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Abstract: Achieving the best energy performance has become an important goal. The European
Union has consequently developed legislative measures that introduce the concepts of nearly zero-
energy buildings and cost-effectiveness during life-cycle. We use these concepts, looking for the
design of energy-efficient wineries, while reducing wine production costs. The research method is
based on the monitoring of temperature and humidity of 12 red wine aging rooms of representative
construction designs with almost zero energy consumption that together with the economic data
obtained from construction cost update, determine a parameter that has been called “construction
effectiveness”. This parameter allows the evaluation of the cost–benefit ratio of each of the analyzed
constructions. The results obtained demonstrate that adequate conditions can be achieved for the
wine aging with zero-energy buildings, although there are notable differences in cost, damping
effectiveness, and resulting hygrothermal environment depending on the type of building. The
correlation between performance and construction costs shows large differences in cost per unit
of damping achieved: 0.5–2.7 €/m2 for temperature and 0.6–5 €/m2 for relative humidity. With a
correct design, the differences between typologies can be reduced or even non-existent. The results
obtained can be a valuable tool to promote the design of zero-energy warehouses.

Keywords: wine; winery; aging; zero-energy building; cost; effectiveness

1. Introduction

Achieving the best energy performance of member countries and the reduction of
greenhouse gas (GHG) emissions has become an important goal for the European Union
(EU). To achieve the energy and climate objectives set by the EU itself for 2030, the European
Commission has been developing various legislative measures that culminated in 2016,
with the adoption of a package entitled “Clean energy for all Europeans”. Among the
legislative proposals included in this package is a revision of the 2010 Directive on the
Energy Performance of Buildings (EPBD), which already contained several provisions to
improve the energy efficiency of new or existing buildings. Thus, the Buildings Directive
that was initially drafted to improve energy efficiency under the 2020 climate and energy
package will continue to be applied in this next decade to help meet the climate and energy
objectives for 2030. The recast of EPBD introduced the concept of nearly zero-energy
buildings and requires that buildings must be cost-effective during their life-cycle.

The wine industry is one of the sectors most affected by climate change [1] but it is also
a sector that contributes significantly to global warming [2] by producing approximately
0.3% of annual global greenhouse gas emissions [3]. At the winery stage 81% of the
emissions occurred, and one of the main contributor is the electricity used in the winery
(10%) [2]. The energy-intensive use of energy is, mainly, for cooling [4–7] and ventilation,
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since high temperature provoked negative effects on wine quality [8]. The EU remains
the largest wine market and about 1750 million kWh/year is estimated to be consumed in
wine production in the EU, which is mainly supplied by electricity [9].

Taking into consideration that ‘cost optimality’ and ‘nearly zero-energy buildings’
are two fundamental concepts within the current EU policy related to the energy perfor-
mance of buildings and climate change mitigation [10] the winegrowing industry required
the adaptation of the wineries in search for energy efficiency while reducing wine pro-
duction costs. Therefore the design of energy-efficient cellars is increasingly gaining
importance [11–15].

To reduce the environmental impact of wine production, as well as to lower costs,
different studies on wineries have been performed in recent years. Research had been
developed to reduce consumption during the cold stabilization by optimization of equip-
ment [5], in air conditioning [9] or even evaporative cooling [6]. In terms of the building
itself, Benni et al. [16] or Mazarrón et al. [17] compared design effectivity considering above-
ground warehouses and underground constructions. Additionally, renewable energies
have been proposed to reduce energy dependance [8,18].

