Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details and Crop Management
2.2.1. Laboratory Study
2.2.2. Field Study
2.3. Data Collection
2.3.1. Laboratory Study
2.3.2. Field Study
2.4. Statistical Analysis
3. Results
3.1. Weather Parameters
3.2. Laboratory Study
3.3. Field Study
3.3.1. Rate of Crop Emergence and Crop Establishment
3.3.2. Crop Growth and SPAD Value
3.3.3. Root Mass Density
3.3.4. Yield and Yield Attributes
4. Discussion
4.1. Laboratory Study
4.2. Field Study
4.3. Conventional DSR versus Vattar/Soil Mulch DSR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
h | hour |
DSR | direct-seeded rice |
Conv-DSR | conventional dry direct-seeded rice |
References
- Khir, R.; Pan, Z. Rice. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Orlando, FL, USA, 2019; Volume 2, pp. 21–58. ISBN 9780128141380. [Google Scholar]
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; Available online: http://www.fao.org/faostat/en/ (accessed on 7 January 2021).
- APEDA. Analytical Report of APEDA Products. Available online: http://agriexchange.apeda.gov.in (accessed on 1 April 2021).
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.K.; Raman, A.; Sharma, D.K. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, B.S.; Mangat, G.S. Direct seeded rice in Punjab: Opportunities and challenges. In Proceedings of the National Seminar on Sustainable Rice Production Technology for Increasing the Farmers’ Income, Raipur, India, 20–21 January 2018. [Google Scholar]
- Chauhan, B.S.; Awan, T.H.; Abugho, S.B.; Evengelista, G.; Yadav, S. Effect of crop establishment methods and weed control treatments on weed management, and rice yield. Field Crop. Res. 2015, 172, 72–84. [Google Scholar] [CrossRef]
- Fageria, N.K.; Carvalho, G.D.; Santos, A.B.; Ferreira, E.P.B.; Knupp, A.M. Chemistry of lowland rice soils and nutrient availability. Commun. Soil Sci. Plant Anal. 2011, 42, 1913–1933. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Kumar, S. Weed management practices in direct seeded rice (Oryza sativa L.): A review. J. Pharmacogn. Phytochem. 2018, 7, 2356–2362. [Google Scholar]
- Kalita, J.; Ahmed, P.; Baruah, N. Puddling and its effect on soil physical properties and growth of rice and post rice crops: A review. J. Pharmacogn. Phytochem. 2020, 9, 503–510. [Google Scholar]
- Devkota, K.P.; Yadav, S.-; Khanda, C.; Beebout, S.J.; Mohapatra, B.K.; Singleton, G.R.; Puskur, R. Assessing alternative crop establishment methods with a sustainability lens in rice production systems of Eastern India. J. Clean. Prod. 2020, 244, 118835. [Google Scholar] [CrossRef]
- Basavalingaiah, K.; Ramesha, Y.; Paramesh, V.; Rajanna, G.; Jat, S.L.; Misra, S.D.; Gaddi, A.K.; Girisha, H.; Yogesh, G.; Raveesha, S.; et al. Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of Karnataka, India. Sustainability 2020, 12, 6439. [Google Scholar] [CrossRef]
- Hellin, J.; Balie, J.; Fisher, E.; Kohli, A.; Connor, M.; Yadav, S.; Kumar, V.; Krupnik, T.J.; Sander, B.O.; Cobb, J.; et al. Trans-disciplinary responses to climate change: Lessons from rice-based systems in Asia. Climate 2020, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Aryal, J.; Jat, M.L.; Sapkota, T.; Rahut, D.B.; Rai, M.; Jat, H.S.; Sharma, P.C.; Stirling, C. Learning adaptation to climate change from past climate extremes: Evidence from recent climate extremes in Haryana, India. Int. J. Clim. Chang. Strateg. Manag. 2019, 12, 128–146. [Google Scholar] [CrossRef]
- CSISA. Annual Report 2016—Cereal Systems Initiative for South Asia. 2016. Available online: www.csisa.org (accessed on 25 November 2020).
