High-Resolution Drone-Acquired RGB Imagery to Estimate Spatial Grape Quality Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Study Area
2.3. Field Sampling and Analytical Testing
2.4. Drone Image Acquisition
2.5. Orthoimage
2.6. Orthoimage Transformation to Reflectances
2.7. Reflectance Values
2.8. Vegetation Indices
2.9. Statistical Analysis
3. Results
3.1. Berry Characteristices
3.2. Correlation Analysis
3.3. Regresion Analysis
3.4. Spatial Variability Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV–International Organization of Vine and Wine. Statistics; OIV: Paris, France, 2014. [Google Scholar]
- Elias, F. Clasificación Agroclimática de España Basada en la Clasificación Ecológica de Papadakis; Instituto Nacional de Meteorologıa, Servicio de Publicaciones: Madrid, Spain, 1973; p. 145. [Google Scholar]
- Sotés, V. El Terroir Único. In Proceedings of the II Congreso Internacional Ribera del Duero, Burgos, Spain, 26–28 March 2008. [Google Scholar]
- Chen, Y.; Barak, P. Iron Nutrition of Plants in Calcareous Soils. Adv. Agron. 1982, 35, 217–240. [Google Scholar]
- Ribéreau-Gayon, P. The chemistry of red wine color. Chem. Winemak. 1974, 137, 50–87. [Google Scholar]
- Lamb, D.W.; Weedon, M.M.; Bramley, R.G.V. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Aust. J. Grape Wine Res. 2004, 10, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Ingram, B.; Cortázar-Atauri, I.G.; Tisseyre, B. Temporal stability of within-field variability of total soluble solids of grapevine under semi-arid conditions: A first step towards a spatial model. Oeno One 2018, 52, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Arnó, J.; Martínez-Casasnovas, J.A.; Dasi, M.R.; Rosell, J.R. Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Bramley, R.G.V.; Proffitt, A.P.B.; Hinze, C.J.; Pearse, B.; Hamilton, R.P. Generating benefits from precision viticulture through selective harvesting. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; pp. 891–898. [Google Scholar]
- Proffitt, T.; Malcolm, A. Zonal vineyard management through airborne remote sensing. Grapegrow. Winemak. 2005, 6, 22–27. [Google Scholar]
- Santesteban, L.G.; Guillaume, S.; Royo, J.B.; Tisseyre, B. Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precis. Agric. 2013, 14, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.O.; Petrie, P.R. Predicting the time course of grape ripening. Aust. J. Grape Wine Res. 2012, 8, 48–56. [Google Scholar] [CrossRef]
- Matese, A.; di Gennaro, S.F. Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.; Bramley, R.G.V. Managing and monitoring spatial variability in vineyard productivity. Nat. Resour. Manag. 2001, 4, 25–30. [Google Scholar]
- Rouse, W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ETRS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; Volume I, pp. 309–317. [Google Scholar]
- Dobrowski, S.Z.; Ustin, S.L.; Wolpert, J.A. Remote estimation of vine canopy density in vertically shoot-positioned vineyards: Determining optimal vegetation indices. Aust. J. Grape Wine Res. 2002, 8, 117–125. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A comparison between multispectral aerial and satellite imagery in precision viticulture. Precis. Agric. 2018, 19, 195–217. [Google Scholar] [CrossRef]
