Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Weather Conditions
2.2. Cattle Slurry Properties and Application
2.3. Soil Sampling and Chemical Analysis
2.4. Sequencing
2.5. Statistics and Data Visualization
3. Results
3.1. Chemical Properties
3.2. Bacterial Community Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burzyńska, I. Monitoring of Selected Fertilizer Nutrients in Surface Waters and Soils of Agricultural Land in the River Valley in Central Poland. J. Water Land Dev. 2019, 43, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, C.A.G.; Sommer, S.G.; Bochtis, D.; Rotz, A. Technologies and Logistics for Handling, Transport and Distribution of Animal Manures. In Animal Manure Recycling; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 211–236. ISBN 978-1-118-67667-7. [Google Scholar]
- Kiełbasa, B.; Pietrzak, S.; Ulén, B.; Drangert, J.-O.; Tonderski, K. Sustainable Agriculture: The Study on Farmers’ Perception and Practices Regarding Nutrient Management and Limiting Losses. J. Water Land Dev. 2018, 36, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Ten Hoeve, M.; Nyord, T.; Peters, G.M.; Hutchings, N.J.; Jensen, L.S.; Bruun, S. A Life Cycle Perspective of Slurry Acidification Strategies under Different Nitrogen Regulations. J. Clean. Prod. 2016, 127, 591–599. [Google Scholar] [CrossRef]
- Ritz, C.W.; Fairchild, B.D.; Lacy, M.P. Implications of Ammonia Production and Emissions from Commercial Poultry Facilities: A Review. J. Appl. Poult. Res. 2004, 13, 684–692. [Google Scholar] [CrossRef]
- Dalgaard, T.; Hansen, B.; Hasler, B.; Hertel, O.; Hutchings, N.J.; Jacobsen, B.H.; Jensen, L.S.; Kronvang, B.; Olesen, J.E.; Schjørring, J.K.; et al. Policies for Agricultural Nitrogen Management—Trends, Challenges and Prospects for Improved Efficiency in Denmark. Environ. Res. Lett. 2014, 9, 115002. [Google Scholar] [CrossRef]
- Fenilli, T.A.B.; Reichardt, K.; Trivelin, P.C.O.; Favarin, J.L. Volatilization of Ammonia Derived from Fertilizer and Its Reabsorption by Coffee Plants. Commun. Soil Sci. Plant Anal. 2007, 38, 1741–1751. [Google Scholar] [CrossRef]
- Fangueiro, D.; Ribeiro, H.; Coutinho, J.; Cardenas, L.; Trindade, H.; Cunha-Queda, C.; Vasconcelos, E.; Cabral, F. Nitrogen Mineralization and CO2 and N2O Emissions in a Sandy Soil Amended with Original or Acidified Pig Slurries or with the Relative Fractions. Biol. Fertil. Soils 2010, 46, 383–391. [Google Scholar] [CrossRef]
- Rodrigues, J.; Alvarenga, P.; Silva, A.C.; Brito, L.; Tavares, J.; Fangueiro, D. Animal Slurry Sanitization through PH Adjustment: Process Optimization and Impact on Slurry Characteristics. Agronomy 2021, 11, 517. [Google Scholar] [CrossRef]
- Wardal, W.; Kieronczyk, M.; Barwicki, J.; Borek, K.; Mazur, K.; Konieczna, A. Legal Conditions for the Use of Sulfuric Acid in Liquid Manure to Reduce Nitrogen Losses [Uwarunkowania Prawne Stosowania Dodatku Kwasu Siarkowego Do Gnojowicy w Celu Zmniejszenia Strat Azotu]. Przem. Chem. 2019, 98, 1179–1183. [Google Scholar] [CrossRef]
- Berg, W.; Brunsch, R.; Pazsiczki, I. Greenhouse Gas Emissions from Covered Slurry Compared with Uncovered during Storage. Agric. Ecosyst. Environ. 2006, 112, 129–134. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of Animal Slurry—A Review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Ottosen, L.; Poulsen, H.; Nielsen, D.; Finster, K.; Nielsen, L.P.; Revsbech, N. Observations on Microbial Activity in Acidified Pig Slurry. Biosyst. Eng. 2009, 102, 291–297. [Google Scholar] [CrossRef]
- Halli, H.M.; Angadi, S.; Kumar, A.; Govindasamy, P.; Madar, R.; El-Ansary, D.O.; Rashwan, M.A.; Abdelmohsen, S.A.M.; Abdelbacki, A.M.M.; Mahmoud, E.A.; et al. Influence of Planting and Irrigation Levels as Physical Methods on Maize Root Morphological Traits, Grain Yield and Water Productivity in Semi-Arid Region. Agronomy 2021, 11, 294. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 16 March 2021).