- Bhatti, D.S.; Kaur, S. Package of Practices for Kharif Crops in Punjab; Punjab Agricultural University Ludhiana; Foilprinters Press: Ludhiana, India, 2019; pp. 1–20. [Google Scholar]
- Ranbir, S.; Tripathi, R.S.; Sharma, D.K.; Chaudhari, S.K.; Joshi, P.K.; Dey, P.; Sharma, S.K.; Sharma, D.P.; Gurbachan, S. Effect of direct seeded rice on yield, water productivity and saving of farm energy in reclaimed sodic soil. Indian J. Soil Conserv. 2019, 43, 230–235. [Google Scholar]
- Bhullar, M.S.; Singh, S.; Kumar, S.; Gill, G. Agronomic and economic impacts of direct seeded rice in Punjab. Agric. Res. J. 2018, 55, 236–242. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Wang, X.; Xiong, D.; Wang, F. Comparing the grain yields of direct-seeded and transplanted rice: A meta-analysis. Agronomy 2019, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Munda, S.; Singh, S.; Kumar, V.; Jangde, H.; Mahapatra, A.; Chauhan, B. Crop establishment and weed control options for sustaining dry direct seeded rice production in Eastern India. Agronomy 2021, 11, 389. [Google Scholar] [CrossRef]
- Sandhu, N.; Torres, R.; Sta Cruz, M.T.; Maturan, P.C.; Jain, R.; Kumar, A.; Henry, A. Traits and QTLs for development of dry direct seeded rainfed rice varieties. J. Exp. Bot. 2015, 66, 225–244. [Google Scholar] [CrossRef]
- Sandhu, N.; Yadaw, R.B.; Chaudhary, B.; Prasai, H.; Iftekharuddaula, K.; Venkateshwarlu, C.; Annamalai, A.; Xangsayasane, P.; Battan, K.R.; Ram, M.; et al. Evaluating the performance of rice genotypes for improving yield and adaptability under direct seeded aerobic cultivation conditions. Front. Plant Sci. 2019, 10, 159. [Google Scholar] [CrossRef]
- Alam, K.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- CSISA. Annual Report 2017—Cereal Systems Initiative for South Asia. 2017. Available online: www.csisa.org (accessed on 7 January 2021).
- CSISA. Annual Report 2018—Cereal Systems Initiative for South Asia. 2018. Available online: www.csisa.org (accessed on 7 January 2021).
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A feasible strategy to enhance drought tolerance in crop plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Harris, D.; Hollington, P.; Ali, S. On-farm seed priming reduces yield losses of mungbean (Vigna radiata) associated with mungbean yellow mosaic virus in the North West Frontier Province of Pakistan. Crop Prot. 2014, 23, 1119–1124. [Google Scholar] [CrossRef]
- Lewandowska, S.; Łoziński, M.; Marczewski, K.; Kozak, M.; Schmidtke, K. Influence of priming on germination, development, and yield of soybean varieties. Open Agric. 2020, 5, 930–935. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Johnston, C.R.; Wang, Y.; Zhu, K.; Lu, F.; Zhang, Z.; Zou, J. Seed priming with polyethylene glycol induces phys-iological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS ONE 2015, 10, e0140620. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Farooq, M.; Ahmad, R.; Basra, S.M.A.; Lal, R. Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. Eur. J. Agron. 2016, 76, 130–137. [Google Scholar] [CrossRef]