Since the implementation of energy implies a huge investment, different research has
focused on energy efficiency [19]. Regarding this, as well as the increase of temperatures
due to climate change, passive performance of wineries must be considered to be the main
strategy with increasing importance [11–15]. Further to competitiveness and promotion of
zero-energy buildings in all the sectors [14,15,19,20]. Against this backdrop, underground
wineries had become interesting because of their high thermal mass which avoid fluc-
tuations of temperature in above ground constructions, such as had been demonstrated
in previous research [11,21], even in traditional wine cellars in Spain [22]. Given this
performance, underground constructions [23], and basement [24] had been analyzed as
zero-energy buildings. This research mainly focused on specific aspects that influence
indoor atmosphere, such as architectural elements [25], type of retrofit interventions [26],
ventilation [27,28], infiltration [29] or even the surrounding ground temperature [21]. How-
ever, one of the main barriers implementing energy efficiency strategies in the industrial
sector are economic and financial barriers [14], despite the economic benefits in terms
of productivity because of energy efficiency in the industry [30]. Sanz [11] analyzed the
cost-effectiveness of passive strategies for the envelope of a winery located in Argentina.
Accorsi et al. [31] studied warehouse building design to minimize the cycle time (average
duration of the pickup and drop-off activities), the total cost, and the carbon footprint of
the storage system over its lifetime. However, there had not been found an analysis in
which the energy efficiency in the wineries was compared to the construction budget.

Our study moves from these considerations with the aim to analyze the correlation
between the effectiveness and the cost of constructive solutions adopted in underground,
basement, and buried warehouses. The results obtained can be a valuable tool to promote
the design of zero-energy warehouses. The research is part of the project “Bioclimatic
design strategies in cellars as a model of almost zero energy consumption buildings”,
financed by the Spanish Ministry of Economy and Competitiveness. Within this project, the
research and article focus on a total of 12 different types of zero-energy buildings that do
not require air conditioning systems, and which are currently used for aging quality wine.

2. Materials and Methods

The wine sector has grown exponentially in recent years as a result of the high demand
for this product in the market. Spain is one of the three largest world wine producers and
a world leader in the production of grape must and wine alcohols [32]. According to the
National Institute of Statistics in recent years, the total number of warehouses in Spain
has grown to 4373 in 2018. Given this magnitude, the research was limited to two aspects:
(i) the search for wineries with quality wine production; (ii) that said wineries did not use
energy for the maintenance and conservation of wine, taking advantage of the natural
conditions of the building itself and, therefore, being able to classify them as a “zero-energy
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building”. In this section, the wineries selected for the research are described as well as the
research methods and procedure followed to carry out the study.

2.1. Warehouses Analyzed

As part of the project “Bioclimatic design strategies in cellars as a model of almost
zero energy consumption buildings”, 12 wineries have been selected located in Spain in
two reference producing regions, Rioja and Ribera del Duero (Figure 1). These wineries
are representative of different construction solutions that do not use air conditioning
systems and that make quality wines. Specifically, these are 6 basement constructions,
4 underground and 2 buried (Figure 2) that belong to the Castillejo, Cillar de Silos, Gormaz,
Ibañez Blanco, Martínez Lacuesta, Puelles, Valduero, Valsotillo, Viña Olabarri, and Viña
Vilano wineries. No surface wineries were selected due to their limited thermal inertia
which makes them dependent on air conditioning for the aging of quality wines and,
therefore, they are not classifiable as “zero-energy buildings”.
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The underground typology is one of the oldest typologies known to age and preserve
wine, as there are records showing that the Egyptians and Romans already used hand-



Agronomy 2021, 11, 687 4 of 16

carved caves, to preserve wines in antiquity. As shown in Figure 2 the aging room is
excavated directly in the ground, under the surface, or on a slope. In the basement typology
aging room is below the surface, commonly under another part of building. In this case,
the four walls are in contact with the adjoining land which allows the inside not to suffer
large temperature and humidity variations regarding the upper space which, nevertheless,
does not present as much thermal inertia, this one being separated by a floor plant framing.
Finally, in the buried typology, the aging room has been completely covered with earth to
recreate the conditions of the underground cellars. The temperature variations inside the
aging cellar are related to the amount of material with which the space has been covered.

2.2. Methodology

The methodology used in the research begins with the selection of case studies that
meet the requirements established in the previous section, to subsequently carry out field
work for the survey and the volumetric and constructive characterization of each of the
selected warehouses.

