-product of Ni ore mining, is
an efficient fertilizer for maize. The effects of TM on soil pH, the supply of Si and Mg to the soil
and plants, carbohydrate metabolism, grain filling, and yield were assessed in two simultaneous
experiments performed in greenhouse conditions. Five TM doses were applied to two soil textures—
clayey (0, 55, 273, 709, and 2018 mg kg−1) and sandy (0, 293, 410, 645, and 1260 mg kg−1). In
general, the best results in soil and maize plants occurred at the highest TM dose for both soil textures
(clayey 2018 mg kg−1 and sandy 1260 mg kg−1). The results demonstrated that in both soils, the
concentrations of Mg and Si in the maize leaves increased with the dose of TM, similarly to that which
occurred in the soil. Interestingly, in clayey soil, the soil pH increased linearly, whereas in sandy soil,
the pH reached its maximum value between the two largest TM doses. The concentration of reducing
sugars increased at the highest TM dose, whereas the concentrations of sucrose and starch decreased.
The enhancement of carbohydrate partitioning led to higher maize growth, grain filling, and yield.
Overall, the results clearly demonstrate that TM is a sustainable alternative fertilizer for maize and
can be used for countless other crops and soil classifications, thus providing a suitable destination for
this by-product of Ni ore mining.
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1. Introduction

From an economic perspective, maize (Zea mays L.) is a global standout among crops
because of its wide range of uses in human food, animal feed, and industrial applications [1].
This broad utility has also led to an increasing demand for maize [2]. Enhancing crop
productivity is key for improving agricultural production and guaranteeing global food
and energy supplies [3]. Fertilizers are the main inputs for increasing crop productivity
quickly [4,5] and for replacing nutrients removed from the soil by crops [6]. Between 30 and
50% of crop productivity is attributable to fertilization, and thus fertilizer use is essential
for food production in order to meet the demands of the growing world population [4].

Brazil is the fifth largest consumer of fertilizer in the world, and maize accounts for
approximately 16% of its fertilizer use [7,8]. However, Brazil imports approximately 81% of
its fertilizer [9,10]. A potential alternative source of nutrients is mining by-products [11,12],
which would reduce the environmental problem of rock mining while providing a cleaner,
domestic option for soil fertilization [13]. The use of by-products as a fertilizer in agriculture
is an effective means of improving soil quality, increasing crop yields, and mitigating
environmental impacts, while generating a new source of revenue [14].

One such by-product is Thermomagnesium (TM; or magnesium silicate (MgSiO3)),
which originates from the extraction of nickel (Ni) and has potential for use as a soil
remineralizer to provide silicon (Si) and magnesium (Mg) to crops [12]. Si is a beneficial
mineral element commonly found in the soil that increases plant resistance to stress by
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accumulating in the roots, stem, leaves, and bark [15]. In particular, supplying Si to plants
can increase tolerance to water stress, thereby improving production stability, especially
in regions subject to drought like the Brazilian Cerrado, a biome similar to the African
savanna [16]. Mg is an important nutrient that is involved in several vital functions in
plants [17,18]. Mg deficiency in plants may be caused not only by the depletion of soil
reserves, but also by low Mg assimilation by roots as a result of competitive inhibition
caused by the imbalance of cations such as calcium (Ca) and potassium (K) [19,20]. The
reduced transport and accumulation of carbohydrates in Mg-deficient leaves alter the
photosynthetic carbon metabolism and restrict CO2 fixation [17,21]. Mg is closely linked
to partitioning among starch synthesis, triose phosphate transport in the cytosol, and
sucrose formation, and low Mg availability leads to a reduction of glucose–fructose bonds
in cytosol [22].

To support the further development of TM as a fertilizer, the objective of the present
study was to evaluate the effects of TM application on the supply of Si and Mg in sandy
and clayey soil for the cultivation of maize, the partitioning of carbohydrates in the plants,
grain yield, and the chemical attributes of the soil.

2. Materials and Methods
2.1. Thermomagnesium Processing

Thermomagnesium was produced by melting Ni ore in an electric furnace, which
granulates nonmetallic elements, such as silicon dioxide (SiO2), magnesium oxide (MgO),
and ferric oxide (Fe2O3), in the presence of water. The ore was then crushed to alter its
granulometry, followed by calcination in rotary kilns to remove all moisture, including
chemically bound water. The calcined ore was subsequently charged in an electric furnace
and was reduced at high temperature, which removed O from Fe and Ni oxides to produce
an iron–nickel alloy (Fe–Ni) containing approximately 20% Ni, as well as a large amount of
by-product [12].