- Konieczna, A.; Roman, K.; Roman, M.; Śliwiński, D.; Roman, M. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms. Energies 2021, 14, 170. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Philippot, L. Insights into the Resistance and Resilience of the Soil Microbial Community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabasz, W.; Pikulick, A. Ochrona Biosfery i Bioróżnorodności. Inż. Ekol. 2012, Nr 30, 7–17. [Google Scholar]
- Küçük, Ç.; Tekgül, Y.T. Effects of Cotton Stalk, Maize Stalk and Almond Bark on Some Soil Microbial Activities. Arch. Environ. Prot. 2017, 43, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Stark, C.H.; Condron, L.M.; O’Callaghan, M.; Stewart, A.; Di, H.J. Differences in Soil Enzyme Activities, Microbial Community Structure and Short-Term Nitrogen Mineralisation Resulting from Farm Management History and Organic Matter Amendments. Soil Biol. Biochem. 2008, 40, 1352–1363. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil Microbial Biomass and Activity under Different Agricultural Management Systems in a Semiarid Mediterranean Agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Cederlund, H.; Wessén, E.; Enwall, K.; Jones, C.M.; Juhanson, J.; Pell, M.; Philippot, L.; Hallin, S. Soil Carbon Quality and Nitrogen Fertilization Structure Bacterial Communities with Predictable Responses of Major Bacterial Phyla. Appl. Soil Ecol. 2014, 84, 62–68. [Google Scholar] [CrossRef]
- Barth, G.; Otto, R.; Almeida, R.F.; Cardoso, E.J.B.N.; Cantarella, H.; Vitti, G.C. Conversion of Ammonium to Nitrate and Abundance of Ammonium-Oxidizing-Microorganism in Tropical Soils with Nitrification Inhibitor. Sci. Agric. 2020, 77. [Google Scholar] [CrossRef]
- Kumar, A.; Medhi, K.; Fagodiya, R.K.; Subrahmanyam, G.; Mondal, R.; Raja, P.; Malyan, S.K.; Gupta, D.K.; Gupta, C.K.; Pathak, H. Molecular and Ecological Perspectives of Nitrous Oxide Producing Microbial Communities in Agro-Ecosystems. Rev. Environ. Sci. Biotechnol. 2020, 19, 717–750. [Google Scholar] [CrossRef]
- Edesi, L.; Talve, T.; Akk, E.; Võsa, T.; Saue, T.; Loide, V.; Vettik, R.; Plakk, T.; Tamm, K. Effects of Acidified Pig Slurry Application on Soil Chemical and Microbiological Properties under Field Trial Conditions. Soil Tillage Res. 2020, 202, 104650. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108369-7. [Google Scholar]
- Pedersen, I.F.; Rubæk, G.H.; Sørensen, P. Cattle Slurry Acidification and Application Method Can Improve Initial Phosphorus Availability for Maize. Plant Soil 2017, 414, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- ISO Soil Quality–Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis) (ISO 10694: 2002); International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- Houba, V.J.; van der Lee, J.J.; Novozamsky, I.; Walinga, I. Soil and plant analysis. In Soil Analysis Procedures; Agricultural University, Ed.; Agricultural University: Wageningen, The Netherlands, 1988; pp. 154–158. [Google Scholar]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- De Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research; National Engineering University: Lima, Peru, 2020. [Google Scholar]