The quantification of the updated cost of each building has been carried out based
on information provided by the wineries (projects, work certifications, etc.) as well as the
documentation collected during the site visits. The construction details, together with the
original plans, allowed the obtaining of the budget items and the necessary measurements
to obtain an updated budget of the aging unit construction costs.

The site visits, in addition to allowing real surveys and verification of the information
provided by each of the participating warehouses, served to carry out on-site tests to
verify the type of land. To this end, a campaign of non-destructive surface hardness
measurements was carried out with Shore durometers or mechanical resistance using the
Schmidt sclerometer, dynamic elasticity modulus by ultrasound and moisture content in
the ground using a hygrometer.

Figure 3 summarizes the methodology followed in the research.
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2.3. Methods

As for the methods used in the investigation, it is based on the monitoring data of
the selected warehouses that together with the economic data obtained from the construc-
tion cost update, allows us to determine a parameter that has been called “construction
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effectiveness”. This parameter facilitates an evaluation of cost–benefit ratio of each of the
analyzed constructions.

2.3.1. Monitoring of the Indoor Hygrothermal Environment

The monitoring was carried out using Hobo® brand temperature and humidity
recorders and sensors. The accuracy of the sensors is greater than ±0.3 ◦C and ±3%
R.H., with a resolution of 0.03 ◦C and 0.03% R.H. The monitoring period was 1 year, using
a measurement interval of 15 min. The data collection has been carried out in accordance
with the recommendations contained in EN 17267:2020 and EN 62974-1 [33,34]. With this, a
complete record of the behavior of buildings in both summer and winter has been obtained.

The monitoring conditions remained homogeneous throughout the investigation,
adapting to each type of winery. Most of the aging rooms are very uniform on the horizontal
plane but have a marked vertical stratification, especially in the summer months [35]. For
that reason, temperature differences in the vertical plane were monitored, at least at a
central point in the aging room. The sensors were installed at different equidistant heights
to record the entire volume occupied by the barrels. Regarding underground wineries,
although they generally have a very stable temperature, their length and the differences
along the horizontal plane required the placement of several sensors along the tunnels.

2.3.2. Construction Effectiveness

The thermal effectiveness of the construction has been quantified through the ability
to dampen outside temperature variations, equivalent to other previous work in ware-
houses [12,17]. Specifically, thermal damping has been calculated as a percentage of the
variation of the external temperature:

Damping (%) =
∆T outdoor − ∆T inside

∆T outdoor
, (1)

Quantification of the effectiveness of the construction has been carried out in three
levels: annual damping, average monthly damping, and average daily damping. The
average value of the set of sensors located in the building has been calculated, as a rep-
resentative value of the wine contained in the set of barrels, which will be homogenized
before bottling.

Annual damping has been calculated from the maximum and minimum values
recorded in a year; the average monthly damping is the average of the 12 monthly damping
values, calculated from the maximum and minimum values recorded in each month; the
average daily damping is the average of the 365 daily damping values, calculated from the
maximum and minimum values recorded on each day.

2.3.3. Cost Determination

One of the key aspects of the investigation was to determine the constructive cost
of each type of winery. The budget for their execution has been structured in three main
chapters: excavation, civil works, and installations, to homogenize the items and allow
comparison between them. The information used in this section is based both on the
documentation provided by the wineries or collected in the literature, and on the field
study carried out to identify and verify the materials, techniques, and construction systems
used in each of the buildings.

