Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Crop Management
2.2.1. Seed Bed Preparation and Mulching
2.2.2. Seedling Collection and Transplantation
2.2.3. Irrigation and Fertigation
2.3. Measurements
2.3.1. Phenological Development
2.3.2. Biomass Production Evaluation
2.4. Statistical Analysis
3. Results
3.1. Phenology
3.2. Biomass Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Reports. World Population Prospects: The 2017 Revision; Working Paper No. ESA/P/WP.250; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 2014, 5, 38–58. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and the Council of the European Union. PE-CONS 3736/08, 2008, Directive of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Union: Brussels, Belgium, 26 March 2009. [Google Scholar]
- Zegada-Lizarazu, W.; Monti, A. Energy crops in rotation. A review. Biomass Bioenergy 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Fagnano, M.; Impagliazzo, A.; Mori, M.; Fiorentino, N. Agronomic and environmental impacts of giant reed (Arundo donax L.): Results from a long-term field experiment in hilly areas subject to soil erosion. Biol. Res. 2015, 8, 415–422. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels Bioprod. Biofin. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crops Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crops Prod. 2013, 47, 218–226. [Google Scholar] [CrossRef]
- Montesano, F.F.; Gattullo, C.E.; Parente, A.; Terzano, R.; Renna, M. Cultivation of potted sea fennel, an emerging mediterranean halophyte, using a renewable seaweed-based material as a peat substitute. Agriculture 2018, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2009; p. 572. [Google Scholar]
- Atia, A.; Barhoumi, Z.; Mokded, R.; Abdelly, C.; Smaoui, A. Enviromental eco-physiology and economical potential of the halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plants Res. 2011, 5, 3564–3571. [Google Scholar]
- Renna, M.; Gonnella, M. The use of the sea fennel as a new spice-colorant in culinary preparations. Int. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea fennel (Crithmum maritimum L.): From underutilized crop to new dried product for food use. Genet. Resour. Crop Evol. 2017, 64, 205–216. [Google Scholar] [CrossRef]
- Biswas, A.; Biswas, A. Comprehensive approaches in rehabilitating salt affected soils: A review on Indian perspective. Open Trans. Geosci. 2014, 1, 13–24. [Google Scholar] [CrossRef]
- Hanay, A.; Büyüksönmez, F.; Kiziloglu, F.M.; Canbolat, M.Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost. Sci. Util. 2013, 12, 175–179. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture. Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Wong, N.H.; Chen, Y.; Ong, C.L.; Sia, A. Investigation of thermal benefits of rooftop garden in the tropical environment. Build Environ. 2003, 38, 261–270. [Google Scholar] [CrossRef]
- Fioretti, R.; Palla, A.; Lanza, L.G.; Principi, P. Green roof energy and water related performance in the Mediterranean climate. Build Environ. 2010, 45, 1890–1904. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Lundholm, J. Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecol. Eng. 2011, 37, 407–417. [Google Scholar] [CrossRef]
- Sharma, A.; Conry, P.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Chen, F.; Akbari, H. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett. 2016, 11, 64004. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc Urban Plann. 2014, 123, 41–48. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Macivor, J.S.; Macdougall, Z.; Ranalli, M. Plant species and functional group combinations affect green roof ecosystem functions. PLoS ONE 2010, 5, e9677. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.L.H.; Jim, C.Y. Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 2013, 6, 598–618. [Google Scholar] [CrossRef] [Green Version]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of green walls and green roofs as soundscape measures: Including mone-tised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorak, B.D.; Volder, A. Plant establishment on unirrigated green roof modules in a subtropical climate. AoB Plants 2013, 5. [Google Scholar] [CrossRef]
