Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sulfonamides Analysis
2.2.1. Chemicals and Reagents
2.2.2. Sulfonamides Extraction and Quantification by UHPLC-MS/MS
2.2.3. Estimation of Bioconcentration, Translocation Factor and Dietary Intake
3. Results & Discussion
3.1. Sources of Sulfonamides and Their Accumulation in Soil
3.2. Antibiotic Uptake by Tomato Plants
3.3. Human Exposure to SAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intriago, J.C.; López-Gálvez, F.; Allende, A.; Vivaldi, G.A.; Camposeo, S.; Nicolás Nicolás, E.; Alarcón, J.J.; Pedrero Salcedo, F. Agricultural reuse of municipal wastewater through an integral water reclamation management. J. Environ. Manag. 2018, 213, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Beltrán, E.M.; Pablos, M.V.; Fernández Torija, C.; Porcel, M.Á.; González-Doncel, M. Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario. Ecotoxicol. Environ. Saf. 2020, 191, 110171. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.; Shenker, M.; Chefetz, B. Insights into the Uptake Processes of Wastewater-Borne Pharmaceuticals by Vegetables. Environ. Sci. Technol. 2014, 5593–5600. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; Chang, A.C. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- García-Delgado, C.; Eymar, E.; Contreras, J.I.; Segura, M.L. Effects of fertigation with purified urban wastewater on soil and pepper plant (Capsicum annuum L.) production, fruit quality and pollutant contents. Span. J. Agric. Res. 2012, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Zambello, E.; Zanni, G.; Masotti, L. A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. J. Hydrol. 2012, 432, 127–136. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci. Total Environ. 2011, 409, 3555–3563. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Chu, L.M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Piña, B.; Bayona, J.M.; Christou, A.; Fatta-Kassinos, D.; Guillon, E.; Lambropoulou, D.; Michael, C.; Polesel, F.; Sayen, S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes-NEREUS COST Action ES1403 position paper. J. Environ. Chem. Eng. 2020, 8. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018; Tenth ESVAC report; European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption: Amsterdam, The Netherlands, 2020.
- FDA. Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available online: https://www.fda.gov/media/144427/download (accessed on 25 April 2021).
- Collignon, P.; Voss, A. China, what antibiotics and what volumes are used in food production animals? Antimicrob. Resist. Infect. Control 2015, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.E.; Lee, Y.B. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Escario, M.; Miguel, E.; Pérez, R.A. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci. Total Environ. 2018, 643, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Wu, X.L.; Mo, C.H.; Tai, Y.P.; Huang, X.P.; Xiang, L. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the pearl river delta area, Southern China. J. Agric. Food Chem. 2011, 59, 7268–7276. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Sarkar, D.; Das, P.; Panja, S.; Parikh, C.; Ramanathan, D.; Bagley, S.; Datta, R. Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash). Environ. Sci. Pollut. Res. 2016, 23, 24880–24889. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Fung-Yee Tam, N.; Ruan, W.; Yang, Y.; Yang, Y.; Tao, R.; Zhang, J. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. Chemosphere 2019, 227, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, R.; Sato, Y.; Motoyama, M.; Nakagawa, S.; Shinohara, R.; Nomiyama, K. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J. Agric. Food Chem. 2012, 60, 10203–10211. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, T.; Zhu, L.; Wang, B.; Li, Z.; Yang, L.; Liu, L. Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants. Environ. Pollut. 2018, 235, 404–410. [Google Scholar] [CrossRef]
- Chung, H.S.; Lee, Y.J.; Rahman, M.M.; Abd El-Aty, A.M.; Lee, H.S.; Kabir, M.H.; Kim, S.W.; Park, B.J.; Kim, J.E.; Hacımüftüoğlu, F.; et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci. Total Environ. 2017, 605, 322–331. [Google Scholar] [CrossRef]
- Kang, D.H.; Gupta, S.; Rosen, C.; Fritz, V.; Singh, A.; Chander, Y.; Murray, H.; Rohwer, C. Antibiotic uptake by vegetable crops from manure-applied soils. J. Agric. Food Chem. 2013, 61, 9992–10001. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Xu, S.; Hua, R. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicol. Environ. Saf. 2013, 92, 297–302. [Google Scholar] [CrossRef]
- Hilaire, S.S.; Bellows, B.; Brady, J.A.; Muir, J.P. Oxytetracycline and monensin uptake by tifton 85 bermudagrass from dairy manure-applied soil. Agronomy 2020, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Sayadi-Gmada, S.; Rodríguez-Pleguezuelo, C.R.; Rojas-Serrano, F.; Parra-López, C.; Parra-Gómez, S.; García-García, M.d.C.; García-Collado, R.; Lorbach-Kelle, M.B.; Manrique-Gordillo, T. Inorganic waste management in greenhouse agriculture in Almeria (SE Spain): Towards a circular system in intensive horticultural production. Sustainability 2019, 11, 3782. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef] [Green Version]