- Tabassum, T.; Farooq, M.; Ahmad, R.; Zohaib, A.; Wahid, A.; Shahid, M. Terminal drought and seed priming improves drought tolerance in wheat. Physiol. Mol. Biol. Plants 2018, 24, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Canak, P.; Mirosavljevic, M.; Mitrovic, B.; Ciric, M.; Keselj, J.; Vujosevic, B.; Stanisavljevic, D. Effect of seed priming on seed vigor and early seedling growth in maize under optimal and suboptimal temperature conditions. Sel. Semen. 2016, 22, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Rasool, T.; Ahmad, R.; Farooq, M. Seed priming with micronutrients for improving the quality and yield of hybrid maize. Gesunde Pflanz. 2018, 71, 37–44. [Google Scholar] [CrossRef]
- Ali, M.M.; Javed, T.; Mauro, R.; Shabbir, R.; Afzal, I.; Yousef, A. Effect of seed priming with potassium nitrate on the performance of tomato. Agriculture 2020, 10, 498. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Tabassum, R.; Afzal, I. Enhancing the performance of direct seeded fine rice by seed priming. Plant Prod. Sci. 2006, 9, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Tao, Y.; Hussain, S.; Jiang, Q.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul. 2016, 78, 167–178. [Google Scholar] [CrossRef]
- Farooq, M.; Usman, M.; Nadeem, F.; Rehman, H.U.; Wahid, A.; Basra, S.M.A.; Siddique, K.H.M. Seed priming in field crops: Potential benefits, adoption and challenges. Crop. Pasture Sci. 2019, 70, 731–771. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed priming: New comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; Araujo, S., Balestrazzi, A., Eds.; InTech: Daimlerstrase, Germany, 2016; ISBN 978-953-51-2658-4. [Google Scholar]
- Du, B.; Luo, H.; He, L.; Zhang, L.; Liu, Y.; Mo, Z.; Pan, S.; Tian, H.; Duan, M.; Tang, X. Rice seed priming with sodium selenate: Effects on germination, seedling growth, and biochemical attributes. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Enhancement of germination and early seedling growth of rice (Oryza sativa) var. FARO44 by seed priming under normal and drought stressed conditions. J. Plant Nutr. 2020, 43, 1579–1593. [Google Scholar] [CrossRef]
- Arif, T.-U.; Afrin, S.; Polash, M.A.S.; Akter, T.; Ray, S.R.; Hossain, T.; Hossain, M.A. Role of exogenous signaling molecules in alleviating salt-induced oxidative stress in rice (Oryza sativa L.): A comparative study. Acta Physiol. Plant. 2019, 41, 69. [Google Scholar] [CrossRef]
- Prabhjyot-Kaur; Sandhu, S.S.; Singh, H.; Kaur, N.; Singh, S.; Kaur, A. Climatic Features and Their Variability in Punjab; AICRPAM: Ludhiana, India, 2016; 78p. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association (ISTA): Bassersdorf, Switzerland, 2015; pp. 1–276. [Google Scholar]
- Michaelis, L.; Menten, M. Die kinetik der intervintwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria 1. Crop. Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal leaf positions for SPAD meter measurement in rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, L.; Liu, H.; Zhang, L.; Wang, W. Enhancement in rice seed germination via improved respiratory metabolism under chilling stress. Food Energy Secur. 2020, 9, 234. [Google Scholar] [CrossRef]
