Short-Term Effects of Spent Mushroom Substrate Mulching Thickness on the Soil Environment, Weed Suppression, Leaf Nutrients, and Nut Characteristics in a Hazelnut Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Sites and Plant Materials
2.2. Experimental Design and Treatments
2.3. Sampling
2.4. Measurements
2.4.1. Soil Moisture and Temperature
2.4.2. Physico-Chemical and Biological Properties of Soil
2.4.3. Weed Investigation
2.4.4. Leaf Nutrients and Chlorophyll Content
2.4.5. Nut Traits
2.5. Statistical Analysis
3. Results
3.1. Effect of the Mulching Thickness on Soil Physico-Chemical and Biological Properties
3.1.1. Soil Temperature
3.1.2. Soil Water
3.1.3. Soil Bulk Density and Porosity
3.1.4. Soil Nutrients
3.1.5. Soil Enzymatic Activities
3.2. Effect of Mulching Thickness on Weed Suppression
3.3. Effect of Mulching Thickness on Leaf Nutrients and Chlorophyll Content
3.4. Effect of Mulching Thickness on the Nut Yield and Quality Traits
4. Discussion
4.1. Effect of Mulching on Soil Physico-Chemical and Biological Properties
4.2. Effect of Mulching on Weed Suppression
4.3. Effect of Mulching on the Leaf Nutrient and Chlorophyll Contents
4.4. Effect of Mulching on Fruit Yield and Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nation, Agricultural Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 January 2019).
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish Tombul Hazelnut (Corylus avellana L.). 1. Compositional Characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef] [PubMed]
- Felbinger, C.; Kutzsche, F.; Mnkediek, S.; Fischer, M.J.F.C. Genetic profiling: Differentiation and identification of hazelnut cultivars (Corylus avellana L.) using RAPD-PCR. Food Control. 2019, 107, 106791. [Google Scholar] [CrossRef]
- Jabran, K. Mulches for Enhancing Biological Activities in Soil. In Role of Mulching in Pest Management and Agricultural Sustainability; Ömer Halisdemir University Press: Niğde, Turkey, 2019; pp. 41–46. ISBN 978-3-030-22300-7. [Google Scholar]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro-plastics in soil-plant system: Effects of plastic mulch flm residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- López, R.; Burgos, P.; Hermoso, J.M.; Hormaza, J.I.; González-Fernández, J. Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil Tillage Res. 2014, 143, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World: Technology and Applications; Wiley-Blackwell Press: Hoboken, NJ, USA, 2017; pp. 5–13. ISBN 978-1-119-14941-5. [Google Scholar]
- Hanafi, F.H.M.; Rezania, S.; Taib, S.M.; Din, M.F.M.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J.; Ebrahimi, S.S. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Nakatsuka, H.; Oda, M.; Hayashi, Y.; Tamura, K. Effects of fresh spent mushroom substrate of Pleurotus ostreatus on soil micromorphology in Brazil. Geoderma 2016, 269, 54–60. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Fu, Q.; Li, T.; Liu, D.; Hou, R.; Li, H.; Cui, S.; Ji, Y. Short-term influence of biochar on soil temperature, liquid moisture content and soybean growth in a seasonal frozen soil area. J. Environ. Manag. 2020, 266, 110609. [Google Scholar] [CrossRef]
- Shan, L.; Qi-Quan, L.I.; Chang-Quan, W.; Bing, L.I.; Xue-Song, G.; Yi-Ding, L.I.; De-yong, W. Spatial variability of soil bulk density and its controlling factors in an agricultural intensive area of Chengdu Plain, Southwest China. J. Integr. Agric. 2019, 18, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Mulvaney, R.; Hoeft, R. A Simple Soil Test for Detecting Sites that are Nonresponsive to Nitrogen Fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1751–1760. [Google Scholar] [CrossRef]