- Egea, F.J.; Torrente, R.G.; Aguilar, A. An efficient agro-industrial complex in Almería (Spain): Towards an integrated and sustainable bioeconomy model. New Biotechnol. 2018, 40, 103–112. [Google Scholar] [CrossRef]
- Caparrós-Martínez, J.L.; Rueda-Lópe, N.; Milán-García, J.; de Pablo Valenciano, J. Public policies for sustainability and water security: The case of Almeria (Spain). Glob. Ecol. Conserv. 2020, 23, e01037. [Google Scholar] [CrossRef]
- Jurado, A.; Vàzquez-Suñé, E.; Carrera, J.; López de Alda, M.; Pujades, E.; Barceló, D. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599, 500–512. [Google Scholar] [CrossRef]
- Galdeano-Gómez, E.; Aznar-Sánchez, J.A.; Pérez-Mesa, J.C.; Piedra-Muñoz, L. Exploring Synergies among Agricultural Sustainability Dimensions: An Empirical Study on Farming System in Almería (Southeast Spain). Ecol. Econ. 2017, 140, 99–109. [Google Scholar] [CrossRef]
- Mayans, B.; Camacho-arévalo, R.; García-Delgado, C.; Antón-Herrero, R.; Escolástico, C.; Segura, M.L.; Eymar, E. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate Hazard quotient. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Han, R.W.; Zheng, N.; Yu, Z.N.; Wang, J.; Xu, X.M.; Qu, X.Y.; Li, S.L.; Zhang, Y.D.; Wang, J.Q. Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chem. 2015, 181, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, B.; König, J.; Lesueur, C. Development and Validation of a Multi-class UHPLC-MS/MS Method for Determination of Antibiotic Residues in Dairy Products. Food Anal. Methods 2018, 11, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Exposure Factors Handbook; U.S. EPA 600-R-090e052F; U.S. Agency for International Development: Washington, DC, USA, 2011. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252 (accessed on 5 May 2021).
- USEPA. QA/QC Guidance for Sampling and Analysis of Sediments, Water, and Tissues for Dredged Material Evaluations; U.S. Agency for International Development: Washington, DC, USA, 1995.
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Höper, H.; Hamscher, G. Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater. Chemosphere 2017, 177, 232–238. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Ghirardini, A.; Grillini, V.; Verlicchi, P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure–Environmental risk due to antibiotics after application to soil. Sci. Total Environ. 2020, 707, 136118. [Google Scholar] [CrossRef]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Díaz-Cruz, S.; Barceló, D. Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. J. Chromatogr. A 2013, 1275, 32–40. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández-Calviño, D.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M. Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils. Chemosphere 2019, 234, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, Y.; Shen, G.; Zhang, H.; Yuan, Z.; Zhang, W. Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil Tillage Res. 2019, 186, 233–241. [Google Scholar] [CrossRef]
- García-Delgado, C.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. J. Hazard. Mater. 2020, 390, 122162. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Guo, X.; Xu, J.; Hao, L.; Kong, D.; Gao, S. Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil–manure systems. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2015, 50, 23–33. [Google Scholar] [CrossRef]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef]
- Dolliver, H.; Kumar, K.; Gupta, S. Sulfamethazine uptake by plants from manure-amended soil. J. Environ. Qual. 2007, 36, 1224–1230. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Liu, X.; Liang, C.; Liu, X.; Zhao, F.; Han, C. Ecotoxicology and Environmental Safety Occurrence and human health risk assessment of pharmaceuticals and personal care products in real agricultural systems with long-term reclaimed wastewater irrigation in Beijing, China. Ecotoxicol. Environ. Saf. 2020, 190, 110022. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef]
- Dodgen, L.K.; Ueda, A.; Wu, X.; Parker, D.R.; Gan, J. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ. Pollut. 2015, 198, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Christou, A.; Karaolia, P.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res. 2017, 109, 24–34. [Google Scholar] [CrossRef]
- Simonich, S.L.; Hites, R.A. Organic Pollutant Accumulation in Vegetation. Environ. Sci. Technol. 1995, 29, 2905–2914. [Google Scholar] [CrossRef]
- Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013, 60, 15–22. [Google Scholar] [CrossRef]
- Christou, A.; Kyriacou, M.C.; Georgiadou, E.C.; Papamarkou, R.; Hapeshi, E.; Karaolia, P.; Michael, C.; Fotopoulos, V.; Fatta-Kassinos, D. Uptake and bioaccumulation of three widely prescribed pharmaceutically active compounds in tomato fruits and mediated effects on fruit quality attributes. Sci. Total Environ. 2019, 647, 1169–1178. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Veterinary Drugs Index. Available online: http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-vetdrugs/browse-alphabetically/en/# (accessed on 7 October 2020).