- Mahajan, G.; Sarlach, R.S.; Japinder, S.; Gill, M.S. Seed priming effects on germination, growth and yield of dry direct-seeded rice. J. Crop Improv. 2011, 25, 409–417. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.; Afzal, I.; Khaliq, A. Optimization of hydropriming techniques for rice seed invigoration. Seed Sci. Technol. 2006, 34, 507–512. [Google Scholar] [CrossRef]
- Basra, S.M.A.; Farooq, M.; Hafeez, K.; Ahmad, N. Osmohardening a new technique for rice seed invigoration. Int. Rice Res. Notes 2004, 29, 80–81. [Google Scholar]
- Dunand, R.T. Gibberellic Acid Seed Treatment in Rice. LSU Agricultural Experiment Station Reports. 1993. Available online: http://digitalcommons.lsu.edu/agexp/510 (accessed on 25 November 2020).
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sukifto, R.; Nulit, R.; Kong, Y.C.; Sidek, N.; Mahadi, S.N.; Mustafa, N.; Razak, R.A. Enhancing germination and early seedling growth of Malaysian indica rice (Oryza sativa L.) using hormonal priming with gibberellic acid (GA3). AIMS Agric. Food 2020, 5, 649–665. [Google Scholar] [CrossRef]
- Anwar, P.; Juraimi, A.S.; Puteh, A.; Selamat, A.; Rahman, M.; Samedani, B. Seed priming influences weed competitiveness and productivity of aerobic rice. Acta Agric. Scand. Sect. B Plant Soil Sci. 2012, 62, 1–11. [Google Scholar] [CrossRef]
- Ella, E.S.; Dionisio-Sese, M.L.; Ismail, A.M. Seed priming improves crop establishment of rice in flooded soil. Crop Manag. Physiol. 2011, 36, 1–5. [Google Scholar]
- Simon, E.W. Early events in germination. In Seed Physiology: Germination and Reserve Mobilization; Murray, D.R., Ed.; Academic Press: Orlando, FL, USA, 1984; Volume 2, pp. 77–115. ISBN 978-0125119023. [Google Scholar]
- Basra, S.; Farooq, M.; Tabassam, R.; Ahmad, N. Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci. Technol. 2005, 33, 623–628. [Google Scholar] [CrossRef]
- Pame, A.R.; Kreye, C.; Johnson, D.; Heuer, S.; Becker, M. Effects of genotype, seed p concentration and seed priming on seedling vigor of rice. Exp. Agric. 2015, 51, 370–381. [Google Scholar] [CrossRef] [Green Version]
- Goswami, A.; Banerjee, R.; Raha, S. Drought resistance in rice seedlings conferred by seed priming. Protoplasma 2013, 250, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, M.B. Seed priming. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 287–325. [Google Scholar]
- Yuan-Yuan, S.U.; Yong-Jian, S.U.; Ming-Tian, W.A.; Xu-Yi, L.I.; Xiang, G.U.; Rong, H.U.; Jun, M.A. Effects of seed priming on germination and seedling growth of rice under water stress. Acta Agron. Sin. 2010, 36, 1931–1940. [Google Scholar]
- Chen, K.; Arora, R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci. 2011, 180, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Basra, S.M.A.; Farooq, M.; Hussain, M. Influence of osmopriming on the germination and early seedling growth of coarse and fine rice. Pak. J. Seed Technol. 2005, 6, 33–42. [Google Scholar]
- Ruan, S.; Xue, Q.; Tylkowska, K. Effects of seed priming on emergence and health of rice (Oryza sativa L.) seeds. Seed Sci. Technol. 2002, 30, 451–458. [Google Scholar]
- Hur, S. Effect of osmoconditioning on the productivity of Italian ryegrass and sorghum under suboptimal conditions. Korean J. Anim. Sci. 1991, 33, 101–105. [Google Scholar]
