Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers
Abstract
:1. Introduction
2. Organic Carbon—Some Agronomic Considerations
3. Mechanisms of Soil Organic Carbon Accumulation in Arable Soils
4. Compost and Farmyard Manure Application
5. Reaction of Soil Organic Carbon with Inorganic Soil Components
6. Carbon Storage in Agricultural and Forest Soils; The Point of View of the Food and Agricultural Organization of the United Nations (FAO)
7. Commercial Organic Fertilizers and Soil Organic Carbon
Funding
Conflicts of Interest
References
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Ghabbour, E.A.; Davies, G.; Daggett, J.L., Jr.; Worgul, C.H.A.; Wyant, G.A.; Sayedbagheri, M.M. Measuring the humic acid content of commercial lignites and agricultural top soils in the national soil project. Ann. Environ. Sci. 2012, 6, 1–12. [Google Scholar]
- Batjes, N.H. harmonized soil property values for broad-scale modeling with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Weber, J.; Chen, Y.; Janroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef] [Green Version]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forstreuter, T. Bodenfruchtbarkeitskennwerte und Kulturpflanzenertrag in zwei Bodennutzungssystemen. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 1999. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.I.; Skjemstad, J.O.; Gehrt, E.; Kögl-Knabener, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 1999, 50, 351–365. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Skjemstad, J.O.; Jäger, C. Carbon isotope geochemistry and nano morphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Glob. Biogeochem. Cycles 2002, 16, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Skjemstad, J.O.; Taylor, J.A.; Smernik, R.J. Estimation of charcoal (char) in soils. Commun. Soil Sci. Plant Anal. 1999, 30, 2283–2298. [Google Scholar] [CrossRef]
- Glaser, B.; Haumeier, G.; Guggenberger, G.; Zech, W. The terra pretaphenomen: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Reikosky, D.C.; Wilts, A.R.; McGowan, J.A. Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 2002, 66, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.-D.; Johnson, R.L.; Lehmann, J.; Olk, D.C.; Neves, E.G.; Thompson, M.L.; Schmidt-Rohr, K. Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration. Environ. Sci. Technol. 2012, 46, 9571–9576. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Skjemstad, J.O.; Czimczik, C.I.; Glaser, B.; Prentice, K.M.; Gelinas, Y.; Kühlbusch, T.A. Comparative analysis of black carbon in soils. Glob. Biogeochem. Cycles 2001, 15, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, A.R.; Mitra, S. Trial by fire: On the terminology and methods used in pyrogenic organic carbon research. Front. Earth Sci. 2017, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Tian, L.; Li, F.; Zhou, Y.; Wu, M.; Steinberg, C.; Dong, X.; Pan, B.; Xing, B. Benzene carboxylic acid—A useful marker for condensed organic matter, but not only for pyrogenic black carbon. Sci. Total Environ. 2018, 626, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. Black (pyrogenic) carbon in soils and waters: A fragile data basis extensively interpreted. Chem. Biol. Technol. Agric. 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Schmidt-Rohr, K. Abundant non protonated aromatic and oxygen- bonded carbons make humic substances distinct from biopolymers. Environ. Sci. Technol. Lett. 2018, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- DiDonato, N.; Chen, H.; Waggoner, D.; Hatcher, P. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta 2016, 178, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Waggoner, D.C.; Hatcher, P.G. Hydroxyl radical alteration of HPLC fractionated lignin: Formation of new compounds from terrestrial organic matter. Org. Geochem. 2017, 113, 315–325. [Google Scholar] [CrossRef]