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622, 293–305. [Google Scholar] [CrossRef]
- Boonsaner, M.; Hawker, D.W. Investigation of the mechanism of uptake and accumulation of zwitterionic tetracyclines by rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2012, 78, 142–147. [Google Scholar] [CrossRef]
- FAO; WHO. Maximum Residue Limits (Mrls) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Food; Codex alimentarius; FAO: Rome, Italy, 2018; p. 46. [Google Scholar]
- Spanish Ministry of Agriculture Fisheries and Food. Spanish Ministry of Agriculture Fisheries and Food Report on Food Consumption in Spain in 2019; Spanish Ministry of Agriculture Fisheries and Food: Madrid, Spain, 2020. [Google Scholar]
- Guo, J.; Li, J.; Chen, H.; Bond, P.L.; Yuan, Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017, 123, 468–478. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92, 1–10. [Google Scholar] [CrossRef]
Time (min) | Flow Rate (mL min−1) | Solvent A (%) | Solvent B (%) |
---|---|---|---|
0.00 | 0.50 | 8.00 | 92.00 |
5.00 | 0.50 | 15.00 | 85.00 |
9.00 | 0.50 | 55.00 | 45.00 |
12.00 | 0.50 | 8.00 | 92.00 |
GH1 | GH2 | ||
---|---|---|---|
2018 | Desalinated water | Desalinated water | |
SDZ | <DL | <DL | |
STZ | <DL | <DL | |
SP | <DL | <DL | |
SMX | <DL | <DL | |
SDM | <DL | <DL | |
2019 | RWW and groundwater (1:1) | RWW | |
SDZ | 301 ± 94 | 620 ± 123 | |
STZ | 10 ± 3 | 9 ± 2 | |
SP | 395 ± 73 | 365 ± 101 | |
SMX | 444 ± 16 | 647 ± 133 | |
SDM | 8 ± 3 | 6 ± 2 |
SDZ | STZ | SP | SMT | SMX | |
---|---|---|---|---|---|
Manure | 321 | <DL | 150 | <DL | 8017 |
Sand | 538 | 257 | <DL | 941 | 7915 |
Coconut fiber | 1439 | 3687 | <DL | 4716 | 45,432 |
GH1 | GH2 | ||
---|---|---|---|
SDZ | 2018 | 330 ± 84 | 614 ± 58 |
2019 | 1743 ± 111 | 8523 ± 15 | |
STZ | 2018 | 288 ± 79 | 381± 63 |
2019 | 78 ± 35 | 218 ± 43 | |
SP | 2018 | 51 ± 37 | <DL |
2019 | 126 ± 9 | 3250 ± 419 | |
SMT | 2018 | 741 ± 141 | 871 ± 57 |
2019 | 1282 ± 318 | 7690 ± 280 | |
SMX | 2018 | 10,703 ± 331 | 10,291 ± 186 |
2019 | 2394 ± 546 | 13,431 ± 274 | |
SDM | 2018 | <DL | <DL |
2019 | 31 ± 55 | 301 ± 9 |
ROOTS | LEAVES | FRUIT | |||||
---|---|---|---|---|---|---|---|
GH1 | GH2 | GH1 | GH2 | GH1 | GH2 | ||
2018 | SDZ | 235 ± 95 | 286 ± 57 | <DL | 2718 ± 653 | <DL | <DL |
STZ | 247 ± 102 | 322 ± 90 | <DL | <DL | <DL | <DL | |
SP | 146 ± 58 | 76 ± 18 | <DL | <DL | 408 ± 253 | 236 ± 91 | |
SMR | <DL | <DL | <DL | <DL | <DL | <DL | |
SMT | 249 ± 120 | 356 ± 168 | <DL | <DL | 746 ± 146 | 314 ± 116 | |
SMX | 9869 ± 851 | 9917 ± 3041 | 748 ± 188 | 1077 ± 190 | 34,884 ± 4948 | 17,577 ± 2126 | |
SDM | 560 ± 133 | 620 ± 359 | 22,088 ± 8577 | 16,709 ± 12,103 | 2884 ± 1218 | 1497 ± 409 | |
2019 | SDZ | 331 ± 70 | 202 ± 53 | 346 ± 98 | 3238 ± 846 | 51 ± 18 | 485 ± 206 |
STZ | 236 ± 72 | 192 ± 35 | 88 ± 77 | <DL | <DL | <DL | |
SP | 85 ± 17 | 193 ± 82 | 36 ± 17 | <DL | 14 ± 8 | 33 ± 18 | |
