Seed Yam Production Using High-Quality Minitubers Derived from Plants Established with Vine Cuttings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of Seed Tuber Size and Variety on Crop Establishment
3.2. The Effect of Minituber Size and Variety on Yield and Related Traits
4. Discussion
4.1. The Effect of Minituber Size and Variety on Yield and Related Traits
4.2. The Benefits of Using Minitubers for Seed Yam Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAOSTAT). Statistics, Rome, Italy. Available online: www.fao.org/statistics/en (accessed on 16 June 2020).
- Asiedu, R.; Sartie, A. Crops that feed the world 1. Yams. Yams for income and food security. Food Secur. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, A.C. The Dioscorea Genus (Yam)—An appraisal of nutritional and therapeutic potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Adegun, M.K. Comparison of the growth and economic values of maize and yam peel based supplement fed to West African dwarf rams. J. Anim. Sci. Livest. Prod. 2020, 4, 2. [Google Scholar] [CrossRef]
- Bassey, E.E. Constraints and prospects of yam production in Nigeria. Eur. J. Phy. Agric. Sci. 2017, 5, 1. [Google Scholar]
- Wumbei, A.; Bawa, J.K.A.; Akudugu, M.A.; Spanoghe, P. Absence of effects of herbicides use on yam rots: A case study in Wulensi, Ghana. Agriculture 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Nweke, F. Yam in West Africa: Food, Money and More; Michigan State University Press: East Lansing, MI, USA, 2016; ISBN 978-1-60917-474-3. [Google Scholar]
- Tetteh, J.P.; Saakwa, C. Prospects and constraints to yam production in Ghana. Acta Hort. 1994, 380, 355–359. [Google Scholar] [CrossRef]
- International Institute of Tropical Agriculture. Yam. Available online: http://www.iita.org/cms/details/yam_projectdetails.aspx?zoneid=63&articleid=268 (accessed on 10 July 2008).
- Okorji, E.C.; Obiechina, C.O. The role of seed yam procurement arrangements for yam production specialization in the small-holder cropping system of Anambra State, Nigeria. Afri. Dev. Rev. 1993, 5, 6–10. [Google Scholar]
- Madukwe, M.C.; Ayichi, D.; Okoli, E.C. Issues in Yam Minisett Transfer to Farmers in South-Eastern Nigeria; ATPS Working Paper, No. 21; African Technology Policy Studies Network: Nairobi, Kenya, 2000; p. 32. [Google Scholar]
- International Institute of Tropical Agriculture (IITA). Estimated Yield Gap and Intervention Effects on Improvement of Yam Yields. In Yam Improvement for Income and Food Security in West Africa (YIIFSWA); Appendix A3—Revised Proposal Submitted to the Bill & Melinda Gates Foundation by the International Institute of Tropical Agriculture; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 2011; p. 52. [Google Scholar]
- Okoli, O.O.; Igbokwe, M.C.; Ene, L.S.O.; Nwokoye, J.U. Rapid Multiplication of Seed Yam by the Minisett Technique; Research Bulletin No. 2; National Roots Crops Research Institute: Umudike, Nigeria, 1982; pp. 1–12. [Google Scholar]
- Otoo, J.A.; Osiru, D.S.O.; Ng, S.Y.; Hahn, S.K. Improved Technology for Seed Yam Production; International Institute of Tropical Agriculture: Ibadan, Nigeria, 1987; ISBN 978-131-024-3. [Google Scholar]
- Balogun, M.O. Microtubers in yam germplasm conservation and propagation: The status, the prospects and the constraints. Biotechnol. Mol. Biol. Rev. 2009, 4, 001–010. Available online: http://www.academicjournals.org/BMBR (accessed on 10 February 2021).