- Piccolo, A. In memoriam Prof. F.J. Stevenson and the question of humic substances in soil. Chem. Biol. Technol. Agric. 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Ziechmann, W. Huminstoffe; Verlag Chemie: Weinheim, Germany, 1980. [Google Scholar]
- Ikeya, K.; Sleighter, R.L.; Hatcher, P.G.; Watanabe, A. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance spectroscopy. Geochim. Cosmochim. Acta 2015, 153, 169–182. [Google Scholar] [CrossRef]
- Ikeya, K.; Maie, N.; Han, X.; Wang, G.; Watanabe, A. Comparison of skeletal structures in black humic acids from different soil origins. Soil Sci. Plant Nutr. 2019, 65, 109–113. [Google Scholar] [CrossRef]
- Brodowski, S.; Rodionow, A.; Haumeier, L.; Glaser, B.; Amelung, W. Revised black carbon assessment using benzene polycarboxylic acids. Org. Geochem. 2005, 35, 1299–1310. [Google Scholar] [CrossRef]
- Boudot, J.P. Relative efficiency of complexed aluminum, noncrystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma 1992, 52, 29–39. [Google Scholar] [CrossRef]
- Jones, D.L.; Edwards, A.C. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 1998, 30, 1895–1902. [Google Scholar] [CrossRef]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Spaccini, R.; Drosos, M.; Vinci, M.; Cozzolini, V. The molecular composition of humus carbon: Recalcitrance and reactivity in soils. In The Future of Soil Carbon; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press: London, UK, 2018; pp. 87–124. [Google Scholar]
- Haider, K. Biochemie des Bodens; Enke: Stuttgart, Germany, 1995. [Google Scholar]
- Tunega, D.; Gerzabek, M.H.; Haberhauer, G.; Lischka, H.; Sole, R.; Aquino, A.J.A. Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances. Eur. J. Soil Sci. 2020, 71, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Swift, R.S. Macromolecular properties of soil humic substances: Fact, fiction and opinion. Soil Sci. 1999, 164, 790–802. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Piccolo, A.; Conte, P. Molecular size of humic substances. Supramolecular associations versus macromolecular polymers. Adv. Environ. Res. 2000, 3, 508–521. [Google Scholar]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J.M. Maturation in composting process, an incipient humification-like step an multivariate statistical analysis of spectroscopic data shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A.; Cozzolino, A.; Conte, P.; Spaccini, R. Polymerization of humic substances by an enzyme catalyzed oxidative coupling. Naturwissenschaften 2000, 87, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, A.; Piccolo, A. Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition. Org. Geochem. 2002, 33, 281–294. [Google Scholar] [CrossRef]
- Nuzzo, A.; Piccolo, A. Oxidative and photo-oxidative polymerization of humic superstructures by heterogeneous biomimetic catalysis. Biomacromolecules 2013, 14, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Verma, L.; Martin, J.P.; Haider, K. Decomposition of 14C- labeled proteins, peptides and aminoacids: Free and complexed with humic polymers. Proc. Soil Sci. Soc. Am. 1975, 39, 279–284. [Google Scholar] [CrossRef]
- Martin, J.P.; Zunino, H.; Peirano, P.; Caiozzi, M.; Haider, K. Decomposition of 14C- labeled lignins, model humic acid polymers and fungal melanins in allophanic soils. Soil Biol. Biochem. 1982, 14, 289–293. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K. Influence of mineral colloids on turnover rates of soil organic carbon. In Interactions of Soil Minerals with Natural Organics and Microbes; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society America: Madison, WI, USA, 1986; pp. 283–304. [Google Scholar]
- Piccolo, A.; Spaccini, R.; Nieder, R.; Richter, J. Sequestration of biologically labile organic carbon in soils by humified organic matter. Clim. Chang. 2004, 67, 329–343. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Baumecker, M.; Ellmer, F.; Grunert, M.; Hoffmann, S.; Kismányoky, T.; Kubát, J.; Kunzová, E.; Marx, M.; et al. Humus und Klimaänderung- Ergebnisse aus 15 langjährigen Dauerfeldversuchen. Arch. Agron. Soil Sci. 2014, 60, 1485–1517. [Google Scholar] [CrossRef]