The by-product was immediately cooled from 1600 ◦C to room temperature under
pressure using several water jets. The solidified MgSiO3-rich by-product did not exhibit a
granulometric uniformity and thus underwent a forming process. First, the by-product
was dried in a rotary dryer at a beneficiation plant [12]. After drying, the particle size
distribution (100 mesh size, ~149 µm) was obtained by sieving, and the mineralogical
phases of the by-product were determined by X-ray diffraction (XRD) in a Philips X-ray
diffractometer (Table 1). The crystalline phases were identified by comparing the sample
using the PDF2 Database of the International Center for Diffraction Data and the Inorganic
Crystal Structure Database (ICSD; Figure 1). The values were calculated following the
method of Rietveld [23], using the standard ICSD crystalline structures and internal fluorite
(CaF2) to determine the amorphous phase.

Table 1. Chemical composition of Thermomagnesium from nickel ore mining in São Paulo State, Brazil.

Mineral Species Chemical Formula Abundance Unit

Chemical composition
Arsenic As3+ <5 mg·kg−1

Cadmium Cd2+ <5 mg·kg−1

Lead Pb2+ <5 mg·kg−1

Mercury Hg2+ <0.20 mg·kg−1

Selenium Se2+ <0.10 mg·kg−1

Chromium Cr3+ 0.88 %
Nickel Ni2+ 0.11 %

Mineralogical phases
Amorphous phase - 74 %
Forsterite Mg1.8Fe0.2SiO4 24 %
Lizardite Mg3Si2(OH)4O5 2 %

Mineral groups
Magnesium oxide MgO 28 %
Silicon dioxide SiO2 48 %
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Figure 1. X-ray diffractogram for quantifying the mineralogical phases of Thermomagnesium from Ni ore mining. To calcu-
late the amorphous material, 10% fluorite (ICDD 01-077-2093) was added.

According to the maximum limits of potentially toxic elements (PTEs; arsenic (As),
cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni), mercury (Hg) and selenium (Se)) in
soil remineralizers allowed by the Brazilian National Environmental Council, as established
by Annexe I of the Normative Instruction SDA n. 27 [24], TM does not represent an
environmental risk (Table 1) and can be safely reused in agriculture.

2.2. Experimental Conditions

This study was conducted in an experimental greenhouse with a climate-controlled
environment at the Lageado Experimental Farm of São Paulo State University (UNESP),
which is located in the municipality of Botucatu in the southeastern region of São Paulo
State, Brazil (48◦26′ W, 22◦51′ S, elevation of 786 m above sea level). The greenhouse had
an internal heating/cooling air circulatory system to maintain the temperature between
22 ◦C and 32 ◦C, and had a 70% relative humidity. The experiment was performed using
polyethylene pots with a capacity of 25 kg of soil.

According to the Brazilian Soil Classification System [25], the clayey soil used in
the experiment was classified as a dystrophic Red Latosol, corresponding to a typical
Ferralsol [26], and the sandy soil was a kaolinitic, thermic Typic Haplorthox [27]. The soil
texture and bulk density [28], as well as the chemical properties [29], were determined at a
0.0–0.2 m depth (Table 2). For the soil acidity correction, base saturation (aiming to obtain
60% base saturation) was conducted by adding calcium carbonate (CaCO3; >99%, p.a.,
Sigma-Aldrich, Inc., St. Louis, MO, USA). Each pot was filled with air-dried soil mixed
homogeneously with CaCO3 and the specified TM dose, and was incubated for ~40 days
to allow for a reaction with the soil.

Prior to the experiment, the soil water retention capacity was determined using a
tension table and a Richards extraction chamber [30] in order to calculate the soil water
potential (ψw).
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Table 2. Physicochemical properties of soil types (0.00–0.20 m depth) in São Paulo, Brazil.