- Ahloowalia, B.S. Production and performance of potato mini-tubers. Euphytica 1994, 75, 163–172. [Google Scholar] [CrossRef]
- Ogbonna, M.C.; Korieocha, D.S.; Onyenobi, V.O.; Njoku, S.C. Profitability of minituber seed yam production technique in south east agro-ecological zone: Evidence from Abia state, Nigeria. J. Agric. Soc. Res. 2011, 11, 113. [Google Scholar]
- Ikeorgu, J.G.; Dabels, V.Y. Studies on the Performance of Seven Released Hybrid White Yam (D. Rotundata) Varieties for Minituber Production; Annual Report; National Root Crops Research Institute (NRCRI): Umudike, Nigeria, 2005. [Google Scholar]
- Njoku, A. The propagation of yams (Dioscorea spp.) by vine cuttings. J. W. Afr. Sei. Assoc. 1963, 8, 29–32. [Google Scholar]
- Cabanillas, E.; Martin, F.W. The propagation of edible yams from cuttings. J. Agric. Univ. Puerto Rico 1978, 62, 249–254. [Google Scholar] [CrossRef]
- Maroya, N.G.; Balogun, M.; Asiedu, R.; Aighewi, B.; Kumar, P.L.; Augusto, J. Yam propagation using aeroponics technology. Ann. Res. Rev. Biol. 2014, 4, 3849–3903. [Google Scholar] [CrossRef]
- Balogun, M.O.; Maroya, N.; Asiedu, R. Status and prospects for improving yam seed systems using temporary immersion bioreactors. Afr. J. Biotechnol. 2014, 13, 1614–1622. [Google Scholar]
- Nugali Yadde, M.M.; De Silva, H.D.M.; Perera, R.; Ariyaratna, D.; Sangakkara, U.R. An aeroponic system for the production of pre-basic seed potato. Ann. Sri Lanka Dept. Agric. 2005, 7, 199–288. [Google Scholar]
- Carsky, R.J.; Asiedu, R.; Cornet, D. Review of soil fertility management for yam-based systems in west Africa. AJRTC 2010, 8, 1–17. [Google Scholar]
- Aighewi, B.; Maroya, N.; Asiedu, R.; Aihebhoria, D.; Balogun, M.; Mignouna, D. Seed yam production from whole tubers versus minisetts. J. Crop. Improv. 2020. [Google Scholar] [CrossRef]
- Cornet, D.; Sierra, J.; Tournebize, R.; Ney, B. Yams (Dioscorea spp.) plant size hierarchy and yield variability: Emergence time is critical. Eur. J. Agron. 2014, 55, 100–107. [Google Scholar] [CrossRef]
- Diehl, L. Small Holder Farming Systems with Yam in the Southern Guinea Savannah of Nigeria; German Agency for Technical Cooperation (GTZ): Bonn/Eschborn, Germany, 1982; p. 340. [Google Scholar]
- Otoo, J.A. Substitutes for Chemicals, Sawdust and Plastic Mulch in Improved Seed Yam Production. In Promotion of Root Crop-Based Industries: An Incentive for Research and Development, Proceedings of the 4th Triennial Symposium of ISTRC-AB, Kinshasa, Zaire, 5–8 December 1989; Akoroda, M.O., Arene, O.B., Eds.; International Society for Tropical Root Crops (ISTRC): Ibadan, Nigeria, 1992; pp. 281–284. [Google Scholar]
- Oguntade, A.E.; Thompson, O.A.; Ige, T. Economics of seed yam production using minisett technique in Oyo State, Nigeria. Field Actions Sci. Rep. 2010, 4. Available online: http://journals.openedition.org/factsreports/659 (accessed on 18 February 2021).