- Inbar, Y.; Chen, Y.; Hadar, Y. Humic substances formed during composting of organic matter. Soil Sci. Soc. Am. J. 1990, 54, 1316–1323. [Google Scholar] [CrossRef]
- Chen, Y.; Inbar, Y. Chemical and spectroscopic analyses of organic matter transformation during composting in relation to compost maturity. In Science and Engineering of Composting: Design, Environmental, Microbial and Utilization Aspects; Hoitink, H.A.J., Keener, H.M., Eds.; Ohio State University: Wooster, OH, USA, 1993; pp. 551–600. [Google Scholar]
- Chen, Y.; Chefetz, B.; Hadar, Y. Formation and properties of humic substances originating from composts. In The Science of Composting; De Bertoldi, M., Sequi, P., Leumes, B., Papi., T., Eds.; Springer: Dorderecht, NL, USA, 1996; pp. 382–393. [Google Scholar]
- Baddi, G.A.; Hafidi, M.; Gilard, V.; Revel, J.C. Characterization of humic acids produced during composting olive mill wastes: Elemental and spectroscopic analyses (FTIR and 13C-NMR). Agronomie 2003, 23, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.F.; Wu, Q.T.; Wong, J.W.C.; Naggar, B.B. Transformation of organic matter during co- composting of pig manure with sawdust. Biores. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef]
- Adani, F.; Genevini, P.L.; Tambone, F.; Montoneri, E. Compost effect on soil humic acid. A NMR study. Chemosphere 2006, 65, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Spagnol, M. Humic acid formation in artificial soils amended with compost at different stages of organic matter evolution. J. Environ. Qual. 2008, 37, 1608–1616. [Google Scholar] [CrossRef]
- Smidt, E.; Meissl, K.; Schmutzer, M.; Hinterstoisser, B. Co-composting of lignin to build up humic substances- strategies in waste management to improve compost quality. Industr. Crop. Product. 2008, 27, 196–201. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A. Soil organic carbon stabilization in compost amended soils. In Global Symposium on Soil Organic Carbon; FAO: Rome, Italy, 2017. [Google Scholar]
- Weichelt, T. Chemical alteration of natural lignin by interactions with humic like autoxidation products of pyrogallol (1,2,3 trihydroxybenzene). In Soil Organic Matter Studies; IAEA: Wien, Austria, 1977; pp. 67–82. [Google Scholar]
- Albuzio, A.; Ferrari, G. Modulation of molecular size of humic substances by organic acids of the root exudates. Plant Soil 1989, 113, 237–241. [Google Scholar] [CrossRef]
- Gerke, J. Solubilization of Fe(III) from humic-Fe complexes, humic-Fe-oxide mixtures and from poorly ordered Fe-oxide by organic acids- consequences for P adsorption. J. Plant Nutr. Soil Sci. 1993, 156, 253–257. [Google Scholar] [CrossRef]
- Gerke, J.; Meyer, U. Phosphate acquisition by red clover and black mustard on a humic podzol. J. Plant Nutr. 1995, 18, 2409–2429. [Google Scholar] [CrossRef]
- Takeda, A.; Tsukada, H.; Takaku, Y.; Hisamatsu, S. Fractionation of metal complexes with dissolved organic matter in a rhizosphere soil solution of a humus- rich Andosol using size exclusion chromatography with inductively coupled plasma-mass spectrometry. Soil Sci. Plant Nutr. 2009, 55, 349–357. [Google Scholar] [CrossRef]
- Gerke, J. Humic (organic matter)-Al(Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci. 2010, 175, 417–425. [Google Scholar] [CrossRef]
- Nuzzo, A.; De Martino, A.; Di Meo, V.; Piccolo, A. Potential alteration of iron-humate complexes by plant root exudates and microbial siderophores. Chem. Biol. Technol. Agric. 2018, 5, 19. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations. Formation, properties and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Gu, B.H.; Schmidt, J.; Chen, Z.; Liang, L.; McCarthy, J.F. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, D.; Kalbitz, K.; Matzner, E. Effects of aluminum on the mineralization of dissolved organic carbon derived from forest floors. Eur. J. Soil Sci. 2003, 54, 311–322. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Gerke, H.H. Explaining soil organic matter composition based on associations between OM and polyvalent cations. J. Plant Nutr. Soil Sci. 2018, 181, 721–736. [Google Scholar] [CrossRef]