- Jisha, K.C.; Puthur, J.T. Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J. Crop Sci. Biotechnol. 2014, 17, 209–219. [Google Scholar] [CrossRef]
- Watanabe, K.; Oda-Yamamizo, C.; Sage-Ono, K.; Ohmiya, A.; Ono, M. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgen. Res. 2018, 27, 25–38. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 2013, 86, 76–85. [Google Scholar] [CrossRef]
Treatment | Germination (%) | Root Length (cm) | Shoot Length (cm) | DW of 10 Seedlings (g) | Vigor Index 1 | Vigor Index 2 |
---|---|---|---|---|---|---|
Control (dry seed) | 89 ± 0.1 b | 12.8 ± 0.2 c | 12.1 ± 0.3 b | 0.086 ± 0.002 a | 2219 ± 10.7 e | 7.7 ± 0.04 b |
Hydropriming 12 h | 89 ± 0.7 b | 13.1 ± 0.2 bc | 12.4 ± 0.1 b | 0.088 ± 0.001 a | 2267 ± 6.3 e | 7.8 ± 0.03 b |
Hydropriming 24 h | 89 ± 0.6 b | 13.3 ± 0.3 bc | 12.6 ± 0.2 b | 0.087 ± 0.002 a | 2302 ± 28.3 de | 7.7 ± 0.03 b |
Osmopriming12 h | 89 ± 0.7 b | 16.3 ± 0.3 a | 12.6 ± 0.4 b | 0.088 ± 0.002 a | 2560 ± 25.7 c | 7.8 ± 0.01 b |
Osmopriming 24 h | 88 ± 0.6 b | 16.1 ± 0.1 a | 12.2 ± 0.3 b | 0.088 ± 0.002 a | 2496 ± 3.1 cd | 7.7 ± 0.01 b |
Halopriming 12 h | 92 ± 0.3 a | 15.0 ± 0.3 ab | 13.3 ± 0.6 ab | 0.091 ± 0.002 a | 2619 ± 39.6 bc | 8.4 ± 0.03 a |
Halopriming 24 h | 92 ± 0.6 a | 15.7 ± 0.8 a | 13.4 ± 0.6 ab | 0.092 ± 0.001 a | 2676 ± 92.3 abc | 8.5 ± 0.04 a |
Hormopriming 12 h | 93 ± 0.6 a | 15.3 ± 0.8 ab | 14.7 ± 0.4 a | 0.091 ± 0.001 a | 2790 ± 95.6 ab | 8.4 ± 0.02 a |
Hormopriming 24 h | 93 ± 0.6 a | 15.9 ± 0.3 a | 14.8 ± 0.4 a | 0.091 ± 0.003 a | 2852 ± 30.4 a | 8.5 ± 0.02 a |
Treatment | Time Taken to 50% Emergence (T50) | Days Taken to Start of Emergence | Days Taken to Completion of Emergence | Plant Population (No. m−2) |
---|---|---|---|---|
Control (dry seed) | 10.3 ± 0.2 a | 6.3 ± 0.3 a | 13.0 ± 0.6 a | 85 ± 0.1 a |
Hydropriming 12 h | 9.8 ± 0.3 ab | 5.7 ± 0.2 ab | 11.7 ± 0.7 ab | 88 ± 0.7 a |
Hydropriming 24 h | 9.8 ± 0.3 ab | 5.7 ± 0.3 ab | 12.3 ± 0.7 ab | 87 ± 0.6 a |
Osmopriming12 h | 9.9 ± 0.4 ab | 6.3 ± 0.3 a | 11.7 ± 0.7 ab | 88 ± 0.7 a |
Osmopriming 24 h | 9.9 ± 0.5 ab | 6.3 ± 0.3 a | 11.0 ± 0.6 ab | 88 ± 0.6 a |
Halopriming 12 h | 9.3 ± 0.1 b | 5.3 ± 0.3 b | 10.7 ± 0.3 ab | 87 ± 0.3 a |
Halopriming 24 h | 9.3 ± 0.1 b | 5.3 ± 0.3 b | 10.3 ± 0.3 b | 87 ± 0.6 a |
Hormopriming 12 h | 9.2 ± 0.1 b | 5.0 ± 0.1 b | 10.0 ± 0.1 b | 86 ± 0.6 a |
Hormopriming 24 h | 9.2 ± 0.1 b | 5.0 ± 0.1 b | 10.0 ± 0.1 b | 87 ± 0.6 a |
Treatment | Time Taken to 50% Emergence (T50) | Days Taken to Start of Emergence | Days Taken to Completion of Emergence | Plant Population (No. m−2) |
---|---|---|---|---|
(A) Priming treatment | ||||
Control (dry seed) | 10.7 ± 0.4 a | 7.7 ± 0.6 a | 13.7 ± 0.3 a | 74.8 ± 3.5 d |
Hydropriming 12 h | 9.9 ± 0.3 abc | 6.8 ± 0.3 ab | 12.7 ± 0.3 abcd | 76.8 ± 3.5 bcd |
Hydropriming 24 h | 9.8 ± 0.4 bc | 6.8 ± 0.3 ab | 12.8 ± 0.4 abc | 76.0 ± 3.3 bcd |
Osmopriming12 h | 10.0 ± 0.4 ab | 7.0 ± 0.4 ab | 13.3 ± 0.5 ab | 75.3 ± 3.6 cd |
Osmopriming 24 h | 9.9 ± 0.5 abc | 7.0 ± 0.4 ab | 13.3 ± 0.5 ab | 75.8 ± 3.5 bcd |
Halopriming 12 h | 9.2 ± 0.5 cd | 6.2 ± 0.3bc | 11.5 ± 0.5 bcde | 79.3 ± 3.2 ab |
Halopriming 24 h | 8.7 ± 0.3 d | 6.0 ± 0.3 bc | 11.0 ± 0.5 cde | 79.0 ± 3.3 abc |
Hormopriming 12 h | 8.6 ± 0.3 d | 5.7 ± 0.2 c | 10.8 ± 0.5 de | 81.1 ± 2.9 a |
