Managing pH of Organic Matrices and New Commercial Substrates for Ornamental Plant Production: A Methodological Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Matrices and Growing Media
2.2. Titration Curve and Theoretical Buffering Capacity Trials
2.3. Acidification Trials in Climatic Chamber and in Open Filed Conditions
2.4. Statistical Analysis
3. Results and Discussion
3.1. Titration Curve and Theoretical Buffering Capacity Tests
3.2. Acidification Trials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmilewski, G. Growing Media Constituents Used in the EU in 2013. Acta Hortic. 2017, 85–92. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Food Waste Composting: Its Use as a Peat Replacement. Waste Manag. 2010, 30, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Massa, D.; Malorgio, F.; Lazzereschi, S.; Carmassi, G.; Prisa, D.; Burchi, G. Evaluation of Two Green Composts for Peat Substitution in Geranium (Pelargonium Zonale L.) Cultivation: Effect on Plant Growth, Quality, Nutrition, and Photosynthesis. Sci. Hortic. 2018, 228, 213–221. [Google Scholar] [CrossRef]
- Massa, D.; Prisa, D.; Lazzereschi, S.; Cacini, S.; Burchi, G. Heterogeneous Response of Two Bedding Plants to Peat Substitution by Two Green Composts. Hortic. Sci. 2018, 45, 164–172. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Efficacy of Organic Amendments Used in Containerized Plant Production: Part 1—Compost-Based Amendments. Sci. Hortic. 2020, 266, 108856. [Google Scholar] [CrossRef]
- Stewart-Wade, S.M. Efficacy of Organic Amendments Used in Containerized Plant Production: Part 2—Non-Compost-Based Amendments. Sci. Hortic. 2020, 260, 108855. [Google Scholar] [CrossRef]
- Di Lonardo, S.; Massa, D.; Orsenigo, S.; Zubani, L.; Rossi, G.; Fascella, G.; Cacini, S. Substitution of Peat in the Cultivation of Two Shrub Species Used for Ecological Restoration and Recovery of Degraded Green Areas. Acta Hortic. 2021, 97–102. [Google Scholar] [CrossRef]
- Blok, C.; Wever, G. Experience with Selected Physical Methods to Characterize the Suitability of Growing Media for Plant Growth. Acta Hortic. 2008, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Caron, J.; Pepin, S.; Périard, Y. Physics of Growing Media in a Green Future. Acta Hortic. 2014, 309–317. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving Environmentally Sustainable Growing Media for Soilless Plant Cultivation Systems—A Review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Wallach, R. Chapter 3—Physical characteristics of soilless media. In Soilless Culture, 2nd ed.; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Boston, MA, USA, 2019; pp. 33–112. ISBN 978-0-444-63696-6. [Google Scholar]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, G.E. Compost Utilization in Ornamental and Nursery Crop Production Systems. In Compost Utilization in Horticultural Cropping Systems; Lewis Publishers: New York, NY, USA, 2001; pp. 135–150. [Google Scholar] [CrossRef]
- Raviv, M. Production of High-Quality Composts for Horticultural Purposes: A Mini-Review. HortTechnology 2005, 15, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Carrión, C.; de la Fuente, R.G.; Fornes, F.; Puchades, R.; Abad, M. Acidifying Composts from Vegetable Crop Wastes to Prepare Growing Media for Containerized Crops. Compost Sci. Util. 2008, 16, 20–29. [Google Scholar] [CrossRef]
- Amberger-Ochsenbauer, S.; Jauch, M.; Schmitz, H.-J.; Meinken, E. Effect of Elemental Sulfur and Nitrogen Form on Substrate pH and Growth of Calibrachoa in Growing Media Containing Compost High in Carbonate. Acta Hortic. 2017, 359–364. [Google Scholar] [CrossRef]
- Handreck, K.A.; Black, N.D.; Black, N. Growing Media for Ornamental Plants and Turf; UNSW Press: Sydney, Australia, 2002. [Google Scholar]
- Costello, R.C.; Sullivan, D.M. Determining the pH Buffering Capacity of Compost via Titration with Dilute Sulfuric Acid. Waste Biomass Valorization 2014, 5, 505–513. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. The Use of Elemental Sulphur as Organic Alternative to Control pH during Composting of Olive Mill Wastes. Chemosphere 2004, 57, 1099–1105. [Google Scholar] [CrossRef]