The excavation chapter includes all the works related to earthmoving, substantially
differentiating the items included depending on the specific type of winery to be considered.
This chapter not only contemplates the excavation process itself, characteristic of the
underground or basement warehouse, but also the excavation to allow the access of the
machinery through forklifts for the underground cellars. In both cases, the type of terrain
is taken into consideration, the type of machinery most appropriate to each case—light
or heavy—the transfer of the machinery to the place of execution of works, especially in
the case of underground warehouses due to their specificity, as well as the accessibility
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of said machinery to the excavation site. This chapter also includes the transfer of land
from excavation to landfill or its deposit at the place of extraction, the cost of execution of
ventilation chimneys in underground warehouses as well as the indirect costs that, in the
latter, take on particular relevance due to the need to have generators, to give power to the
drilling machines, and the necessary permits of the administration for the realization of
blasts with the hiring of specialized personnel for their control and execution. Finally, this
chapter includes the execution of ventilation chimneys for underground cellars, which, in
the case of buried and basement chimneys, are part of the civil works.

The civil works chapter includes both the execution of the structure: foundation,
containment, and vertical and horizontal structure in the case of buried warehouses and in
the basement, as well as the incorporation of structural reinforcements: continuous (with
the execution of vaults) or punctual (preparation of periodic reinforcement arches) in the
case of underground warehouses. In both cases, reference costs were used for the execution
of the construction systems considering the materials and techniques used. In this regard, it
is worth highlighting the differences found in the underground warehouses, in such a way
that while in the traditional ones the material used in the reinforcement is made of stone or
solid brick, in the newly executed warehouses, greater systems are used, performance such
as THN-type metal frames or mounting trusses and their combination with Bernold plates
(metallic plates that are used as a support for filling gaps and areas that have suffered a
landslide) for shoring and subsequent spraying of concrete, allowing a greater volume of
execution with great safety.

Finally, the installation chapter includes the mechanical installations available in the
different warehouses, these being lifting elements such as forklifts for the transport of
material and electrical installations for lighting the warehouses.

3. Results and Discussions
3.1. Monitoring of the Indoor Hygrothermal Environment

Most buildings have great internal thermal stability (Table 1), with average annual
values of daily variation lower than 0.2 ◦C/day (Figure 4). Only warehouse 11 has higher
values, reaching 1 ◦C during the summer months (May–July). This warehouse is also one
with the largest annual amplitude of those analyzed (Table 1).

Table 1. Representative values of the internal temperature in each of the monitored aging rooms.

Typology Average Mean Dev. Est. Variance Kurtosis Coef.
Asymmetry

Annual
Breadth Min Max

1

Basement

13.0 12.4 3.2 10.3 −1.3 0.3 11.2 8.3 19.5
2 16.1 16.0 1.7 2.9 −1.4 0.1 5.9 13.2 19.1
3 14.8 14.6 3.5 12.4 −1.4 0.1 11.5 9.4 20.9
4 14.4 14.2 3.2 10.2 −1.4 0.1 11.2 8.9 20.1
5 13.2 12.5 3.1 9.7 −1.5 0.2 9.6 8.7 18.3
6 13.0 12.3 3.0 9.3 −1.1 0.5 10.7 9.0 19.6

7
Buried

14.4 14.1 2.4 5.8 −1.4 0.1 9.4 10.1 19.4
8 12.6 12.5 1.7 2.8 −1.4 0.1 7.4 8.3 15.7

9

Underground

11.6 11.4 2.1 4.4 −1.2 0.0 8.9 6.9 15.8
10 10.3 10.3 0.8 0.6 −0.9 0.1 3.9 8.5 12.4
11 9.1 9.3 1.6 2.4 −1.0 −0.3 11.8 3.5 15.3
12 9.6 9.4 1.7 2.9 −1.3 0.2 9.1 6.3 15.4
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This circumstance can be explained by the high rate of natural ventilation that this
winery presents [36].