- Von Wandruszka, R. The micellar model of humic acid: Evidence from pyrene fluorescence measurements. Soil Sci. 1998, 163, 921–930. [Google Scholar] [CrossRef]
- Wershaw, R.L. Molecular aggregation of humic substances. Soil Sci. 1999, 164, 803–813. [Google Scholar] [CrossRef]
- Engebretson, R.R.; Von Wandruszka, R. Effect of humic acid purification on interactions with hydrophobic organic matter: Evidence from fluorescence behavior. Environ. Sci. Technol. 1999, 33, 4299–4303. [Google Scholar] [CrossRef]
- Nuzzo, A.; Sanchez, A.; Fontaine, B.; Piccolo, A. Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation. J. Geochem. Explor. 2013, 129, 1–5. [Google Scholar] [CrossRef]
- Wang, T.S.C.; Li, S.W.; Huang, P.N. catalytic polymerization of phenolic compounds by a latosol. Soil Sci. 1978, 126, 81–86. [Google Scholar] [CrossRef]
- Wang, T.S.C.; Wang, M.C.; Yue, L.; Huang, P.M. Catalytic synthesis of humic substances by natural clays, silts and soils. Soil Sci. 1983, 135, 350–360. [Google Scholar] [CrossRef]
- Shindo, H. Catalytic synthesis of humic acids from phenolic compounds by Mn(IV) (Birnessite). Soil Sci. Plant Nutr. 1990, 36, 679–682. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon, the Hidden Potential; FAO: Rome, Italy, 2017. [Google Scholar]
- Hayes, M.H.B. Solvent systems for the isolation of organic components from soils. Soil Sci. Soc. Am. J. 2006, 70, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [Green Version]
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.H.B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar]
- Kelleher, B.P.; Simpson, A.J. Humic substances in soils: Are they really chemically distinct? Environ. Sci. Technol. 2006, 40, 4605–4611. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, D.C.; Chen, H.; Willoughby, A.S.; Hatcher, P.G. Formation of black carbon- like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org. Geochem. 2015, 82, 69–76. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yield. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Ertani, A.; Francioso, O. Soil-root cross- talking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Fuentes, M.; Olaetxea, M.; Garnica, M.; Baigorri, R.; Zamarreno, A.M.; Movila, M.; DeHita, D.; Garcia-Mina, J.M. The effect of soil organic matter on plant mineral nutrition. In Achieving Sustainable Crop Nutrition; Rengel, Z., Ed.; Burleigh Dodds: Cambridge, UK, 2020; pp. 1–11. [Google Scholar]
- Erro, J.; Urrutia, O.; Baigorri, R.; Fuentes, M.; Zamerreno, G.; Garcia-Mina, J.M. Incorporation of humic- derived active molecules into compound NPK granulated fertilizers. Chem. Biol. Technol. Agric. 2016, 3, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, O.; Erro, J.; Guardado, L.; San Francisco, S.; Mandado, M.; Baigorri, R.; Claude Yvin, J.; Garcia-Mina, J.M. Physico-chemical characterization of humic-metal- phosphate complexes and their potential application to the manufacture of new types of phosphate- based fertilizers. J. Plant Nutr. Soil Sci. 2014, 177, 128–136. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerke, J. Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers. Agronomy 2021, 11, 1079. https://doi.org/10.3390/agronomy11061079
Gerke J. Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers. Agronomy. 2021; 11(6):1079. https://doi.org/10.3390/agronomy11061079
Chicago/Turabian StyleGerke, Jörg. 2021. "Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers" Agronomy 11, no. 6: 1079. https://doi.org/10.3390/agronomy11061079
APA StyleGerke, J. (2021). Carbon Accumulation in Arable Soils: Mechanisms and the Effect of Cultivation Practices and Organic Fertilizers. Agronomy, 11(6), 1079. https://doi.org/10.3390/agronomy11061079