- de la Fuente, R.G.; Carrión, C.; Botella, S.; Fornes, F.; Noguera, V.; Abad, M. Biological Oxidation of Elemental Sulphur Added to Three Composts from Different Feedstocks to Reduce Their pH for Horticultural Purposes. Bioresour. Technol. 2007, 98, 3561–3569. [Google Scholar]
- Dias, V.; Mechant, E.; Hoekstra, B.; Perneel, M.; Vandecasteele, B. Sustainable Growing Media Based on Green Waste Compost and Other Organic Recycled Materials: Use of Elemental Sulphur to Control pH. In Proceedings of the International Symposium on Growing Media, Composting and Substrate Analysis-SusGro2015 1168, Vienna, Austria, 11 September 2015; pp. 167–174. [Google Scholar]
- Germida, J.J.; Janzen, H.H. Factors Affecting the Oxidation of Elemental Sulfur in Soils. Fertil. Res. 1993, 35, 101–114. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Ceglie, F.G.; Aly, A.; Mihreteab, H.T.; Ciaccia, C.; Tittarelli, F. Phosphorus Availability from Rock Phosphate: Combined Effect of Green Waste Composting and Sulfur Addition. J. Environ. Manag. 2016, 182, 557–563. [Google Scholar] [CrossRef]
- Attoe, O.J.; Olson, R.A. Factors Affecting Rate of Oxidation in Soils of Elemental Sulfur and That Added in Rock Phosphate-Sulfur Fusions. Soil Sci. 1966, 101, 317–325. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Sharma, R. Temperature Effects on Soil Organic Sulphur Mineralization and Elemental Sulphur Oxidation in Subtropical Soils of Varying pH. Nutr. Cycl. Agroecosyst. 1999, 54, 175–182. [Google Scholar]
- Vandecasteele, B.; Pot, S.; Maenhout, K.; Delcour, I.; Vancampenhout, K.; Debode, J. Acidification of Composts versus Woody Management Residues: Optimizing Biological and Chemical Characteristics for a Better Fit in Growing Media. J. Environ. Manag. 2021, 277, 111444. [Google Scholar] [CrossRef] [PubMed]
- Miserez, A.; Nelissen, V.; Pauwels, E.; Schamp, B.; Grunert, O.; Van der Veken, B.; Ceusters, J.; Vancampenhout, K. Characteristics of Residues from Heathland Restauration and Management: Implications for Their Sustainable Use in Agricultural Soils or Growing Media. Waste Biomass Valorization 2019, 11, 1–18. [Google Scholar] [CrossRef]
- Wissner, P.; Bohne, H.; Heumann, S.; Emmel, M. Plant Biomass from Heathland Management: A Possible Peat Substitute? In Proceedings of the International Symposium on Growing Media, Composting and Substrate Analysis-SusGro2015 1168, Vienna, Austria, 11 September 2015; pp. 27–32. [Google Scholar]
- De Boodt, M.; Verdonck, O. The Physical Properties of the Substrates in Horticulture. In Proceedings of the III Symposium on Peat in Horticulture 26, Dublin, Ireland, 28 June–3 July 1971; pp. 37–44. [Google Scholar]
- Harada, Y.; Inoko, A. The Measurement of the Cation-Exchange Capacity of Composts for the Estimation of the Degree of Maturity. Soil Sci. Plant Nutr. 1980, 26, 127–134. [Google Scholar] [CrossRef]
- Bunt, B.R. Media and Mixes for Container-Grown Plants: A Manual on the Preparation and Use of Growing Media for Pot Plants; Springer Science & Business Media, Springer Nature: Cham, Switzerland, 2012. [Google Scholar]
- Martinez, F.X.; Casasayas, R.; Burés, S.; Cañameras, N. Titration Curves of Different Organic Substrates. In Proceedings of the Symposium on Horticultural Substrates and their Analysis 221, Gl. Avernaes, Funen, Denmark, 5–11 September 1987; pp. 105–116. [Google Scholar]
- Taylor, M.D.; Kreis, R.; Rejtö, L. Establishing Growing Substrate pH with Compost and Limestone and the Impact on pH Buffering Capacity. HortScience 2016, 51, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Costello, R.C.; Sullivan, D.M.; Bryla, D.R.; Strik, B.C.; Owen, J.S. Compost Feedstock and Compost Acidification Affect Growth and Mineral Nutrition in Northern Highbush Blueberry. HortScience 2019, 54, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Marfà, O.; Tort, J.M.; Olivella, C.; Cáceres, R.; Martínez, F.X. Cattle Manure Compost as Substrate. II-Conditioning and Formulation of Growing Media for Cut Flower Cultures. In Proceedings of the International Symposium on Composting & Use of Composted Material in Horticulture 469, Scotland, UK, 5–11 April 1997; pp. 305–312. [Google Scholar]