Despite this, the average annual indoor temperature ranges between 9.1 ◦C and
16.1 ◦C, with highs between 12.4 ◦C and 20.9 ◦C and lows between 3.5 ◦C and 13.2 ◦C. In
this sense, attention should be drawn to the differential values between the warehouses
analyzed in such a way that, while the basements show an average annual temperature
of 14.1 ◦C with annual thermal amplitudes of 10.0 ◦C and maximum that reach 19.6 ◦C
on average; in the case of buried, these values are reduced to 13.5 ◦C, 8.4 ◦C and 17.6 ◦C
respectively; and, in the case of underground, these values are 10.2 ◦C, with thermal
amplitudes similar to those buried with 8.4 ◦C and maximum of 14.7 ◦C. These values
show the greater thermal stability of traditional underground warehouses compared to the
most modern warehouses, basement and buried, producing discrepancies only when the
ventilation rates are high, as indicated above.

In this regard, it should be noted that the bibliography points out the importance of
maintaining a constant low temperature in the winery, to produce a quality wine and reduce
losses [37]. Although an optimal range has not been established, several authors point out
that if the temperature rises above 18–20 ◦C, the quality of the wine decreases [38–40] and
evaporative losses occur [41,42]. It is also accepted that temperatures below 4–5 ◦C slow
the aging of the wine [24]. Therefore, a range of acceptable comfort temperatures can be
set between 5–18 ◦C [12].

According to the literature, additionally to the constant low temperature, it is im-
portant to preserve a high relative humidity, greater than 60%, in the winery to diminish
evaporative losses, provided that ventilation is adequate to prevent the appearance of
harmful mold [37]. The variation of the indoor relative humidity recorded in the different
wineries also shows discrepancies depending on the construction typology of the ware-
house. It is observed that compared to the average humidity of 77% of the basement
warehouse, the relative humidity percentage rises to 80% in the buried ones and 94% in
the case of the underground ones. It should be noted the variability found in the relative
humidity of the warehouses, with values ranging on average between 73% and 97%. The
greatest differences in the annual minimum of each winery ranging between 37% and 73%.
However, those differences were damped for each typology with average of 47%, 50%, and
59% in the basement, buried, and underground, respectively. This implies that the differ-
ence between the buried warehouses and the underground ones reach 17% in the annual
averages, reducing to 14% those of the basements when compared to the underground
ones. Despite this, the daily variations are not significant, ranging between 1% r.h. and
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5% r.h. but with maximums that reach 9% r.h. in some types of warehouses and specific
months.

Therefore, contrary to the statements included in the aspect of internal temperature,
the relative humidity inside presents greater variability, a statement that had already been
collected by other authors previously [43].

3.2. Effectiveness of Constructive Solutions

All the analyzed warehouses have a great effectiveness in dampening the temperature
and relative humidity variations of the outdoor environment (Figure 5). Although the
maximum temperature is dampened by the high thermal inertia of the cellars, the same
does not happen with the maximum relative humidity, which becomes similar indoors and
outdoors. This circumstance shows that similar to those reported in the literature [44,45],
compared to the temperature the warehouse has great stability with very damped tem-
peratures equivalent to the annual average. However, the relative humidity (Figure 5) is
conditioned, mainly, by the type of ventilation of the warehouse [36].
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Analyzing in detail each of the parameters, with respect to temperature, the annual
thermal damping exceeds 70% in all the buildings analyzed (Figure 6a) and mostly greater
than 90% in the case of monthly thermal damping (Figure 6b) due to the thermal inertia of
the building. The effectiveness of the construction tends to grow as the thermal inertia of
the building increases, being therefore more effective in the case of underground wineries
with respect to basements and buried, except in specific cases, as can be seen in warehouse
11 and indicated above.