Soil Properties Unit
Clayey Sandy

Value

Clay g·kg−1 602 251
Silt g·kg−1 281 25
Sand g·kg−1 117 724
Bulk density g·cm−3 1.19 1.26
pH (CaCl2) – 5.20 5.40
Soil organic matter g·kg−1 25.0 13.0
Available phosphorus (P resin) mg·kg−1 6.00 3.00

Exchangeable

Calcium (Ca2+
resin) mmolc·kg−1 35.0 18.0

Mg (Mg2+
resin) mmolc·kg−1 8.00 2.00

Potassium (K+
resin) mmolc kg−1 0.70 0.50

Aluminum (Al3+
KCl) mmolc·kg−1 0.00 0.00

Potential acidity (H+Al) mmolc·kg−1 29.0 18.0
S–Sulfate (S–SO4

2−
Ca(H2PO4)2) mg·kg−1 9.00 6.00

Boron (B Hot water) mg·kg−1 0.40 0.30
Copper (Cu DTPA-TEA

1) mg·kg−1 4.00 1.00
Iron (Fe DTPA-TEA) mg·kg−1 12.0 17.0
Manganese (Mn DTPA-TEA) mg·kg−1 13.2 2.20
Zinc (Zn DTPA–TEA) mg·kg−1 0.90 0.40
Base saturation (BS) % 60.0 53.3
Cation exchange capacity (CEC pH 7.0) mmolc·kg−1 72.7 38.5

1 DTPA–TEA—diethylenetriaminepentaacetic acid–triethanolamine.

2.3. Experimental Design and Treatments

The experimental design was a completely randomized block with four replicates
comprising four TM doses plus an absolute control for both soil textures. The treatments
involved TM application to the soil at the following five doses: 0, 55, 273, 709, and 2018 mg
kg−1 for clayey soil, and 0, 293, 410, 645, and 1260 mg kg−1 for sandy soil. For both
soils, doses were calculated respecting the Ca:Mg ratios (4:1, 3:1, 2:1, and 1:1). Maize
seeds (hybrid P3707VYH; DuPont Pioneer®, Johnston, IA, USA) for grain production
purposes were treated with fungicides (carboxin and thiram at 100 g + 100 g a.i. 100 kg−1

seeds) prior to planting. Nutrients were provided in the pots as needed for cultivation
(Table 3) [31]. Five seeds were sown per pot, and the seedlings were thinned to three plants
10 d after sowing.

Table 3. Fertilization performed in the greenhouse experiment in Botucatu, São Paulo, Brazil.

Nutrient Dose Unit Source

N
50 mg·kg−1 NH4NO3

150 1 mg·kg−1 NH4NO3
P 200 mg·kg−1 Ca(H2PO4)2

K
50 mg·kg−1 KCL

100 1 mg·kg−1 K2SO4
Zn 5.0 mg·kg−1 ZnSO4.7H2O
Mn 5.0 mg·kg−1 MnSO4.3H2O
Fe 2.5 mg·kg−1 FeSO4.2H2O
Cu 1.5 mg·kg−1 CuSO4.7H2O
B 0.5 mg·kg−1 H3BO3

1 Topdressing at the V3 maize phenological stage.

The available water capacity was corrected to −0.01 MPa (field capacity), which corre-
sponded to 110 and 129 g kg−1 for the clayey and sandy soils, respectively, corresponding
to 60%–100% field capacity. Four reference pots were weighed every four days, and ster-
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ile distilled water was supplied as needed to restore the water content to field capacity
(−0.01 MPa).

2.4. Soil–Plant Sampling and Analysis

At the R1 phenological stage [32] (silking), 20 leaves were collected from 20 different
plants of each plot and were milled in a Wiley-type mill coupled to a 1-mm sieve to
determine the Mg and Si contents [33]. The same milled leaf samples were also subjected
to sugar fractionation by high-performance liquid chromatography (HPLC) on a Shimadzu
model 10A chromatograph with an RID-10A refractive index detector and model LC-10AD
isocratic pump. Purified water was used as the mobile phase at a flow rate of 0.6 mL
min−1. Prior to HPLC, 1.0 g of leaf sample and 8.0 g of purified water were weighed and
incubated in a Marconi metabolic bath model MA095 at 60 ◦C for 40 min with constant
agitation. After subsequent centrifugation at 12,000 rpm, the supernatant was filtered
through a millipore polyvinylidene fluoride (PVDF) membrane with a porosity of 0.22 m
and diameter of 13.0 mm. The samples were then injected into the HPLC system, and the
resulting chromatograms were compared with those of defined concentrations of sucrose,
glucose, and fructose (reducing sugars). The concentrations of sucrose and reducing sugars
were calculated by comparing their areas with those of the standards, and then multiplying
by the dilution of each sample. The starch concentration in the leaves [34] was determined
using a spectrophotometer at 535 nm.

