Effect of Two Urea Forms and Organic Fertilizer Derived from Expired Milk Products on Dynamic of NH3 Emissions and Growth of Williams Banana
Abstract
:1. Introduction
2. Material and Methods
2.1. Converting Expired Milk Products to Organic Fertilizer
2.2. Field Experiments
2.3. Analysis of Soil Samples
2.4. Analysis of Fruit Quality and Plant Samples
2.5. Data Analysis
3. Results
3.1. Characteristics of the Extracted Organic Fertilizer (EDPF)
3.2. Effect of Nitrogen Forms on the Growth of Williams Banana
3.3. Effect of Nitrogen Forms on the Yield and Quality of Williams Banana
3.4. Effect of Nitrogen Forms on Chemical Properties of Soil and Nutrients Uptake
3.5. Effect of Nitrogen Forms on the Dynamics of Ammonia Volatilization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badgujar, C.D.; Pajari, C.V.; Patil, N.M. Evaluation of banana cultivars under different fertilizer regimes. Asian J. Hort. 2010, 4, 332–335. [Google Scholar]
- M.A.L.R. Ministry of Agriculture and Land Reclamation Publishes Economic Affairs Sector. 2016. [Google Scholar]
- Meya, I.A.; Ndakidemi, P.A.; Mtei, K.M.; Swennen, R.; Merckx, R. Optimizing soil fertility management strategies to enhance banana production in volcanic soils of the Northern Highlands, Tanzania. Agronomy 2020, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- Fratoni, M.M.J.; Moreira, A.; Moraes, L.A.C.; Almeida, L.H.C.; Pereira, J.C.R. Effect of nitrogen and potassium fertilization on banana plants cultivated in the humid tropical Amazon. Commun. Soil Sci. Plant Anal. 2017, 48, 1511–1519. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Al-Harthi, K.; Aly-Hahyai, R. Effect of NPK fertilizer on growth and yield of banana in northern Oman. J. Hort. For. 2009, 1, 160–167. [Google Scholar]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crop. Prod. 2020, 157, 112903. [Google Scholar] [CrossRef]
- Glibert, P.M.; Harrison, J.; Heil, C.; Seitzinger, S. Escalating world-wide use of urea: A globalchange contributing to coastal eutrophication. Biogeochemistry 2006, 77, 441–463. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Xie, G.; Peng, J.; Rong, X.; Zhang, Y.; Yang, Y.; Eissa, M.A. Controlled-release N fertilizer to mitigate ammonia volatilization from double-cropping rice. Nutr. Cycl. Agroecosyst. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Fageria, N.K.; Carvalho, M.C.S. Comparison of conventional and polymer coated urea as nitrogen sources for lowland rice production. J. Plant Nutr. 2014, 37, 1358–1371. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, X.; Fei, J.; Huang, Y.; Wang, G.; Kang, X.; Hu, W.; Zhang, H.; Rong, X.; Peng, J. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric. Ecosyst. Environ. 2021, 306, 107183. [Google Scholar] [CrossRef]
- Alharbi, S.; Majrashi, A.; Ghoneim, A.; Ali, E.; Modahish, A.; Hassan, F.; Eissa, M. A new method to recycle dairy waste for the nutrition of wheat plants. Agronomy 2021, 11, 840. [Google Scholar] [CrossRef]
- Liu, D.; Al Fahd, M.H.; Ali, E.F.; Majrashi, A.; Ghoneim, A.M.; Ding, Z.; Eissa, M.A. Soil microbial biomass, CO2 and NH3 emission and nitrogen use efficiency in a sandy soil amended with recycled dairy products. Environ. Technol. Innov. 2021, 23, 101546. [Google Scholar] [CrossRef]
- WHO. Food Safety: What You Should Know; WHO: Geneva, Switzerland, 2015; Available online: http://www.searo.who.int/entity/world_health_day/2015/whd-what-you-should-know/en/ (accessed on 1 February 2020).
- Dansted, P. Disposal of Non-Conforming Dairy Material or Dairy Product. 2016. Available online: https://www.mpi.govt.nz/document-vault/999 (accessed on 1 February 2020).
- Indian Department of Environmental Management. 2002 Proper Disposal of Dairy Waste and Cleanup Requirements Office of Land Quality. Available online: www.idem.IN.gov (accessed on 1 February 2020).