- Aighewi, B.A.; Asiedu, R.; Maroya, N.; Balogun, M. Improved propagation methods to raise the productivity of yam (Dioscorea rotundata Poir.). Food Secur. 2015, 7, 823–834. [Google Scholar] [CrossRef] [Green Version]
Factors | Days to 50% Emergence | Crop Establishment (%) at 8 WAP | Vine Length (cm) | Number of Leaves | Leaf Area Index | Yield (t ha−1) | Seed Multiplication Ratio | Mean Tuber Weight (g) Stand−1 | Mean Number Tubers Plant−1 | Tuber Number ha−1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Minituber Size | |||||||||||
1 g | 23.8 b | 90.4 a | 135.2 a | 68.3 a | 2.1 a | 14.4 a | 138.1 b | 159.2 a | 1.1 a | 101,296 a | |
3 g | 21.7 b | 94.1 b | 158.6 b | 77.6 a | 2.8 b | 17.7 b | 58.6 a | 187.3 b | 1.2 b | 112,593 b | |
5 g | 18.8 a | 94.6 b | 186.9 c | 105.4 b | 4.2 c | 23.6 c | 48.1 a | 249.4 c | 1.4 c | 130,556 c | |
LSD | 2.16 | 3.32 | 13.68 | 7.19 | 0.36 | 2.26 | 11.27 | 25.32 | 0.07 | 7231 | |
Variety | |||||||||||
Asiedu | 21.6 a | 92.6 a | 158.1 a | 86.4 a | 2.9 a | 18.3 a | 78.5 a | 195.8 a | 1.2 a | 113,457 a | |
Kpamyo | 21.4 a | 93.5 a | 162.3 a | 81.2 a | 3.2 b | 18.9 a | 84.7 a | 201.5 a | 1.2 a | 116,173 a | |
LSD | 1.77 | 2.71 | 11.17 | 5.87 | 0.29 | 1.84 | 9.20 | 20.67 | 0.06 | 5904.1 | |
Year | |||||||||||
2017 | 22.2 a | 90.9 a | 160.5 a | 89.8 b | 3.1 a | 14.9 a | 69.6 a | 164.6 a | 1.3 b | 114,444 ab | |
2018 | 21.6 a | 92.8 ab | 159.0 a | 82.8 ab | 3.0 a | 15.7 a | 63.2 a | 168.3 a | 1.2 a | 110,370 a | |
2019 | 20.6 a | 95.4 b | 161.1 a | 78.8 a | 3.0 a | 25.1 b | 112.0 b | 263.1 b | 1.3 b | 119,630 b | |
LSD | 2.16 | 3.32 | 13.68 | 7.19 | 0.36 | 2.26 | 11.27 | 25.32 | 0.07 | 7231 |
Sett Size | Variety | Year | Days to 50% Emergence | Crop Establishment (%) | Vine Length (m) | No. Leaves | Leaf Area Index | Yield (t ha−1) | Seed Multiplication Ratio | Mean Weight/Tuber (g) | Number of Tubers (t ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 g | Asiedu | 2017 | 21.3 a–g | 91.1 abc | 155 a–d | 78 bc | 2.7 b–e | 11.3 ab | 106.3 e | 114.5 ab | 97,778 ab |
2018 | 25.7 g | 87.8 a | 136.3 abc | 69 b | 2.1 abc | 10.2 a | 99.5 de | 108.3 ab | 94,444 a | ||
2019 | 24.3 d–g | 91.1 abc | 134 abc | 76.7 bc | 2 ab | 18.8 cde | 180.7 g | 179.5 cde | 104,444 abc | ||
Kpamyo | 2017 | 23.7 c–g | 88.9 ab | 127 ab | 71 b | 2.2 abc | 13.9 abc | 134.7 f | 131 abc | 105,556 abc | |
2018 | 24.7 efg | 91.1 abc | 133 abc | 65.3 ab | 1.9 ab | 10 a | 93.8 de | 104.2 a | 96,667 ab | ||
2019 | 23.3 b–g | 92.2 abc | 125.7 a | 50 a | 1.6 a | 22.4 ef | 213.8 h | 207 def | 108,889 abc | ||