Simultaneous with the leaf analysis, two plants were collected for dry matter analysis.
The remaining plants were grown until the end of the cycle, and the weight of 100 grains
(W100G) was converted to values on a dry weight basis by correcting for 13% moisture.
The moisture was determined with an automatic measuring device (Gehaka G650i, Brazil).
The grain yield was expressed as grams per plant.

After harvest, a soil sample from each pot was collected, and the pH and Mg and
Si availability were analyzed. The soil pH was determined in calcium chloride (CaCl2)
suspensions at 0.01 mol L−1 (at a soil:solution ratio of 1:2.5). Mg availability was determined
using resin [35], and Si availability was determined by spectrophotometry after extraction
with 0.01 mol L−1 CaCl2 [36].

2.5. Statistical Analysis

All data were initially analyzed via the Shapiro–Wilk test [37] for normality and the
Levene’s test for homoscedasticity [38], both at p < 0.05; the UNIVARIATE procedure of
SAS version 9.4 was used for the analysis (SAS Institute, 2015). The data were also tested
for sphericity using the Bartlett test [39] via the FACTOR procedure of SAS version 9.4 [40].
The results indicated that all data were distributed normally (W ≥ 0.90) and exhibited no
sphericity. The data were then subjected to analysis of variance and polynomial regression
analysis to construct TM dose–response curves for the measured soybean and soil traits
using significant regression equations with the highest coefficients of determination. A
heatmap was built using the Pearson correlation coefficients (p ≤ 0.05) among variables,
and only significant correlations were shown. Principal component analysis (PCA) was
performed using the statistical software Canoco v. 4.5.

3. Results

As the TM dose increased, the Mg and Si concentrations in maize leaves also in-
creased (p ≤ 0.05) in both clayey and sandy soils (Figure 2). When maize was established
in clayey soil at the highest TM dose, the leaf Mg concentration reached 3.44 g kg−1

(Figure 2A), and the leaf Si concentration reached 15.42 g kg−1 (Figure 2B). In sandy soil,
at the highest TM dose, the leaf concentrations of Mg and Si reached 3.76 and 15.55 g kg−1

(Figure 2C,D), respectively.
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The concentrations of sugars in maize leaves also responded to the TM dose (Figure 3).
The reducing sugars increased (p ≤ 0.05) linearly up to the highest TM dose, regardless
of soil texture, reaching concentrations of 76.76 g kg−1 in clayey soil (Figure 3A) and
83.76 g kg−1 in sandy soil (Figure 3D). By contrast, the concentrations of sucrose and starch
decreased (p ≤ 0.05) proportionally with the increasing TM dose, reaching their lowest
values of 42.17 g kg−1 and 44.25 g kg−1, respectively, in clayey soil (Figure 3B,C) and 54.07
and 53.21 g kg−1, respectively, in sandy soil (Figure 3E,F) at the highest TM dose.

The yield parameters and grain yield of the maize increased (p ≤ 0.05) with increasing
the TM dose in both soils (Figure 4). The shoot dry matter reached 139 g plant−1 in clayey
soil (Figure 4A) and 138 g plant−1 in sandy soil (Figure 4E). In both soils, the mean number
of grains as a function of TM dose fit a quadratic equation (p ≤ 0.05). In clayey soil, the
maximum grain yield per ear (418 grains) of maize occurred at a maximum technical
efficiency dose (MTED) of 349 mg kg−1 (Figure 4B), whereas in sandy soil, the MTED was
490 mg kg−1 to produce a maximum of 421 grains per ear (Figure 4F). The maize W100G
and grain yield increased (p ≤ 0.05) linearly with the TM dose in both soils. At the highest
TM dose, the W100G was 28.04 g in clayey soil, and 28.93 g in sandy soil, while the grain
yield was 115.4 g plant−1 and 124 g plant−1 (Figure 4C,G,D,H, respectively).