The great thermal inertia of the analyzed warehouses allows the maintenance of a
stable interior environment, with a negligible effect of the daily oscillations of the exterior
environment. Thus, the damping is higher than 93% if the daily damping throughout the
year is considered, with the average of the set of buildings being 98% (Figures 6 and 7).
However, if we consider the monthly scale, the damping is higher than 88%, with an
average of 93% (Figures 6 and 7).
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In terms of relative humidity, in most aging rooms there are large variations through-
out the year (Figure 8a,b), which denotes the inability of buildings to cope with outdoor
humidity variations. In general, buried and underground constructions have an internal
relative humidity higher than the exterior, with an annual average above 90% r.h. Base-
ments maintain relative humidity values closer to the external average (Table 2). Despite
this, the annual damping of relative humidity is very variable, with an average of 51 ± 16%
r.h., ranging from 27% (warehouse 8) to 75% (warehouse 9). Monthly and daily damping is
also moderate, with an average of 72 ± 4% r.h. and 85 ± 7% r.h. respectively due to the
high hygroscopicity of the materials used in the wineries which implied high humidity
inertia.
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Table 2. Representative values of the relative humidity inside each of the monitored aging rooms.

Typology Average Mean Dev. Est. Variance Kurtosis Coef.
Asymmetry

Annual
Breadth Min Max

1

Basement

84 84 5.6 31 −0.4 −0.4 35 60 95
2 82 83 9.7 93 −0.9 −0.3 55 45 100
3 73 73 8.8 78 −0.7 0.0 51 46 98
4 75 74 9.6 93 −0.7 0.1 55 43 98
5 76 75 7.8 60 −0.7 −0.1 43 47 90
6 73 73 10.0 99 −0.2 0.1 58 43 100

7
Buried

87 87 4.7 22 −0.6 −0.3 34 63 97
8 74 75 13.5 182 −0.8 −0.3 63 37 100

9

Underground

95 96 4.5 20 1.2 −1.1 27 73 100
10 97 100 5.5 30 4.0 −2.1 31 69 100
11 93 100 9.0 81 0.7 −1.3 54 46 100
12 92 97 10.1 103 −0.2 −1.0 50 50 100

These differences can be justified by the dependence on pressures generated by natural
ventilation and the influence of outdoor climatic conditions. However, although such
dependence could be assessed negatively, according to previous studies, its effectiveness
in thermal and humidity control has been shown to be superior to that of mechanical
ventilation in warm regions [46].

3.3. Cost

The warehouses analyzed have construction costs ranging between 42 €/m3 and
233 €/m3 (Figure 9), noting a large difference between basement warehouses whose average
cost is 84 €/m3, buried warehouses whose average cost is 57 €/m3 and underground
warehouses that have an average of 204 €/m3. The differences between them are due, first,
to the conditions of execution. Although in the basement and the buried warehouses the
accessibility of the machinery and the type of machinery to be used is more common, in
the underground warehouses the specific conditions of accessibility of machinery together
with their specificity results in a reduction of yields and an increase in the cost of execution.
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Indeed, from the study of the cost of the warehouses, two large groups emerge, namely
underground buildings in which the impact of excavation is clearly significant compared
to basement or buried buildings, in which the civil works necessary for guarantee security
conditions during construction and speed of execution are more important (Figure 10).
Thus, compared to the average 77% of underground in the case of the impact of the
excavation, this percentage is reduced to 16% in the case of basement warehouses and
12% in the case of buried ones. This is mainly because basement and buried warehouses
are, commonly, of new construction, and both the type of machinery to be used and its
accessibility to the excavation point are simpler than that of the traditional underground
warehouses. Also, the access of the machinery in these two typologies is carried out taking
advantage of uneven ground or, in some cases, emptying and subsequent filling with
ground, which substantially simplifies the execution and, therefore, the cost. However, in
the underground warehouses, especially in the traditional ones, the execution should be
done, in most cases, lowering the machinery through a forklift, which would slow down
the execution processes and, at the same time, substantially limit the type of machinery to
be used, thus not allowing the optimization of the execution, and increasing the cost.
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Likewise, this difference in terms of the construction process of the warehouses justifies
the difference found in the impact of the civil works of both (Figure 10). Compared to 82%
on average of the total cost of execution in the case of basement warehouses and 88% for
buried warehouses, this percentage is considerably reduced to 21% on average in the case
of underground warehouses, due to the fact that in the latter, civil works are limited to
the execution of reinforcements when needed. In the latter case, despite the low impact
they have on volume, their impact on the overall cost is high due to the use of traditional
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techniques that at current costs, require specialized labor (placement of stone factory or
brick) and with a high impact on the overall cost.