- Fernandez-Cañero, R.; Emilsson, T.; Fernandez-Barba, C.; Herrera Machuca, M. Green roof systems: A study of public attitudes and preferences in southern Spain. J. Environ. Manag. 2013, 128, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Evaluating the establishment performance of six native perennial Mediterranean species for use in extensive green roofs under water-limiting conditions. Urban Urban Green. 2019, 41, 158–169. [Google Scholar] [CrossRef]
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Shankar, V.; Evelin, H. Strategies for reclamation of saline soils. In Soil Biology; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2019; Volume 56, pp. 439–449. [Google Scholar]
- Laudicina, V.; Hurtado, M.; Badalucco, L.; Delgado, A.; Palazzolo, E.; Panno, M. Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol. Fertil Soils 2009, 45, 691–700. [Google Scholar] [CrossRef]
- Rozema, J.; Flowers, T. Ecology: Crops for a salinized world. Science 2009, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Franke, W. Vitamin C in sea fennel (Crithmum maritimum), an edible wild plant. Econ. Bot. 1982, 36, 163–165. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custodio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Comp. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci. Technol. 2016, 53, 3104–3112. [Google Scholar] [CrossRef] [Green Version]
- Maoloni, A.; Milanović, V.; Osimani, A.; Cardinali, F.; Garofalo, C.; Belleggia, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cirlini, M. Exploitation of sea fennel (Crithmum maritimum L.) for manufacturing of novel high-value fermented preserves. Food Bioprod. Process. 2021, 127, 174–197. [Google Scholar] [CrossRef]
- Glenn, E.; Anday, T.; Chaturvedi, R.; Martinez, G.R.; Pearlstein, S.; Soliz, D.; Nelson, S.; Felger, R. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Flowers, T.J.; Galal, H.K.; Bromham, L. Evolution of halophytes: Multiple origins of salt tolerance in land plant. Funct. Plant Biol. 2010, 37, 604–612. [Google Scholar] [CrossRef]
- Epstein, E.; Norlyn, J.D.; Rush, D.W.; Kingsbury, R.W.; Kelley, D.B.; Cunningham, G.A.; Wrona, A.F. Saline culture of crops—A genetic approach. Science 1980, 210, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.J.; Yeo, A.R. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 1995, 22, 875–884. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Shpigel, M.; Samocha, T.M.; Klim, B.C.; Cohen, S.; Shemer, Z.; Santos, R.; Sagi, M. Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Sci. Hortic. 2011, 130, 510–516. [Google Scholar] [CrossRef]
- Glenn, E.; Brown, J.; Blumwald, E. Salt Tolerance and Crop Potential of Halophytes. Plant. Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Lieth, H. Cashcrop Halophytes for Future Halophyte Growers. EU Concerted Action Project IC 18CT96-0055; Institute of Environmental Systems Research, University of Osnabrück: Osnabrück, Germany, 2000; ISSN 09336-3114. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Koyro, H.W.; Khan, M.A.; Lieth, H. Halophytic crops: A resource for the future to reduce the water crisis? Emir. J. Food Agric. 2011, 23, 1–16. Available online: http://ejfa.info (accessed on 4 April 2021). [CrossRef] [Green Version]