Increasing the TM dose also altered the chemical attributes (p ≤ 0.05) of both soils
(Figure 5). The pH increased linearly with the TM dose in clayey soil, reaching pH 5.61 at the
highest dose (Figure 5A), whereas in sandy soil, the maximum pH was 5.75 at an MTED of
965 mg kg−1 (Figure 5D). Similar to the patterns of the leaf concentrations of Mg and Si, the
levels of these elements in soil increased linearly with the TM dose. At the highest TM dose,
the available Mg2+ and Si levels reached 20.98 mmolc kg−1 and 14.5 mg kg−1, respectively,
in clayey soil (Figure 5B,C), and 8.95 mmolc kg−1 and 8.56 mg kg−1, respectively, in sandy
soil (Figure 5E,F).
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Pearson’s correlation analysis revealed different patterns of significant correlations
(p ≤ 0.05) of the parameters between clayey and sandy soils (Figure 6). For maize estab-
lished in clayey soil, significant correlations were observed among all parameters, except
the number of grains per ear (Figure 6A). Only sucrose and starch were negatively corre-
lated with the other parameters, but were positively correlated with each other. However,
in sandy soil, soil available Si correlated significantly only with reducing sugar and avail-
able Mg2+ (Figure 6B), and Mg2+ did not correlate with shoot dry matter and W100G.
Interestingly, in both soils, the grain yield was significantly correlated with W100G, but not
the number of grains per ear.
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PCA clearly segregated the TM doses according to the general similarity of effects on
all of the evaluated parameters. In clayey soil, both PCA and PERMANOVA indicated a
greater similarity between the two lowest TM doses (control and 55 mg kg−1) and between
the two subsequent doses (273 and 709 mg kg−1). The highest dose (2018 mg kg−1) showed
unique behavior and was superior to the other doses, with the best responses of maize and
soil parameters (Figure 6C). Similarly, in sandy soil, PCA showed a gradient of responses to
TM dose (Figure 6D). PERMANOVA segregated the TM doses into three groups according
to the general similarity of their effects on the following parameters: the control treatments
of 293, 410, and 645 mg kg−1, and the highest TM dose, 1260 mg kg−1.
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4. Discussion

The vast majority of studies of the reuse of industrial waste are limited to examining
the petrography and mineralogy of these by-products and/or their potential use as nutrient
remineralizers in soil [13,41–43]. By contrast, the present study investigated the direct
impacts of supplying a by-product of Ni ore mining (TM) as a clean and sustainable
fertilizer capable of improving plant metabolism and, consequently, maize grain yield.

Agricultural repurposing of TM as a Si–Mg fertilizer efficiently increased the levels
of these elements in both the soil and maize leaves, particularly at the highest dose, as
confirmed by PCA. Mg is considered a “forgotten” element in agriculture [44,45], and
almost all Mg applied for agriculture comes from liming [46–48]. Thus, by-products
such as TM provide a sustainable alternative for supplying Mg for cropping systems [12].
Supplying Mg to maize may improve crop growth and yield because of the important roles
of Mg in plant metabolism, especially in photosynthesis and the activation of numerous
key chloroplast enzymes [22,44,49,50].

Unfortunately, the impact of supplying Si to crops has received little attention [51].
Si is an important nutrient for plant growth and is the only nutrient that is not harmful
when over-absorbed by plants [43]. Si relieves abiotic stress [52] by forming physical
barriers through deposition in the cell wall of the plant, and may also activate plant defense
enzymes to reduce the production of reactive oxygen species (ROS) [53], in addition to
increasing crop productivity and quality [54,55]. The benefits of Si for crops are most
evident in accumulating plants, such as maize, rice, wheat, barley, and pumpkin [53,56–58].
Si application is particularly beneficial for these crops, as the active uptake of Si occurs
via transporters located on the plasma membrane [59,60]. TM could be an important
alternative source of silicate for production systems, especially in acidic soils, which are
typically Si-deficient [61].

Thermomagnesium also has a high neutralizing power for soil acidity [12], as it is
composed of 51% SiO3

2− and 28% MgO, which have respective neutralization capacities
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relative to CaCO3 of 1.0- and 2.48-fold, respectively [62]. Moreover, TM is more soluble than
lime and thus may mitigate soil acidity more efficiently, in addition to providing Mg and
Si to the soil [63], as observed in the soil and maize leaf analyses. Soil pH is an important
determinant of Mg and Si availability in soil. As the TM level increased, soil pH increased
linearly in clayey soil, but according to a quadratic model in sandy soil. The latter behavior
can be explained by the low buffering power of sandy soil; as the pH increases, the effect
of the acidity-correcting agent decreases [64]. Because of the low buffering power of sandy
soils [65], caution is required in order to avoid excessive applications of soil amendments
that drastically change the soil pH, such as carbonate- and silicate-based amendments.
Increasing the soil pH above the range considered suitable for most crops (pH (H2O)
5.5–6.5) reduces the availability of some nutrients, especially cationic micronutrients, for
plant uptake as result of hydroxylation and subsequent precipitation [48,66–68]. As clayey
soil naturally has a higher colloidal cation retention capacity, the Mg and Si concentrations
were higher in the clayey soil than in the sandy soil.