As for the installations, it is striking that the cost of these ranges from 0.03% to 8% in
the case in which more forklifts have been installed, which is in accordance with Worrell’s
maxim [30]. According to this maximum one of the effects of energy efficiency of the
building implied the reduction of the expenses due to installation, maintenance and use
(electricity and fuel consumption) and, consequently, the production costs as a whole.

3.4. Cost Analysis—Effectiveness

Beyond the individual costs of each type of warehouse, the main objective of the
research is the evaluation of cost-effectiveness. For this purpose, it is necessary to consider
the cost in relation to thermal damping and with humidity damping (Table 3).

Table 3. Average of cost, thermal, and humidity damping in the basement, buried, and underground
typologies.

Basement Buried Underground

Cost (€/m2) 84 ± 32 57 ± 21 204 ± 31

%Annual thermal
damping 78 ± 5 85 ± 5 84 ± 5

% Annual relative
humidity damping 45 ± 11 49 ± 15 60 ± 20

If we compare the cost of each of the groups with the annual thermal damping, it is
observed that the underground and buried warehouses have damping of approximately
85% on average while the former, with an average cost of 204 €/m3, triple the cost of
the latter (57 €/m3). Basement warehouses with annual thermal damping temperatures
of 78% on average have an average cost of 84 €/m3. Therefore, among the warehouses
studied, we must highlight the buried warehouses, which are characterized by having
a lower cost than the basement warehouses and, their thermal damping is similar to
underground warehouses, with values of 85% and 93% for annual and monthly thermal
damping, respectively. In terms of thermal operation this can be explained by the high
thermal inertia granted by the land, while in economic terms the construction process
of this type of warehouses presents higher work yields compared to that carried out in
underground warehouses, in which the accessibility of the machinery determines and
substantially increases the construction process.

Just as in the case of thermal damping, the damping of relative humidity also shows a
clear relationship with the type of warehouse. Thus, the average annual damping is 45%
in the case of basement warehouses and 49% for buried warehouses, compared to 60%
of average damping in underground warehouses. However, in the case of underground
warehouses, as well as buried warehouses, it should be noted the high dispersion of results
in this parameter, with damping ranging between 41% and 75% in the underground, or
27% of warehouse 8 compared to 71% of warehouse 7, both being buried. This dispersion
in the relative humidity results is a consequence of the number of ventilation points in
each of them, observing that the greater the number of ventilation points, the lower the
temperature damping reached in the warehouse.

If the buildings are analyzed individually, it is observed a large variation within each
typology (Figure 11). This allows a conclusion that with a correct design, the differences
between different typologies can be reduced or even non-existent since they depend on
many parameters, such as the type of soil, topography, ventilation rates, etc.
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4. Conclusions

The wine sector is no stranger to the requirements of reducing energy consumption
that the European Union requires of buildings, and which, in this case, involves reducing
the intensive use of energy in cooling and ventilation to obtain quality wine. Against
this backdrop, basement, buried, and underground warehouses offer an alternative for
optimizing indoor conditions with virtually no energy consumption, except that associated
with the use of lighting or the transport and lifting of goods. Our study has the aim
to analyze the correlation between the energy performance and the cost of constructive
solutions that do not use air conditioning systems and that make quality wines to promote
the design of zero-energy warehouses. To assess the relationship between the interior
conditions and the cost of their construction, research has been focused on the analysis
of the interior conditions and the cost associated with the construction of 12 wineries
belonging to the types of basement, buried, or underground, which do not use mechanical
systems for their conditioning and produce quality wines.

The research method used in the investigation is based on monitoring the temperature
and humidity of the selected warehouses that, together with the economic data from
the construction cost update, determine a parameter that has been called “construction
effectiveness”. This parameter allows the evaluation of the cost–benefit ratio of each of the
analyzed constructions.