3 g | Asiedu | 2017 | 22.7 b–g | 92.2 abc | 163.3 cde | 79.7 bcd | 2.5 bcd | 13.9 abc | 47.4 a | 127.9 ab | 110,000 abc |
2018 | 21.7 a–g | 93.3 abc | 151 a–d | 91.7 cde | 2.5 bcd | 15 abc | 49.8 ab | 133.5 abc | 111,111 abc | ||
2019 | 21.7 a–g | 97.8 c | 161.7 cd | 74.7 bc | 2.3 abc | 23.6 ef | 75.5 bcd | 205.7 def | 115,556 cde | ||
Kpamyo | 2017 | 25.3 fg | 88.9 ab | 157 a–d | 74.7 bc | 2.9 c–f | 15.8 bcd | 56.6 abc | 154.2 abc | 106,667 abc | |
2018 | 20 a–f | 94.5 abc | 160 bcd | 70 b | 3.6 fgh | 12.3 ab | 40.6 a | 109 ab | 113,333 bcd | ||
2019 | 19 abcd | 97.8 c | 158.3 a–d | 75 bc | 3.2 def | 25.5 fg | 81.5 cde | 219.1 ef | 118,889 c–f | ||
5 g | Asiedu | 2017 | 19.7 a–e | 90 abc | 163.3 cde | 121.3 f | 3.7 f–i | 16.3 cd | 35.1 a | 123.9 ab | 132,222 efg |
2018 | 18.7 abc | 93.3 abc | 177.7 def | 95.7 de | 3.5 efg | 26 fgh | 53.7 ab | 223.1 ef | 116,667 cde | ||
2019 | 18.3 ab | 96.7 bc | 180.3 def | 91 cde | 4.3 g–j | 29.3 gh | 58.3 abc | 210.6 def | 138,889 g | ||
Kpamyo | 2017 | 20.7 a–g | 94.5 abc | 197.3 f | 114.3 f | 4.5 ij | 18.2 cde | 37.2 a | 135.6 abc | 134,444 fg | |
2018 | 19 a–d | 96.7 bc | 196 ef | 105 ef | 4.4 hij | 20.8 def | 41.7 a | 159.3 bcd | 130,000 d–g | ||
2019 | 16.7 a | 96.7 bc | 206.7 f | 105.3 ef | 4.8 j | 31.2 h | 62.3 abc | 238.5 f | 131,111 efg | ||
LSD | 5.3 | 8.12 | 33.51 | 17.62 | 0.87 | 5.53 | 27.6 | 51.33 | 17,712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aighewi, B.; Maroya, N.; Kumar, P.L.; Balogun, M.; Aihebhoria, D.; Mignouna, D.; Asiedu, R. Seed Yam Production Using High-Quality Minitubers Derived from Plants Established with Vine Cuttings. Agronomy 2021, 11, 978. https://doi.org/10.3390/agronomy11050978
Aighewi B, Maroya N, Kumar PL, Balogun M, Aihebhoria D, Mignouna D, Asiedu R. Seed Yam Production Using High-Quality Minitubers Derived from Plants Established with Vine Cuttings. Agronomy. 2021; 11(5):978. https://doi.org/10.3390/agronomy11050978
Chicago/Turabian StyleAighewi, Beatrice, Norbert Maroya, P. Lava Kumar, Morufat Balogun, Daniel Aihebhoria, Djana Mignouna, and Robert Asiedu. 2021. "Seed Yam Production Using High-Quality Minitubers Derived from Plants Established with Vine Cuttings" Agronomy 11, no. 5: 978. https://doi.org/10.3390/agronomy11050978
APA StyleAighewi, B., Maroya, N., Kumar, P. L., Balogun, M., Aihebhoria, D., Mignouna, D., & Asiedu, R. (2021). Seed Yam Production Using High-Quality Minitubers Derived from Plants Established with Vine Cuttings. Agronomy, 11(5), 978. https://doi.org/10.3390/agronomy11050978