- Abad, M.; Noguera, P.; Bures, S. National Inventory of Organic Wastes for Use as Growing Media for Ornamental Potted Plant Production: Case Study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Carlile, W.R.; Cattivello, C.; Zaccheo, P. Organic Growing Media: Constituents and Properties. Vadose Zone J. 2015, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Carlile, W.R.; Raviv, M.; Prasad, M. Chapter 8—Organic Soilless Media Components. In Soilless Culture, 2nd ed.; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Boston, MA, USA, 2019; pp. 303–378. ISBN 978-0-444-63696-6. [Google Scholar]
- Van Gerrewey, T.; Ameloot, N.; Navarrete, O.; Vandecruys, M.; Perneel, M.; Boon, N.; Geelen, D. Microbial Activity in Peat-Reduced Plant Growing Media: Identifying Influential Growing Medium Constituents and Physicochemical Properties Using Fractional Factorial Design of Experiments. J. Clean. Prod. 2020, 256, 120323. [Google Scholar] [CrossRef]
- Mari, I.; Ehaliotis, C.; Kotsou, M.; Chatzipavlidis, I.; Georgakakis, D. Use of Sulfur to Control pH in Composts Derived from Olive Processing By-Products. Compost Sci. Util. 2005, 13, 281–287. [Google Scholar] [CrossRef]
Organic Matrices | Green Compost | Coconut Coir Dust | Stabilized Wood Fibre |
pH | 8.02 ± 0.09 | 7.70 ± 0.03 | 7.26 ± 0.11 |
EC (μS cm−1) | 596.00 ± 74.72 | 171.80 ± 6.41 | 175.80 ± 21.69 |
Growing media | CP | CGC | CGCW |
pH | 7.68 ± 0.09 | 8.48 ± 0.06 | 8.08 ± 0.12 |
EC (μS cm−1) | 136.67 ± 26.81 | 394.00 ± 13.70 | 343.30 ± 86.20 |
Reached EC Values (µS cm−1) | ||||
---|---|---|---|---|
Point pH Adjustment | T0 | T84 | T120 | |
Coconut coir dust | 0 (control) | 171.8 ± 6.4 a | 117.3 ± 1.9 b | 126.1 ± 4.3 ab |
−1 S0 | 146.6 ± 8.3 a | 124.3 ± 4.0 a | 162.7 ± 2.7 b | |
−1.5 S0 | 151.6 ± 6.0 ab | 166.9 ± 20.2 a | 174.1 ± 1.0 a | |
−1 FeSO4 | 2017.0 ± 158.2 a | 1523.7 ± 26.6 b | - | |
−1.5 FeSO4 | 2584.0 ± 63.6 a | 1986.7 ± 93.1 b | - | |
Stabilized Wood Fibre | 0 (control) | 175.8 ± 21.7 a | 157.6 ± 10.3 ab | 124.3 ± 4.7 b |
−1 S0 | 167.9 ± 2.7 | 187.9 ± 28.2 | 154.2 ± 51.0 | |
−1.5 S0 | 140.4 ± 7.7 ab | 162.6 ± 10.3 a | 103.6 ± 6.0 b | |
−1 FeSO4 | 1387.3 ± 86.2 a | 1133.7 ± 80.5 ab | - | |
−1.5 FeSO4 | 2243.3 ± 56.3 a | 1382.3 ± 37.5 b | - | |
Green Compost | 0 (control) | 596.0 ± 74.7 c | 709.3 ± 49.9 ab | 758.3 ± 68.6 |
−1 S0 | 697.0 ± 102.5 c | 945.3 ± 58.5 b | 1310.3 ± 114.2 | |
−2 S0 | 1021.7 ± 18.8 ab | 1327.0 ± 51.0 a | 1024.0 ± 252.6 | |
−1 FeSO4 | 4390.0 ± 10.0 a | 3367.3 ± 84.0 | - | |
−2 FeSO4 | 7183.3 ± 145.7 a | 3928.3 ± 157.7 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacini, S.; Di Lonardo, S.; Orsenigo, S.; Massa, D. Managing pH of Organic Matrices and New Commercial Substrates for Ornamental Plant Production: A Methodological Approach. Agronomy 2021, 11, 851. https://doi.org/10.3390/agronomy11050851
Cacini S, Di Lonardo S, Orsenigo S, Massa D. Managing pH of Organic Matrices and New Commercial Substrates for Ornamental Plant Production: A Methodological Approach. Agronomy. 2021; 11(5):851. https://doi.org/10.3390/agronomy11050851
Chicago/Turabian StyleCacini, Sonia, Sara Di Lonardo, Simone Orsenigo, and Daniele Massa. 2021. "Managing pH of Organic Matrices and New Commercial Substrates for Ornamental Plant Production: A Methodological Approach" Agronomy 11, no. 5: 851. https://doi.org/10.3390/agronomy11050851
APA StyleCacini, S., Di Lonardo, S., Orsenigo, S., & Massa, D. (2021). Managing pH of Organic Matrices and New Commercial Substrates for Ornamental Plant Production: A Methodological Approach. Agronomy, 11(5), 851. https://doi.org/10.3390/agronomy11050851