- Kandylakis, Z.; Karantzalos, K. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 919–925. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Ferrer, M.; Echeverría, G.; Pereyra, G.; Gonzalez-Neves, G.; Pan, D.; Mirás-Avalos, J.M. Mapping vineyard vigor using airborne remote sensing: Relations with yield, berry composition and sanitary status under humid climate conditions. Precis. Agric. 2019, 21, 178–197. [Google Scholar] [CrossRef]
- Fiorillo, E.; Crisci, A.; de Filippis, T.; di Gennaro, S.F.; di Blasi, S.; Matese, A.; Primicerio, J.; Vaccari, F.P.; Genesio, L. Airborne high-resolution images for grape classification: Changes in correlation between technological and late maturity in a Sangiovese vineyard in Central Italy. Aust. J. Grape Wine Res. 2012, 18, 80–90. [Google Scholar] [CrossRef]
- Bonilla, I.; de Toda, F.M.; Martínez-Casasnovas, J.A. Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relationships in cv. Tempranillo. Span. J. Agric. Res. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Ledderhof, D.; Brown, R.; Reynolds, A.; Jollineau, M. Using remote sensing to understand Pinot noir vineyard variability in Ontario. Can. J. Plant. Sci. 2016, 96, 89–108. [Google Scholar] [CrossRef]
- Matese, A.; di Gennaro, S.F.; Santesteban, L.G. Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data. A case of study for precision viticulture. Comput. Electron. Agric. 2019, 162, 931–940. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor approach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN) proximal sensing. Sci. Hortic. 2017, 221, 83–87. [Google Scholar] [CrossRef]
- Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; Duthoit, S. On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sens. 2019, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Brenes, F.M.; López-Granados, F.; Torres-Sánchez, J.; Peña, J.M.; Ramírez, P.; Castillejo-González, I.L.; de Castro, A.I. Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management. PLoS ONE 2019, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F.A. Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogato, A.; Pagay, V.; Marinello, F.; Meggio, F.; Grace, P.; de Antoni Migliorati, M. Assessing the Feasibility of Using Sentinel-2 Imagery to Quantify the Impact of Heatwaves on Irrigated Vineyards. Remote Sens. 2019, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, S.F.; Dainelli, R.; Palliotti, A.; Toscano, P.; Matese, A. Sentinel-2 Validation for Spatial Variability Assessment in Overhead Trellis System Viticulture Versus UAV and Agronomic Data. Remote Sens. 2019, 11, 2573. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J.J. Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sens. 2020, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Andújar, D.; Moreno, H.; Bengochea-Guevara, J.M.; de Castro, A.; Ribeiro, A. Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Comput. Electron. Agric. 2019, 157, 351–358. [Google Scholar] [CrossRef]