SMR | <DL | <DL | <DL | <DL | <DL | <DL | |
SMT | 3667 ± 1281 | 3123 ± 363 | 1316 ± 318 | 2372 ± 1093 | 1452 ± 632 | 2638 ± 1690 | |
SMX | 2206 ± 997 | 2819 ± 830 | 2825 ± 986 | 3694 ± 1741 | 1927 ± 531 | 735 ± 396 | |
SDM | 261 ± 84 | 160 ± 59 | 263 ± 128 | <DL | 123 ± 42 | 366 ± 116 |
GH1 | GH2 | ||
---|---|---|---|
SDZ | 2018 | - | 9.50 |
2019 | 1.05 | 16.03 | |
STZ | 2018 | - | - |
2019 | 0.37 | - | |
SP | 2018 | - | - |
2019 | 0.42 | - | |
SMT | 2018 | - | - |
2019 | 0.36 | 0.76 | |
SMX | 2018 | 0.08 | 0.11 |
2019 | 1.28 | 1.31 | |
SDM | 2018 | 39.44 | 26.95 |
2019 | 1.01 | - |
ROOT | LEAVES | FRUIT | |||||
---|---|---|---|---|---|---|---|
GH1 | GH2 | GH1 | GH2 | GH1 | GH2 | ||
SDZ | 2018 | 0.59 | 0.25 | - | 4.43 | - | - |
2019 | 1.00 | 0.33 | 0.20 | 0.38 | 0.03 | 0.06 | |
STZ | 2018 | 1.24 | 0.85 | - | - | - | - |
2019 | 3.03 | 0.88 | 0.37 | - | - | - | |
SP | 2018 | 0.20 | 0.09 | - | - | 2.79 | 3.11 |
2019 | 0.07 | 0.03 | 0.29 | - | 0.16 | 0.17 | |
SMT | 2018 | 0.34 | 0.41 | - | - | 1.01 | 0.36 |
2019 | 2.86 | 0.41 | 1.03 | 0.31 | 1.13 | 0.34 | |
SMX | 2018 | 0.92 | 0.96 | 0.07 | 0.10 | 3.26 | 1.71 |
2019 | 0.92 | 0.21 | 1.18 | 0.28 | 0.80 | 0.05 | |
SDM | 2018 | - | - | - | - | - | - |
2019 | 8.42 | 0.53 | 8.48 | - | 3.97 | 1.22 |
GH1 | GH2 | ||||
---|---|---|---|---|---|
Daily (ng kg−1 bw day−1) | Annual (µg kg−1 bw year−1) | Daily (ng kg−1 bw day−1) | Annual (µg kg−1 bw year−1) | ||
SDZ | 2018 | 0.00 | 0.00 | 0.00 | 0.00 |
2019 | 2.57 | 0.94 | 24 | 8.92 | |
SP | 2018 | 20.56 | 0.76 | 12 | 4.34 |
2019 | 0.71 | 0.26 | 1.66 | 0.61 | |
SMT | 2018 | 37.60 | 13.72 | 15.83 | 5.78 |
2019 | 73.18 | 26.71 | 132.96 | 48.53 | |
SMX | 2018 | 1758.15 | 641.73 | 885.88 | 323.35 |
2019 | 97.12 | 35.45 | 37.04 | 13.52 | |
SDM | 2018 | 145.35 | 53.05 | 75.45 | 27.54 |
2019 | 6.20 | 2.26 | 18.45 | 6.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Arévalo, R.; García-Delgado, C.; Mayans, B.; Antón-Herrero, R.; Cuevas, J.; Segura, M.L.; Eymar, E. Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety. Agronomy 2021, 11, 1016. https://doi.org/10.3390/agronomy11051016
Camacho-Arévalo R, García-Delgado C, Mayans B, Antón-Herrero R, Cuevas J, Segura ML, Eymar E. Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety. Agronomy. 2021; 11(5):1016. https://doi.org/10.3390/agronomy11051016
Chicago/Turabian StyleCamacho-Arévalo, Raquel, Carlos García-Delgado, Begoña Mayans, Rafael Antón-Herrero, Jaime Cuevas, María Luz Segura, and Enrique Eymar. 2021. "Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety" Agronomy 11, no. 5: 1016. https://doi.org/10.3390/agronomy11051016
APA StyleCamacho-Arévalo, R., García-Delgado, C., Mayans, B., Antón-Herrero, R., Cuevas, J., Segura, M. L., & Eymar, E. (2021). Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety. Agronomy, 11(5), 1016. https://doi.org/10.3390/agronomy11051016