- Fangueiro, D.; Surgy, S.; Fraga, I.; Monteiro, F.G.; Cabral, F.; Coutinho, J. Acidification of Animal Slurry Affects the Nitrogen Dynamics after Soil Application. Geoderma 2016, 281, 30–38. [Google Scholar] [CrossRef]
- Das, S.; Jeong, S.T.; Das, S.; Kim, P.J. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front. Microbiol. 2017, 8, 1702. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct Soil Microbial Diversity under Long-Term Organic and Conventional Farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, M.; Widmer, F. Community Structure Analyses Are More Sensitive to Differences in Soil Bacterial Communities than Anonymous Diversity Indices. Appl. Environ. Microbiol. 2006, 72, 7804–7812. [Google Scholar] [CrossRef] [Green Version]
- Nacke, H.; Thürmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; Schöning, I.; Schrumpf, M.; Daniel, R. Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. PLoS ONE 2011, 6, e17000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Zhang, X.-X.; Guo, X.; Wang, D.; Chu, H. Bacterial Diversity in Soils Subjected to Long-Term Chemical Fertilization Can Be More Stably Maintained with the Addition of Livestock Manure than Wheat Straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Van der Bom, F.; Nunes, I.; Raymond, N.S.; Hansen, V.; Bonnichsen, L.; Magid, J.; Nybroe, O.; Jensen, L.S. Long-Term Fertilisation Form, Level and Duration Affect the Diversity, Structure and Functioning of Soil Microbial Communities in the Field. Soil Biol. Biochem. 2018, 122, 91–103. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Majchrzak, L.; Borowiak, K.; Wolna-Maruwka, A.; Waraczewska, Z.; Budka, A.; Gaj, R. The Influence of Tillage and Cover Cropping on Soil Microbial Parameters and Spring Wheat Physiology. Agronomy 2020, 10, 200. [Google Scholar] [CrossRef] [Green Version]
- Eo, J.; Park, K.-C. Long-Term Effects of Imbalanced Fertilization on the Composition and Diversity of Soil Bacterial Community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, L.; Clark, I.M.; Xue, K.; Yang, Y.; Nostrand, J.D.V.; Deng, Y.; He, Z.; McGrath, S.; Storkey, J.; et al. Over 150 Years of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity. mBio 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ujvári, G.; Borsodi, A.K.; Megyes, M.; Mucsi, M.; Szili-Kovács, T.; Szabó, A.; Szalai, Z.; Jakab, G.; Márialigeti, K. Comparison of Soil Bacterial Communities from Juvenile Maize Plants of a Long-Term Monoculture and a Natural Grassland. Agronomy 2020, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.; Di Lonardo, D.P.; Bodelier, P.L.E. Revisiting Life Strategy Concepts in Environmental Microbial Ecology. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisseler, D.; Scow, K.M. Long-Term Effects of Mineral Fertilizers on Soil Microorganisms—A Review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-Term Effects of Organic and Inorganic Fertilizers on Soil Microbial Community Structure and Function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Li, G.; Wu, C. Effects of Short-Term Set-Aside Management Practices on Soil Microorganism and Enzyme Activity in China. Int. J. Environ. Res. Public Health 