- Jurado, J.M.; Pádua, L.; Feito, F.R.; Sousa, J.J. Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Remote Sens. 2020, 12, 3043. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Combination of proximal and remote sensing methods for mapping water stress conditions of grapevine. Acta Hortic. 2018, 1197, 69–76. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W. A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- García-Fernández, M.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. Calibración Radiométrica de Cámaras Compactas mediante Espectro Radiómetro de Campo. In Teledetección. Nuevas Plataformas y Sensores Aplicados a la Gestión del Agua, la Agricultura y el Medio Ambiente, 1st ed.; Universitat Politècnica de València: València, Spain, 2017; pp. 481–484. [Google Scholar]
- Ruiz, C.P. Elementos de Teledetección, 1st ed.; RA-MA: Madrid, Spain, 1995; p. 313. [Google Scholar]
- Kumar, J.; Vashisth, A.; Sehgal, V.K.; Gupta, V.K. Assessment of Aphid Infestation in Mustard by Hyperspectral Remote Sensing. J. Indian Soc. Remote Sens. 2013, 41, 83–90. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; von Bargen, K.; Mortensen, D.A. Shape features for identifying young weeds using image analysis. Trans. ASAE 1995, 28, 271–281. [Google Scholar] [CrossRef]
- Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R., Jr.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E., III; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Kumar, L.; Schmidt, K.; Dury, S.; Skidmore, A. Imaging spectrometry and vegetation science. In Imaging Spectrometry: Basic Principles and Prospective Applications; Springer: Dordrecht, The Netherlands, 2001; pp. 111–155. [Google Scholar]
- Haboudane, D.; Tremblay, N.; Miller, J. Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived From Hyperspectral Data. Geosci. Remote Sens. IEEE Trans. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Martín, P.; Zarco-Tejada, P.; González, M.R.; Berjón, A. Using Hyperspectral Remote Sensing to Map Grape Quality in “Tempranillo” Vineyards Affected by Iron Deficiency Chlorosis. Vitis 2007, 46, 7–14. [Google Scholar]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, 11402. [Google Scholar] [CrossRef] [Green Version]
Acronym | Variable | Units | Instrumentation |
---|---|---|---|
BW | 100-berry weights | (kg·10−3) | Precision scale |
MA | Malic acid | (g/L) | OENO FOSS |
TaA | Tartaric acid | (g/L) | OENO FOSS |
AAN | Alpha amino nitrogen | (mg/L) | OENO FOSS |
EAN | Easily assimilated nitrogen | (mg/L) | OENO FOSS |
GA | Gluconic acid | (g/L) | OENO FOSS |
TSS | Total soluble solids | (°Bx) | OENO FOSS |
ToA | Total acid | (g/L) | OENO FOSS |
pH | pH | (pH) | OENO FOSS |
PSC | Probable stable color | CROMOENO | |
PRI | Phenolic ripeness index | CROMOENO | |
TPI | Total phenolic index | CROMOENO | |
PCAF | Probable color by end of alcoholic fermentation | CROMOENO | |
ANT | Anthocyanins | CROMOENO | |
TAN | Tannins | CROMOENO |