- Simun, Z.; Neven, A.; Jasmina, H.; Dubravka, S. Mineral elements in milk and dairy products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Teshome, G.; Fekadu, B.; Mitiku, E. Physical and chemical quality of row cows milk produced and marketed in shashemene town, southern ethiopia. ISABB J. Food Agric. Sci. 2015, 5, 7–13. [Google Scholar]
- Eissa, M.A.; Nasralla, N.N.; Gomah, N.H.; Osman, D.M.; El-Derwy, Y.M. Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. J. Soil Sci. Plant Nutr. 2018, 18, 694. [Google Scholar] [CrossRef] [Green Version]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Lincoln, NE, USA, 2004. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA, Natural Resources, Conservation Services: Washington, DC, USA, 2014. [Google Scholar]
- Yang, Y.; Ni, X.; Liu, B.; Tao, L.; Yu, L.; Wang, Q.; Yang, Y.; Liu, J.; Wu, Y. Measuring field ammonia emissions and canopy ammonia fluxes in agriculture using portable ammonia detector method. J. Clean. Prod. 2019, 216, 542–551. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Hurwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Olaniyi, J.O.; Akanbi, W.B.; Olaniran, O.A.; Ilupeju, O.T. The effect of organo−mineral and inorganic fertilizers on the growth, fruit yield, quality and chemical compositions of okra. J. Anim. Plant Sci. 2010, 9, 1135–1140. [Google Scholar]
- Eissa, M.A. Nutrition of drip irrigated corn by phosphorus under sandy calcareous soils. J. Plant Nutr. 2016, 39, 1620–1626. [Google Scholar] [CrossRef]
- Eissa, M.A. Phosphate and Organic Amendments for Safe Production of Okra from Metal-Contaminated Soils. Agron. J. 2016, 108, 540–547. [Google Scholar] [CrossRef]
- Malik, M.; Khan, K.; Marschner, P.; Hassan, F.-U. Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. J. Soil Sci. Plant Nutr. 2013, 13, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Cerozi, B.D.S.; Fitzsimmons, K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Abou-Zaid, E.A.A.; Eissa, M.A. Thompson seedless grapevines growth and quality as affected by glutamic acid, vitamin b, and algae. J. Soil Sci. Plant Nutr. 2019, 19, 725–733. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; El Gawad, A.M.A.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Eissa, M.A.; Ahmedand, E.M.; Reichman, S. Production of the forage halophyte Atriplex amnicola in metal-contaminated soils. Soil Use Manag. 2016, 32, 350–356. [Google Scholar] [CrossRef]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S.Wats) under Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.A. Performance of river saltbush (Atriplex amnicola) grown on contaminated soils as affected by organic fertilization. World Appl. Sci. J. 2014, 30, 1877–1881. [Google Scholar]
- Eissa, M.A.; Nafady, M.H.; Ragheb, H.M.; Attia, K.K.K. Effect of soil moisture and forms of phosphorus fertilizers on corn production under sandy calcareous soil. World Appl. Sci. J. 2013, 26, 540–547. [Google Scholar]
- Al-Sayed, H.M.; Hegab, S.A.; Youssef, M.A.; Khalafalla, M.Y.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Almaroai, Y.A.; Eissa, M.A. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Sci. Hortic. 2020, 265, 109210. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Awad, M.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Yang, W.; Que, H.; Wang, S.; Zhu, A.; Zhang, Y.; He, Y.; Xin, X.; Zhang, X.; Ding, S. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China. Environ. Pollut. 2020, 257, 113489. [Google Scholar] [CrossRef] [PubMed]
- ŠImek, M.; Cooper, J.E. The influence of soil pH on denitrification: Progress towards the understanding of this in-teraction over the last 50 years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