According to the results of the research, these nearly zero-energy buildings passively
provide, i.e., without the use of mechanical systems, great internal thermal stability with
daily temperature variations below 0.2 ◦C/day. Except in special cases where, as a result
of the high number of natural ventilation chimneys, this value can reach 1 ◦C during the
summer months. Relative humidity presents greater fluctuation, with daily variations that
can reach 9% r.h, although the averages range between 1–5% r.h. In this sense, it has been
observed that the construction design strongly conditions the interior hygrothermal envi-
ronment, there being important differences between the different warehouses. Solutions in
basement (warehouses 1 to 6) and buried (warehouses 7 and 8) have a higher maximum
annual temperature (>16 ◦C) and average temperature (>13 ◦C) compared to underground
solutions (warehouses 9 to 12) with maximum < 16 ◦C and average < 13 ◦C. Therefore, this
underground typology is the constructions with the greatest thermal inertia. In addition,
basements also have, in general, lower average relative humidity. Therefore, the particular
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requirements imposed by a winemaker to carry out the aging of a quality wine, could
condition the selection of a certain type of zero-energy building.

In any case, it can be concluded that the zero-energy buildings analyzed have a great
effectiveness in damping the temperature variations of the outdoor environment. Annual
thermal damping exceeds 73% in all analyzed buildings, with an average of 81 ± 4%.
Constructions increase their effectiveness on a monthly and daily scale, with an average
of 93 ± 2% and 98 ± 1% respectively. Except for buildings with high ventilation, the
effectiveness increases as the thermal inertia of the solution used increases, with buried
and underground constructions being more effective than basements. In terms of relative
humidity, however, the buildings analyzed have high relative humidity that, on average,
range from 73% to 97% which is strongly conditioned by various factors such as ventilation.

Regarding the cost of construction, the items with the greatest impact are excavation
(including earthworks) and civil works, with a clear difference depending on the type of
warehouse. In the underground, the impact of the excavation amounts to 77% of the total
construction cost due to the penalty of the type of machinery required for the execution of
reduced sections and, mainly, of low accessibility. This percentage, however, is reduced
to 16% in the case of basement warehouses, in which, however, the impact of civil works
is higher and amounts to 82%. The latter percentages are very similar to the case of
buried warehouses, in which the impact of civil works is 88% and that of excavation 12%.
Although the cost per cubic meter executed may be higher than the superficial warehouses,
the absence of air conditioning and ventilation equipment and the passive operation of the
building means a considerable reduction in the overall production costs associated, not
only with the installation, but also with the maintenance and use of the systems.

Finally, the correlation between the indoor environment achieved by each warehouse
and its construction cost, allows a conclusion that there is a large variation among the
analyzed warehouses. Thus, to achieve each percentage of damping improvement, the
average cost ranges from 0.5–2.7 €/m2 for temperature and 0.6–5 €/m2 for relative humidity.
The average cost is 0.7 ± 0.2 €/m2 for buried warehouses, 1.1 ± 0.5 €/m2 for basement
warehouses, and 2.5 ± 0.5 €/m2 in the case of underground warehouses. Nevertheless,
with a correct design, the differences between different typologies can be reduced or
even non-existent. In this sense, the suitability of the construction system will be defined
according to the grape management practices and the specific production needs.

There are two main limitations in this research. The first one relates to budgeting: there
is a widespread lack of uniformity, and, in certain occasions, aesthetics are more important
than efficiency in construction. The second one derives from the lack of homogeneity of
criteria found among the oenologist for the definition of the “optimal” internal conditions,
which prevents us from obtaining more specific conclusions.

The research carried out indicates that further analysis can be performed increasing
the number of wineries of each typology, with the same ratio of ventilation—which was
found to be very influencing in the performance—to find a correlation between the different
parameters such as placement, type of soil, type of grapes, and depth of winery, among
others.
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