Hormopriming 24 h | 8.5 ± 0.4 d | 5.7 ± 0.3 c | 10.7 ± 0.4 e | 81.0 ± 2.8 a |
(B) DSR method | ||||
Conventional DSR | 8.9 ± 0.1 b | 6.0 ± 0.1 b | 11.7 ± 0.3 b | 85 ± 0.5 a |
Soil mulch DSR | 10.1 ± 0.2 a | 7.1 ± 0.2 a | 12.7 ± 0.3 a | 71 ± 0.6 b |
ANOVA (p-value) | ||||
Priming (P) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
DSR method (M) | <0.0001 | <0.0001 | 0.002 | <0.0001 |
P × M interaction | NS | NS | NS | NS |
Treatment | Plant Height (cm) | Tillers (Number m−2) | Days to Flowering (Days) | SPAD Value |
---|---|---|---|---|
Control (dry seed) | 95 ± 3.1 a | 512 ± 1.2 c | 82 ± 0.3 a | 35.4 ± 0.2 b |
Hydropriming 12 h | 96 ± 0.5 a | 512 ± 2.3 c | 81 ± 1.0 a | 35.6 ± 0.3 b |
Hydropriming 24 h | 96 ± 1.1 a | 511 ± 2.6 c | 81 ± 0.6 a | 35.6 ± 0.3 b |
Osmopriming12 h | 98 ± 0.4 a | 517 ± 5.5 bc | 82 ± 0.3 a | 37.7 ± 0.3 a |
Osmopriming 24 h | 98 ± 0.8 a | 517 ± 3.3 bc | 82 ± 0.3 a | 37.5 ± 0.3 a |
Halopriming 12 h | 99 ± 2.0 a | 540 ± 3.1 ab | 80 ± 0.6 a | 37.4 ± 0.2 a |
Halopriming 24 h | 100 ± 1.7 a | 550 ± 8.1 a | 80 ± 0.9 a | 37.5 ± 0.6 a |
Hormopriming 12 h | 99 ± 1.6 a | 539 ± 3.3 ab | 80 ± 0.3 a | 37.4 ± 0.1 a |
Hormopriming 24 h | 100 ± 1.3 a | 541 ± 7.4 ab | 80 ± 1.2 a | 37.4 ± 0.8 a |
Treatment | Plant Height (cm) | Tillers (Number m−2) | Days to Flowering (Days) | SPAD Value |
---|---|---|---|---|
(A) Priming treatment | ||||
Control (dry seed) | 98 ± 1.1 a | 421 ± 6.4 b | 83 ± 0.8 a | 34.7 ± 0.7 b |
Hydropriming 12 h | 98 ± 1.1 a | 425 ± 6.6 b | 82 ± 0.8 a | 34.7 ± 0.6 b |
Hydropriming 24 h | 97 ± 0.9 a | 425 ± 7.2 b | 82 ± 0.8 a | 34.8 ± 0.7 b |
Osmopriming12 h | 98 ± 0.8 a | 429 ± 7.3 b | 82 ± 0.8 a | 36.4 ± 0.6 a |
Osmopriming 24 h | 98 ± 0.9 a | 426 ± 5.8 b | 83 ± 0.8 a | 36.3 ± 0.6 a |
Halopriming 12 h | 99 ± 0.6 a | 463 ± 4.8 a | 82 ± 0.8 a | 36.5 ± 0.6 a |
Halopriming 24 h | 99 ± 1.0 a | 463 ± 3.4 a | 81 ± 0.8 a | 36.6 ± 0.5 a |
Hormopriming 12 h | 101 ± 1.3 a | 462 ± 5.6 a | 81 ± 0.8 a | 36.8 ± 0.5 a |
Hormopriming 24 h | 101 ± 1.3 a | 469 ± 5.1 a | 81 ± 0.9 a | 36.7 ± 0.5 a |
(B) DSR method | ||||
Conventional DSR | 98 ± 0.5 b | 452 ± 3.3 a | 80 ± 0.2 b | 34.8 ± 0.2 b |
Soil mulch DSR | 100 ± 0.5 a | 433 ± 5.0 b | 84 ± 0.2 a | 37.1 ± 0.2 a |
ANOVA (p-value) | ||||
Priming (P) | NS | <0.0001 | NS | <0.0001 |
DSR method (M) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
P × M interaction | NS | NS | NS | NS |
Treatment | Root Mass Density (mg/cc) in Different Layers | |
---|---|---|
0–15 cm | 15–30 cm | |
Control (dry seed) | 3.39 ± 0.04 c | 0.324 ± 0.01 b |
Hydropriming 12 h | 3.39 ± 0.02 c | 0.334 ± 0.02 b |
Hydropriming 24 h | 3.45 ± 0.06 c | 0.327 ± 0.03 b |
Osmopriming12 h | 4.66 ± 0.02 ab | 0.428 ± 0.01 a |
Osmopriming 24 h | 4.85 ± 0.02 a | 0.424 ± 0.01 a |
Halopriming 12 h | 4.27 ± 0.13 b | 0.410 ± 0.01 a |
Halopriming 24 h | 4.42 ± 0.04 ab | 0.416 ± 0.01 a |
Hormopriming 12 h | 4.31 ± 0.01 b | 0.414 ± 0.01 a |
Hormopriming 24 h | 4.51 ± 0.24 ab | 0.420 ± 0.02 a |
Treatment | Root Mass Density (mg/cc) in Different Layers | |
---|---|---|
0–15 cm | 15–30 cm | |
(A) Priming treatment | ||
Control (dry seed) | 3.47 ± 0.22 d | 0.33 ± 0.01 b |
Hydropriming 12 h | 3.47 ± 0.21 d | 0.33 ± 0.01 b |