- Franco-Otero, V.G.; Soler-Rovira, P.; Hernández, D.; López-De-Sá, E.G.; Plaza, C. Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biol. Fertil. Soils 2012, 48, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Aboukila, E.F.; Nassar, I.N.; Rashad, M.; Hafez, M.; Norton, J.B. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci. 2018, 17, 390–397. [Google Scholar] [CrossRef] [Green Version]
Soil Characteristics | Value |
---|---|
Texture | Silty loam |
pH | 8.36 ± 0.00 |
Cation exchange capacity | 16 ± 0 cmol kg−1 |
Organic-C | 11,400 ± 0.2 mg kg−1 |
Total N | 278 ± 12 mg kg−1 |
Total P | 520 ± 0.10 mg kg−1 |
Total K | 12,000 ± 2 mg kg−1 |
Available N (NH4 + NO3) | 80 ± 6 mg kg−1 |
Available Olsen P | 4.9 ± 0.2 mg kg−1 |
Available−K | 400 ± 14 mg kg−1 |
% Nitrogen | % Phosphorus | % Potassium | pH | % Organic Carbon |
---|---|---|---|---|
5 | 1.50 | 4.0 | 4.50 | 45 |
Treatments | Pseudo Stem Height (cm) | Leaf Area (m2 Plant−1) | Bunch Weight (kg) | Finger Weight (g) | Chlorophyll a (mg g−1 Fresh Weight) | Chlorophyll b (mg g−1 Fresh Weight) |
---|---|---|---|---|---|---|
First growing season (2017) | ||||||
C | 2.55 ± 0.21 c | 16± 2 c | 18 ± 1 c | 80 ± 3 c | 1.02 ± 0.07 c | 0.75 ± 0.04 d |
U | 3.18 ± 0.17 b | 21 ± 2 b | 24 ± 1 c | 103 ± 3 b | 2.08 ± 0.02 b | 1.02 ± 0.01 c |
SRU | 3.22 ± 0.25 b | 20 ± 3 b | 25 ± 2 b | 105 ± 5 b | 2.07 ± 0.03 b | 1.45 ± 0.08 b |
EDPF | 3.84 ± 0.12 a | 24 ± 2 a | 30 ± 3 a | 122 ± 4 a | 3.00 ± 0.06 a | 2.00 ± 0.05 a |
Second growing season (2018) | ||||||
C | 2.47 ± 0.08 c | 14 ± 1 d | 17 ± 1 c | 82 ± 3 c | 1.15 ± 0.04 c | 0.82 ± 0.02 c |
U | 3.40 ± 0.09 b | 19 ± 2 c | 24 ± 2 b | 110 ± 6 b | 2.02 ± 0.07 b | 1.36 ± 0.04 b |
SRU | 3.46 ± 0.06 b | 22 ± 1 b | 25 ± 2 b | 115 ± 5 b | 2.12 ± 0.08 b | 1.22 ± 0.05 b |
EDPF | 3.70 ± 0.18 a | 25 ± 2 a | 28 ± 3 a | 126 ± 12 a | 3.13 ± 0.01 a | 2.14 ± 0.06 a |
Treatments | Nitrogen (mg kg−1) | Phosphorus (mg kg−1) | Potassium (mg kg−1) | pH | Organic-C (g kg−1) | CEC (cmol kg−1) |
---|---|---|---|---|---|---|
C | 30 ± 3 b | 13.5 ± 1.2 b | 550 ± 16 a | 8.13 ± 0.05 b | 11.4 ± 0.3 b | 16 ± 1 b |
U | 250 ± 10 a | 12.2 ± 2.0 b | 540 ± 20 a | 8.26 ± 0.10 b | 11.6 ± 0.2 b | 16 ± 1 b |
SRU | 240 ± 17 a | 13.7 ± 2.2 b | 550 ± 12 a | 8.12 ± 0.08 b | 11.5 ± 0.4 b | 16 ± 1 b |
EDPF | 260 ± 12 a | 20.4 ± 3.1 a | 560 ± 17 a | 7.42 ± 0.12 a | 13.0 ± 0.2 a | 18 ± 1 a |
Treatments | Air Temperature | Soil pH | NH4+ Concentration |
---|---|---|---|
C | 0.72 ** | 0.81 ** | 0.92 *** |
U | 0.95 *** | 0.94 *** | 0.94 *** |
SRU | 0.89 ** | 0.93 ** | 0.97 *** |
EDPF | 0.93 *** | 0.96 *** | 0.76 ** |
Treatments | a | b | R2 | RMSE |
---|---|---|---|---|
C | −7.520 | 3.860 | 0.66 * | 4.790 |
U | −3.387 | 18.607 | 0.90 *** | 7.527 |
SRU | −6.964 | 10.874 | 0.94 *** | 5.293 |
EDPF | −4.707 | 5.752 | 0.96 ** | 4.292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Wu, Y.; Ding, Z.; Zhou, Z.; Lin, X.; Majrashi, A.; Eissa, M.A.; Ali, E.F. Effect of Two Urea Forms and Organic Fertilizer Derived from Expired Milk Products on Dynamic of NH3 Emissions and Growth of Williams Banana. Agronomy 2021, 11, 1113. https://doi.org/10.3390/agronomy11061113
Lin F, Wu Y, Ding Z, Zhou Z, Lin X, Majrashi A, Eissa MA, Ali EF. Effect of Two Urea Forms and Organic Fertilizer Derived from Expired Milk Products on Dynamic of NH3 Emissions and Growth of Williams Banana. Agronomy. 2021; 11(6):1113. https://doi.org/10.3390/agronomy11061113
Chicago/Turabian StyleLin, Fei, You Wu, Zheli Ding, Zhaoxi Zhou, Xinge Lin, Ali Majrashi, Mamdouh A. Eissa, and Esmat F. Ali. 2021. "Effect of Two Urea Forms and Organic Fertilizer Derived from Expired Milk Products on Dynamic of NH3 Emissions and Growth of Williams Banana" Agronomy 11, no. 6: 1113. https://doi.org/10.3390/agronomy11061113
APA StyleLin, F., Wu, Y., Ding, Z., Zhou, Z., Lin, X., Majrashi, A., Eissa, M. A., & Ali, E. F. (2021). Effect of Two Urea Forms and Organic Fertilizer Derived from Expired Milk Products on Dynamic of NH3 Emissions and Growth of Williams Banana. Agronomy, 11(6), 1113. https://doi.org/10.3390/agronomy11061113