- Zerai, B.; Glenn, E.; Chatervedi, R.; Lu, Z.; Mamood, A.N.; Nelson, S.G.; Ray, D.T. Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 2010, 36, 730–739. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Soil Resources Report 103; ISRIC: Rome, Italy, 2006. [Google Scholar]
- Bleiholder, H.; van den Boom, T.; Langelüddecke, P.; Stauss, R. Uniform coding for the phenological stages of cultivated plants and weeds. Phytoma 1991, 28, 1–4. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Onofri, A.; Seddaiu, G.; Piepho, H.P. Long-term experiments with cropping systems: Case studies on data analysis. Eur. J. Agron. 2016, 77, 223–235. [Google Scholar] [CrossRef]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant. Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Male, Z.; Zuntar, I.; Nigovic, B.; Plazibat, M.; Bilusic Vundac, V. Quantitative analysis of the polyphenols of the aerial parts of rock samphire—Crithmum maritimum L. Acta Pharm. 2003, 53, 139–144. [Google Scholar] [PubMed]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Hamed, K.; Debez, A.; Chibani, F.; Abdelly, C. Salt response of Crithmum maritimum, an oleagineous halophyte. Trop. Ecol. 2004, 45, 151–159. [Google Scholar]
Soil Properties | Values 1 |
---|---|
Sand (g kg−1) | 129 ± 18 |
Silt (g kg−1) | 449 ± 17 |
Clay (g kg−1) | 422 ± 20 |
Soil organic matter (g kg−1) | 11.0 ± 2.1 |
Total nitrogen (g kg−1) | 0.8 ± 0.1 |
pH | 8.1 ± 0.9 |
Bulk density (Mg m−3) | 1.40 ± 0.4 |
Soil electrical conductivity (mS cm−1) | 0.55 ± 0.0 |
Exchangeable Na (mg kg −1) | 62 ± 4.0 |
Volumetric soil water content (%): | |
Field capacity | 44.0 ± 1.2 |
Permanent wilting point | 18.0 ± 2.4 |
Total available water | 26.0 ± 1.8 |
Agrotechnique | Date |
---|---|
Ploughing (40 cm) | 13/10/2019 |
Harrowing and seed bed preparation | 25/10/2019 |
Mulching with sheeting | 03/02/2020 |
Transplantation | 17/02/2020 |
Fertigation and irrigation | 15/03/2020; 10/04/2020; 05/05/2020; 18/05/2020; 26/05/2020 |
Harvesting | 29–31/07/2020 |
Treatment | Phenological Stages | |||||
---|---|---|---|---|---|---|
Leaf Development | Side Shoot Formation | Stem Elongation | Vegetative Plant Parts Growth | Initial Inflorescence Emergence | ||
(BBCH 13) | (BBCH 25) | (BBCH 35) | (BBCH 40–45) | (BBCH 50) | ||
CT | 3 ± 1 a | 6 ± 2 a | 10 ± 1 a | 12 ± 1 a | 16 ± 3 b | 29 ± 4 b |
IR | 3 ± 1 a | 7 ± 1 a | 9 ± 1 a | 12 ± 2 a | 22 ± 4 a | 35 ± 2 a |
FR | 3 ± 1 a | 6 ± 2 a | 10 ± 2 a | 14 ± 2 a | 20 ± 2 a | 39 ± 2 a |
Treatment | UFB (g Plant−1) | TFB (t ha−1) | UDB (g Plant−1) | TDB (t ha−1) |
---|---|---|---|---|
CT | 82. 9 (±26.5)1 b | 8.0 (±2.6) b | 12.7 (±1.6) b | 1.2 (±0.1) b |
IR | 112.1 (±18.6) a | 11.1 (±1.8) a | 18.2 (±2.9) a | 1.8 (±0.3) a |
FR | 120.0 (±17.5) a | 11.8 (±1.7) a | 20.1 (±3.1) a | 2.0 (±0.3) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenobi, S.; Fiorentini, M.; Zitti, S.; Aquilanti, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Orsini, R. Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas. Agronomy 2021, 11, 773. https://doi.org/10.3390/agronomy11040773
Zenobi S, Fiorentini M, Zitti S, Aquilanti L, Foligni R, Mannozzi C, Mozzon M, Orsini R. Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas. Agronomy. 2021; 11(4):773. https://doi.org/10.3390/agronomy11040773
Chicago/Turabian StyleZenobi, Stefano, Marco Fiorentini, Silvia Zitti, Lucia Aquilanti, Roberta Foligni, Cinzia Mannozzi, Massimo Mozzon, and Roberto Orsini. 2021. "Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas" Agronomy 11, no. 4: 773. https://doi.org/10.3390/agronomy11040773
APA StyleZenobi, S., Fiorentini, M., Zitti, S., Aquilanti, L., Foligni, R., Mannozzi, C., Mozzon, M., & Orsini, R. (2021). Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas. Agronomy, 11(4), 773. https://doi.org/10.3390/agronomy11040773