Hydropriming 24 h | 3.49 ± 0.25 d | 0.33 ± 0.01 b |
Osmopriming12 h | 4.66 ± 0.16 ab | 0.42 ± 0.01 a |
Osmopriming 24 h | 4.70 ± 0.16 a | 0.42 ± 0.01 a |
Halopriming 12 h | 4.44 ± 0.16 bc | 0.40 ± 0.01 a |
Halopriming 24 h | 4.54 ± 0.15 abc | 0.40 ± 0.01 a |
Hormopriming 12 h | 4.42 ± 0.17 c | 0.40 ± 0.01 a |
Hormopriming 24 h | 4.47 ± 0.17 bc | 0.40 ± 0.01 a |
(B) DSR method | ||
Conventional DSR | 3.79 ± 0.1 b | 0.37 ± 0.01 b |
Soil mulch DSR | 4.59 ± 0.1 a | 0.40 ± 0.01 a |
ANOVA (p-value) | ||
Priming (P) | <0.0001 | <0.0001 |
DSR method (M) | <0.0001 | <0.0001 |
P × M interaction | NS | NS |
Treatment | Panicles (No. m−2) | Panicle Weight (g) | 1000-Grain Weight (g) |
---|---|---|---|
Control (dry seed) | 480 ± 4.6 b | 3.08 ± 0.11 a | 21.7 a ± 0.2 |
Hydropriming 12 h | 485 ± 2.7 b | 3.08 ± 0.08 a | 21.7 a ± 0.2 |
Hydropriming 24 h | 481 ± 0.7 b | 3.11 ± 0.06 a | 21.7 a ± 0.03 |
Osmopriming12 h | 489 ± 5.8 b | 3.15 ± 0.01 a | 21.7 a ± 0.2 |
Osmopriming 24 h | 487 ± 3.7 b | 3.16 ± 0.01 a | 21.7 a ± 0.2 |
Halopriming 12 h | 523 ± 2.7 a | 3.13 ± 0.04 a | 21.7 a ± 0.7 |
Halopriming 24 h | 524 ± 4.7 a | 3.11 ± 0.02 a | 21.7 a ± 0.9 |
Hormopriming 12 h | 523 ± 5.3 a | 3.11 ± 0.11 a | 21.6 a ± 0.6 |
Hormopriming 24 h | 525 ± 4.7 a | 3.11 ± 0.07 a | 21.7 a ± 0.3 |
Treatment | Panicles (No. m−2) | Panicle Weight (g) | 1000-Grain Weight (g) |
---|---|---|---|
(A) Priming treatment | |||
Control (dry seed) | 400 ± 9.1 b | 3.00 ± 0.12 a | 21.4 ± 0.1 a |
Hydropriming 12 h | 399 ± 7.1 b | 3.00 ± 0.12 a | 21.4 ± 0.3 a |
Hydropriming 24 h | 404 ± 7.1 b | 2.99 ± 0.13 a | 21.4 ± 0.2 a |
Osmopriming 12 h | 402 ± 5.0 b | 3.16 ± 0.11 a | 21.6 ± 0.2 a |
Osmopriming 24 h | 401 ± 9.9 b | 3.17 ± 0.1 a | 21.5 ± 0.3 a |
Halopriming 12 h | 438 ± 5.2 a | 3.06 ± 0.15 a | 21.5 ± 0.3 a |
Halopriming 24 h | 436 ± 7.1 a | 3.07 ± 0.15 a | 21.5 ± 0.2 a |
Hormopriming 12 h | 439 ± 7.2 a | 3.08 ± 0.12 a | 21.4 ± 0.3 a |
Hormopriming 24 h | 441 ± 6.1 a | 3.07 ± 0.13 a | 21.5 ± 0.4 a |
(B) DSR method | |||
Conventional DSR | 431 ± 3.5 a | 2.83 ± 0.02 b | 21.3 ± 0.1 |
Soil mulch DSR | 404 ± 4.6 b | 3.30 ± 0.04 a | 21.6 ± 0.1 |
ANOVA (p-value) | |||
Priming (P) | <0.0001 | NS | NS |
DSR method (M) | <0.0001 | <0.0001 | NS |
P × M interaction | NS | NS | NS |
Treatment | Number of Filled Grain Per Panicle | Number of Unfilled Grain Per Panicle | Sterility (%) |
---|---|---|---|
Control (dry seed) | 140 ± 3.7 a | 25 ± 1.0 a | 15 ± 0.7 a |
Hydropriming 12 h | 141 ± 4.5 a | 25 ± 1.2 a | 15 ± 1.0 ab |
Hydropriming 24 h | 140 ± 1.6 a | 26 ± 0.4 a | 15 ± 0.1 a |
Osmopriming12 h | 146 ± 1.3 a | 20 ± 0.6 b | 12 ± 0.2 bc |
Osmopriming 24 h | 146 ± 0.6 a | 20 ± 0.4 b | 12 ± 0.2 c |
Halopriming 12 h | 144 a ± 6.9 | 21 ± 1.9 ab | 13 ± 0.5 abc |
Halopriming 24 h | 144 ± 5.3 a | 21 ± 1.2 ab | 13 ± 0.7 abc |
Hormopriming 12 h | 145 ± 4.8 a | 20 ± 0.8 b | 12 ± 0.5 bc |
Hormopriming 24 h | 144 ± 1.7 a | 20 ± 1.4 b | 12 ± 0.9 bc |
Treatment | Number of Filled Grain Per Panicle | Number of Unfilled Grain Per Panicle | Sterility (%) |
---|---|---|---|
(A) Priming treatment | |||
Control (dry seed) | 131 ± 5.4 b | 24 ± 1.8 a | 16 ± 1.4 a |
Hydropriming 12 h | 130 ± 5.2 b | 24 ± 1.5 a | 15 ± 1.3 a |