The improvements in soil pH and Si–Mg availability and in Si–Mg plant nutrition also
enhanced carbohydrate metabolism, mainly at higher doses, as supported by PCA. Like
potassium (K), Mg plays prominent roles in processes that are strongly associated with the
photosynthesis and translocation of photosynthates [20,69]. Plant growth and metabolism
are dependent on the translocation of carbohydrates from source-to-sink organs [20,45].
Sucrose is the main form of carbohydrate transported in plants, via phloem, and is greatly
affected by Mg levels [22,44]. Mg scarcity reduces the efficiency of long-distance carbon
transport [17], resulting in the accumulation of high levels of carbohydrates in leaves. The
accumulation of carbohydrates leads to an increase in the production of reactive oxygen
species (ROS) in chloroplasts, which limits photosynthetic efficiency through a negative
feedback effect, further depriving sink organs of carbohydrates [17,44].

The dynamics among the concentrations of reducing sugars, sucrose and starch, in
the leaves of the plant change depending on the availability of intracellular Mg [70]. In
the presence of light, sucrose is transported from the leaf’s cytosol to vascular tissues, and
starch accumulates in the chloroplasts; at night, this starch serves as a carbon skeleton
source for sucrose synthesis [71]. Reducing sugars are produced via carbon fixation, which
can be increased by supplying Mg [70]. Our results suggest that along with the increase
in the partitioning of photoassimilates, the photosynthetic activity and the production of
reducing sugars increased. The enhanced partitioning of more complex sugars (sucrose
and starch) to vascular organs reduces the concentrations of these sugars in the source
leaves [17]. Our findings indicate that the translocation of sugars to vascular organs occurs
efficiently, and that the plant’s photosynthetic metabolism quickly replenishes these sugars
to maintain high levels of reducing sugars in the cytosol. Similarly, the starch formed in
the chloroplasts reduces the translocation of photosynthates because of their consumption
as a source of carbon skeletons during respiration [22,71].

The observations of the vegetative and reproductive development of maize plants
corroborated the results of the nutritional and carbohydrate analyses, with better results
at the highest TM dose. This conclusion was also supported by PCA. Energy reserves
are essential for cell multiplication by the plant. Thus, Si–Mg supplementation of maize
ensures greater efficiency of the photosynthetic metabolism. Magnesium acts directly in
these processes, starting as a component of the chlorophyll molecule, through the activation
of Rubisco in the process of carboxylation, and finally the partitioning of photoassimilates
by the plant organs [17,22,45]. The plant converts this energy into dry matter accumulation
during the vegetative stage and in grain filling in the reproductive stage. The number
of grains per ear, W100G, and grain yield per plant were strongly affected by the TM
application. A low response to the highest TM doses occurred for the number of grains per
ear. The increase in these values may be related to the greater transport of photoassimilates
to the ear during grain formation; however, the grain weight seemed to be the most
determining factor of the grain yield. In both soil textures, the correlation analysis showed
a strong correlation of grain yield with W100G, which is determined by the assimilation
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transport rate during the grain filling period [72,73]. The direct translocation of assimilates
and the redistribution of the reserve pool of assimilates contribute to grain filling [22].
Starch is the most abundant component of cereal grains, and a reduced carbohydrate
content or low translocation of this carbohydrate to the reproductive organs will reduce
the grain weight [74]. Thus, reduced carbohydrate translocation to grains as a result
of a low Mg supply will directly reduce the grain yield. In addition to the benefits of
TM as a result of the supply of Mg, the supply of Si by TM significantly enhances plant
productive responses [53,56]. Si substantially improves the foliar architecture of plants,
especially monocotyledons [59], favoring light interception, with a consequent increase in
photosynthesis [56].

5. Conclusions

Our study confirmed that TM is yet another suitable and clean alternative fertilizer
for agricultural systems that can improve soil pH and actively provide Si and Mg to soil
and plants, regardless of soil texture, especially when applied at larger doses. Maize plants
established in soils amended with TM were more metabolically active, redistributed their
photosynthates appropriately among plant organs, and consequently reached a higher
grain yield potential. Given these promising results, the application of TM as a new form
of fertilizer should be considered for a variety of crops, soil conditions, and agricultural
systems worldwide in order to help solve problems related to the disposal of by-products
of mining, while simultaneously decreasing the consumption of highly soluble fertilizers.
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