Acronym | Indices | Definition | Author and Year |
---|---|---|---|
GR | Simple red–green ratio | [42] | |
GRVI | Green–red vegetation index | [43] | |
RGBVI | RGB-based vegetation index | [21] | |
MGRVI | Modified green–red vegetation index | [21] | |
VARI | Visible atmospherically resistant index | [44] | |
BGI2 | Simple blue–green ratio | [18] | |
VEG | Vegetativen | [46] | |
GLI | Green leaf | [47] | |
ExG | Excess green index | [48] | |
NGBDI | Normalized green-blue difference index | [49] | |
RGBVI2 | RGB-based vegetation index 2 | Proposed | |
RGBVI3 | RGB-based vegetation index 3 | Proposed |
Z | R | BW | MA | TaA | AAN | EAN | GA | SST | ToA | pH | PSC | PRI | TPI | PCAF | ANT | TAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 112.0 | 2.3 | 9.3 | 342.7 | 252.1 | 0.2 | 20.7 | 3.93 | 3.80 | 7.30 | 1.63 | 43.07 | 10.12 | 1712.0 | 1167.8 |
1 | 2 | 107.0 | 2.3 | 9.5 | 332.8 | 239.3 | 0.2 | 20.9 | 3.92 | 3.80 | 7.20 | 1.66 | 43.12 | 10.57 | 1753.5 | 1221.0 |
1 | 3 | 104.0 | 2.4 | 9.8 | 345.7 | 254.2 | 0.5 | 21.0 | 3.81 | 3.95 | 7.30 | 1.62 | 42.75 | 10.95 | 1780.4 | 1152.7 |
2 | 1 | 120.0 | 2.0 | 9.1 | 237.2 | 214.2 | 0.3 | 20.6 | 3.94 | 3.70 | 7.01 | 1.72 | 42.12 | 10.55 | 1612.4 | 1122.3 |
2 | 2 | 115.0 | 2.2 | 9.0 | 241.2 | 205.7 | 0.2 | 20.9 | 3.93 | 3.80 | 6.97 | 1.70 | 42.20 | 10.63 | 1553.6 | 1152.7 |
2 | 3 | 112.0 | 2.0 | 8.9 | 235.3 | 203.6 | 0.2 | 20.9 | 3.94 | 3.80 | 6.94 | 1.75 | 42.16 | 10.58 | 1624.4 | 1138.3 |
3 | 1 | 121.0 | 2.2 | 9.0 | 263.4 | 219.8 | 0.2 | 20.6 | 3.87 | 3.70 | 7.40 | 1.68 | 42.12 | 11.08 | 1733.2 | 1118.9 |
3 | 2 | 113.0 | 2.1 | 8.9 | 257.1 | 227.7 | 0.3 | 20.7 | 3.97 | 3.70 | 7.30 | 1.72 | 44.00 | 11.03 | 1712.0 | 1152.3 |
3 | 3 | 112.0 | 2.1 | 9.1 | 261.2 | 221.9 | 0.8 | 20.8 | 3.99 | 3.80 | 7.40 | 1.70 | 43.82 | 11.06 | 1730.0 | 1178.8 |
4 | 1 | 121.0 | 1.9 | 9.0 | 219.2 | 205.6 | 0.5 | 20.7 | 3.94 | 3.75 | 7.50 | 1.81 | 45.70 | 11.06 | 1722.0 | 1218.5 |
4 | 2 | 116.0 | 1.8 | 8.9 | 220.3 | 212.5 | 0.6 | 21.2 | 4.02 | 3.80 | 7.35 | 1.73 | 45.32 | 11.08 | 1635.2 | 1135.8 |
4 | 3 | 130.0 | 1.9 | 9.0 | 215.6 | 206.5 | 0.6 | 21.3 | 4.01 | 3.75 | 7.42 | 1.82 | 45.26 | 11.09 | 1672.4 | 1213.9 |
GR | GRVI | RGBVI | MGRVI | VARI | BGI2 | VEG | GLI | ExG | NGBDI | RGBVI2 | RGBVI3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BW | −0.76 ** | 0.76 ** | 0.52 | 0.76 ** | 0.76 ** | 0.56 | 0.71 ** | 0.72 ** | 0.21 | −0.12 | 0.77 ** | 0.72 ** |
MA | 0.66 * | −0.66 * | −0.33 | −0.66 ** | −0.67 * | −0.59 * | −0.54 | −0.55 | 0.00 | 0.25 | −0.65 * | −0.67 * |
TaA | 0.50 | −0.50 | −0.23 | −0.50 | −0.50 | −0.45 | −0.39 | −0.41 | 0.04 | 0.21 | −0.49 | −0.51 |
AAN | 0.58 * | −0.59 * | −0.43 | −0.59 * | −0.59 * | −0.42 | −0.56 | −0.56 | −0.09 | 0.07 | −0.58 * | −0.55 |
EAN | 0.46 | −0.46 | −0.41 | −0.46 | −0.46 | −0.28 | −0.48 | −0.48 | −0.12 | −0.04 | −0.46 | −0.41 |
GA | −0.05 | 0.07 | −0.05 | 0.06 | 0.07 | 0.12 | 0.02 | 0.01 | −0.09 | −0.12 | 0.05 | 0.10 |
TSS | −0.22 | 0.23 | 0.47 | 0.23 | 0.22 | −0.09 | 0.41 | 0.39 | 0.53 | 0.36 | 0.25 | 0.11 |