Hydropriming 24 h | 130 ± 5.3 b | 24 ± 1.5 a | 15 ± 1.2 a |
Osmopriming12 h | 138 ± 4.9 a | 16 ± 1.2 b | 10 ± 1.0 b |
Osmopriming 24 h | 138 ± 4.6 a | 15 ± 1.3 b | 10 ± 1.0 b |
Halopriming 12 h | 135 ± 4.8 a | 18 ± 1.0 b | 12 ± 1.0 b |
Halopriming 24 h | 136 ± 5.6 a | 18 ± 1.4 b | 12 ± 1.2 b |
Hormopriming 12 h | 135 ± 5.9 a | 18 ± 1.3 b | 12 ± 1.2 b |
Hormopriming 24 h | 136 ± 5.2 a | 18 ± 1.3 b | 12 ± 1.1 b |
(B) DSR method | |||
Conventional DSR | 124 ± 0.9 b | 22 ± 0.7 a | 15 ± 0.5 a |
Soil mulch DSR | 146 ± 1.0 a | 17 ± 0.7 b | 10 ± 0.4 b |
ANOVA (p-value) | |||
Priming (P) | 0.0069 | <0.0001 | <0.0001 |
DSR method (M) | <0.0001 | <0.0001 | <0.0001 |
P × M interaction | NS | NS | NS |
Treatment | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Harvest Index (%) |
---|---|---|---|
Control (dry seed) | 8.1 ± 0.04 d2 | 10.3 ± 1.1 a | 44 ± 2.2 a |
Hydropriming 12 h | 8.2 ± 0.04 cd | 10.4 ± 0.7 a | 44 ± 1.8 a |
Hydropriming 24 h | 8.3 ± 0.03 cd | 10.5 ± 1.1 a | 44 ± 2.1 a |
Osmopriming12 h | 8.4 ± 0.03 bc | 10.6 ± 0.3 a | 44 ± 0.7 a |
Osmopriming 24 h | 8.4 ± 0.12 bc | 10.5 ± 0.3 a | 45 ± 0.4 a |
Halopriming 12 h | 8.9 ± 0.08 a | 10.8 ± 1.1 a | 45 ± 2.8 a |
Halopriming 24 h | 9.0 ± 0.04 a | 10.9 ± 1.0 a | 45 ± 2.5 a |
Hormopriming 12 h | 8.7 ± 0.1 ab | 10.8 ± 1.0 a | 45 ± 2.7 a |
Hormopriming 24 h | 8.9 ± 0.07 a | 10.9 ± 0.9 a | 45 ± 1.8 a |
Treatment | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Harvest Index (%) |
---|---|---|---|
(A) Priming treatment | |||
Control (dry seed) | 7.0 ± 0.08 c | 9.0 ± 0.6 a | 44 ± 1.3 a |
Hydropriming 12 h | 7.2 ± 0.09 c | 9.1 ± 0.4 a | 44 ± 1.2 a |
Hydropriming 24 h | 7.2 ± 0.06 c | 8.9 ± 0.2 a | 45 ± 0.7 a |
Osmopriming12 h | 7.3 ± 0.03 bc | 9.1 ± 0.1 a | 45 ± 0.3 a |
Osmopriming 24 h | 7.3 ± 0.05 bc | 9.1 ± 0.1 a | 45 ± 0.5 a |
Halopriming 12 h | 7.6 ± 0.05 ab | 9.3 ± 0.2 a | 45 ± 0.6 a |
Halopriming 24 h | 7.7 ± 0.06 a | 9.4 ± 0.2 a | 45 ± 0.5 a |
Hormopriming 12 h | 7.7 ± 0.07 a | 9.4 ± 0.2 a | 45 ± 0.6 a |
Hormopriming 24 h | 7.8 ± 0.06 a | 9.5 ± 0.3 a | 45 ± 0.6 a |
(B) DSR method | |||
Conventional DSR | 7.5 ± 0.05 a | 9.4 ± 0.1 a | 44.4 ± 0.3 a |
Soil mulch DSR | 7.4 ± 0.07 c | 9.0 ± 0.1 a | 45.1 ± 0.3 a |
ANOVA (p-value) | |||
Priming (P) | <0.0001 | NS | NS |
DSR method (M) | NS | NS | NS |
P × M interaction | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhillon, B.S.; Kumar, V.; Sagwal, P.; Kaur, N.; Singh Mangat, G.; Singh, S. Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India. Agronomy 2021, 11, 849. https://doi.org/10.3390/agronomy11050849
Dhillon BS, Kumar V, Sagwal P, Kaur N, Singh Mangat G, Singh S. Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India. Agronomy. 2021; 11(5):849. https://doi.org/10.3390/agronomy11050849
Chicago/Turabian StyleDhillon, Buta Singh, Virender Kumar, Pardeep Sagwal, Navjyot Kaur, Gurjit Singh Mangat, and Sudhanshu Singh. 2021. "Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India" Agronomy 11, no. 5: 849. https://doi.org/10.3390/agronomy11050849
APA StyleDhillon, B. S., Kumar, V., Sagwal, P., Kaur, N., Singh Mangat, G., & Singh, S. (2021). Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India. Agronomy, 11(5), 849. https://doi.org/10.3390/agronomy11050849