2017, 14, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does Organic Farming Benefit Biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Stark, C.; Condron, L.M.; Stewart, A.; Di, H.J.; O’Callaghan, M. Influence of Organic and Mineral Amendments on Microbial Soil Properties and Processes. Appl. Soil Ecol. 2007, 35, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.A.; Fritschi, F.B.; Horwath, W.R.; Scow, K.M.; Rains, W.D.; Travis, R.L. Comparisons of Soil Microbial Communities Influenced by Soil Texture, Nitrogen Fertility, and Rotations. Soil Sci. 2011, 176, 487–494. [Google Scholar] [CrossRef]
Treatments | pH | Dry Matter Content (%) | TN (kg/m3) | N-NH4 (kg/m3) | TOC in Dry Matter (%) |
---|---|---|---|---|---|
2017 | |||||
Raw slurry | 6.3 | 6.8 | 4.0 | 2.2 | 40 |
Acidified slurry | 5.4 | 6.6 | 3.8 | 1.9 | 38 |
2018 | |||||
Raw slurry | 6.7 | 7.4 | 4.1 | 1.8 | 41 |
Acidified slurry | 5.6 | 7.7 | 4.2 | 2.0 | 32 |
NH4 (mg kg−1) | NO3 (mg kg−1) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |||||||
Treatment | I | II | I | II | I | II | I | II | I | II | I | II |
RS84 | 4.56 a | 3.99 a | 6.16 a | 5.74 a | 17.64 a | 7.20 ab | 18.62 a | 7.09 ab | 6.37 a | 6.33 a | 6.82 a | 6.39 a |
AS84 | 4.51 a | 3.97 a | 6.61 a | 5.96 a | 13.36 ab | 6.79 ab | 15.38 ab | 10.39 a | 6.57 a | 6.53 a | 6.83 a | 6.74 a |
RS105 | 4.98 a | 3.95 a | 6.57 a | 5.88 a | 16.62 a | 7.75 a | 20.06 a | 9.22 ab | 6.44 a | 6.74 a | 6.61 a | 6.62 a |
AS105 | 4.47 a | 4.06 a | 6.81 a | 6.07 a | 12.68 ab | 6.38 ab | 12.96 bc | 7.35 ab | 6.66 a | 6.82 a | 6.44 a | 6.35 a |
0 | 4.07 a | 4.01 a | 3.89 b | 3.79 b | 8.77 b | 5.74 b | 8.84 c | 5.80 b | 6.25 a | 6.67 a | 6.74 a | 6.52 a |
Pr(>F) | ns | ns | <0.001 | <0.001 | <0.001 | 0.057 | <0.001 | 0.018 | ns | ns | ns | ns |
Sample | Shannon Index * | Simpson Index * | OTUs | Reads | Coverage |
---|---|---|---|---|---|
0 | 7.42 | 0.002321 | 13,243 | 157,900 | 94.58% |
RS84 | 7.43 | 0.002406 | 13,669 | 161,045 | 94.33% |
RS105 | 7.28 | 0.002863 | 12,169 | 133,044 | 94.77% |
AS84 | 7.19 | 0.004599 | 12,549 | 138,232 | 94.65% |
AS105 | 7.18 | 0.004130 | 12,240 | 143,409 | 94.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzchowski, P.S.; Dobrzyński, J.; Mazur, K.; Kierończyk, M.; Wardal, W.J.; Sakowski, T.; Barszczewski, J. Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation. Agronomy 2021, 11, 601. https://doi.org/10.3390/agronomy11030601
Wierzchowski PS, Dobrzyński J, Mazur K, Kierończyk M, Wardal WJ, Sakowski T, Barszczewski J. Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation. Agronomy. 2021; 11(3):601. https://doi.org/10.3390/agronomy11030601
Chicago/Turabian StyleWierzchowski, Paweł Stanisław, Jakub Dobrzyński, Kamila Mazur, Marek Kierończyk, Witold Jan Wardal, Tomasz Sakowski, and Jerzy Barszczewski. 2021. "Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation" Agronomy 11, no. 3: 601. https://doi.org/10.3390/agronomy11030601
APA StyleWierzchowski, P. S., Dobrzyński, J., Mazur, K., Kierończyk, M., Wardal, W. J., Sakowski, T., & Barszczewski, J. (2021). Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation. Agronomy, 11(3), 601. https://doi.org/10.3390/agronomy11030601