ToA | −0.33 | 0.34 | 0.24 | 0.33 | 0.33 | 0.24 | 0.33 | 0.32 | 0.19 | −0.04 | 0.34 | 0.32 |
pH | 0.52 | −0.52 | −0.32 | −0.52 | −0.51 | −0.40 | −0.45 | −0.47 | −0.04 | 0.12 | −0.52 | −0.49 |
PSC | −0.37 | 0.39 | −0.03 | 0.38 | 0.39 | 0.52 | 0.18 | 0.19 | −0.26 | −0.43 | 0.36 | 0.47 |
PRI | −0.68 * | 0.69 * | 0.48 | 0.69 * | 0.69 * | 0.52 | 0.64 * | 0.65 * | 0.06 | −0.11 | 0.68 * | 0.66 * |
TPI | −0.57 | 0.59 * | 0.24 | 0.59 * | 0.59 * | 0.57 | 0.45 | 0.45 | −0.02 | −0.29 | 0.56 | 0.62 * |
PCAF | −0.42 | 0.43 | 0.37 | 0.43 | 0.43 | 0.26 | 0.44 | 0.44 | 0.02 | 0.03 | 0.42 | 0.39 |
ANT | 0.14 | −0.14 | −0.28 | −0.14 | −0.13 | 0.05 | −0.24 | −0.23 | −0.37 | −0.21 | −0.15 | −0.06 |
TAN | −0.08 | 0.09 | 0.15 | 0.09 | 0.09 | 0.01 | 0.15 | 0.13 | 0.11 | 0.10 | 0.08 | 0.07 |
GR | GRVI | MGRVI | VARI | BGI2 | VEG | GLI | RGBVI2 | RGBVI3 | |
---|---|---|---|---|---|---|---|---|---|
BW | |||||||||
Equation | 1x − 1.1 × 10−2 | 1x − 3.1 × 10−3 | 1x − 5.5 × 10−3 | 1x − 6.1 × 10−3 | 1x − 1 × 10−3 | 1x − 6 × 10−4 | 1x − 9 × 10−4 | 1x − 5 × 10−4 | |
R2 | 0.57 | 0.58 | 0.58 | 0.58 | 0.50 | 0.51 | 0.59 | 0.47 | |
RMSE (kg·10−3) | 4.4 | 4.3 | 4.3 | 4.3 | 4.7 | 4.7 | 4.3 | 4.9 | |
MA | |||||||||
Equation | 1x − 4 × 10−6 | 1x − 3 × 10−5 | 1x − 6 × 10−6 | 1x − 2 × 10−5 | 1x − 4 × 10−5 | 1x − 6 × 10−5 | 1x − 4 × 10−5 | ||
R2 | 0.43 | 0.44 | 0.44 | 0.44 | 0.35 | 0.42 | 0.43 | ||
RMSE (g/L) | 0.13 | 0.14 | 0.13 | 0.13 | 0.14 | 0.14 | 0.13 | ||
AAN | |||||||||
Equation | 1x − 9.3 × 10−3 | 1x − 9.3 × 10−3 | 1x − 6.2 × 10−3 | 1x − 1.8 × 10−2 | 1x − 4 × 10−4 | ||||
R2 | 0.34 | 0.35 | 0.35 | 0.35 | 0.34 | ||||
RMSE (mg/L) | 37.8 | 37.6 | 37.6 | 37.5 | 37.8 | ||||
PRI | |||||||||
Equation | 1x + 4 × 10−5 | 1x + 5 × 10−5 | 1x − 5 × 10−4 | 1x − 2 × 10−6 | 1x − 5 × 10−5 | 1x − 3 × 10−6 | 1x + 5 × 10−6 | 1x − 7 × 10−5 | |
R2 | 0.47 | 0.48 | 0.48 | 0.48 | 0.41 | 0.42 | 0.47 | 0.39 | |
RMSE | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.05 | |
TPI | |||||||||
Equation | 1x − 4 × 10−4 | 1x − 6 × 10−2 | 1x − 3 × 10−4 | 1x + 5 × 10−4 | 1x + 4 × 10−4 | ||||
R2 | 0.34 | 0.34 | 0.35 | 0.32 | 0.38 | ||||
RMSE | 1.04 | 1.04 | 1.04 | 1.06 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fernández, M.; Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R. High-Resolution Drone-Acquired RGB Imagery to Estimate Spatial Grape Quality Variability. Agronomy 2021, 11, 655. https://doi.org/10.3390/agronomy11040655
García-Fernández M, Sanz-Ablanedo E, Rodríguez-Pérez JR. High-Resolution Drone-Acquired RGB Imagery to Estimate Spatial Grape Quality Variability. Agronomy. 2021; 11(4):655. https://doi.org/10.3390/agronomy11040655
Chicago/Turabian StyleGarcía-Fernández, Marta, Enoc Sanz-Ablanedo, and José Ramón Rodríguez-Pérez. 2021. "High-Resolution Drone-Acquired RGB Imagery to Estimate Spatial Grape Quality Variability" Agronomy 11, no. 4: 655. https://doi.org/10.3390/agronomy11040655
APA StyleGarcía-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-Resolution Drone-Acquired RGB Imagery to Estimate Spatial Grape Quality Variability. Agronomy, 11(4), 655. https://doi.org/10.3390/agronomy11040655