- Carson, P.L. Recommended potassium test. In Recommended Chemical Soil Test Procedures for the North Central Region; Dahnke, W.C., Ed.; North Dakota Agricultural Experiment Station: Fargo, ND, USA, 1980; pp. 17–18. [Google Scholar]
- Ge, Y.; Wang, Q.; Wang, L.; Liu, W.; Liu, X.; Huang, Y.; Christie, P. Response of soil enzymes and microbial communities to root extracts of the alien Alternanthera philoxeroides. Arch. Agron. Soil Sci. 2018, 64, 708–717. [Google Scholar] [CrossRef]
- Singh, R.; Brar, S.; Walia, U.S. Comparative efficiency of herbicides for weed control in Chickpea (Cicer arietinum L.). Crop Res. 2000, 19, 1–5. [Google Scholar]
- Thankamani, C.K.; Kandiannan, K.; Hamza, S.; Saji, K.V. Effect of mulches on weed suppression and yield of ginger (Zingiber officinale Roscoe). Sci. Hortic. 2016, 207, 125–130. [Google Scholar] [CrossRef]
- Dong, Q.; Dang, T.; Guo, S.; Hao, M. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau. Agric. Water Manag. 2019, 213, 654–658. [Google Scholar] [CrossRef]
- Debnath, A.; Barrow, N.J.; Ghosh, D.; Malakar, H. Diagnosing p status and p requirement of tea (camellia sinensis L.) by leaf and soil analysis. Plant Soil 2011, 341, 309–319. [Google Scholar] [CrossRef]
- Guimarães, Z.T.; Dos Santos, V.A.; Nogueira, W.L.; de Almeida Martins, N.O.; Ferreira, M.J. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. For. Ecol. Manag. 2018, 430, 618–628. [Google Scholar] [CrossRef]
- Martinez, F.; Oliveira, J.A.; Calvete, E.O.; Palencia, P. Influence of growth medium on yield, quality indexes and SPAD values in strawberry plants. Sci. Hortic. 2017, 217, 17–27. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Seifi, E.; Javadi, D.; Ramezanpour, S.S.; Molnar, T.J. Nut and kernel characteristics of twelve hazelnut cultivars grown in Iran. Sci. Hortic. 2013, 150, 410–413. [Google Scholar] [CrossRef]
- Wang, W.; Jung, J.; McGorrin, R.J.; Traber, M.G.; Leonard, S.W.; Cherian, G.; Zhao, Y. Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). Food Sci. Technol. 2018, 90, 526–534. [Google Scholar] [CrossRef]
- Luo, D.; Shi, Y.J.; Song, F.H.; Zheng, W.U.; Ablat, M.; Cheng, L.I. Spatial Distribution Characteristics of Fine roots in Monoculture System of Corylus heterophylla × Corylus avellana. For. Res. 2019, 32, 81–89. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Veres, Z.; Kotroczó, Z.; Fekete, I.; Tóth, J.A.; Lajtha, K.; Townsend, K.; Tóthmérész, B. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Appl. Soil Ecol. 2015, 92, 18–23. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Determination of size and shape features of hazelnuts using multivariate analysis. Acta Sci. Pol. Hortorum Cultus 2017, 16, 49–61. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.X.; Xue, W.K.; Liu, X. Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples. Agric. Water Manag. 2021, 243, 106482. [Google Scholar] [CrossRef]
- Pramanik, P.; Bandyopadhyay, K.K.; Bhaduri, D.; Bhattacharyya, R.; Aggarwal, P. Effect of mulch on soil thermal regimes—A review. Int. J. Agric. Environ. Biotechnol. 2015, 8, 645. [Google Scholar] [CrossRef]
- Lamont, W.J. Plastics: Modifying the microclimate for the production of vegetable crops. Horttechnology 2005, 15, 477–481. [Google Scholar] [CrossRef]
- Zhang, S.; Lovdahl, L.; Grip, H.; Tong, Y.; Yang, X.; Wang, Q. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res. 2009, 102, 78–86. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Li, S.; Chen, X.; Chen, F. Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. For. Meteorol. 2010, 150, 606–613. [Google Scholar] [CrossRef]
- Thakur, M.; Kumar, R. Mulching: Boosting crop productivity and improving soil environment in herbal plants. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100287. [Google Scholar] [CrossRef]
- Jones, H.; Black, T.A.; Jassal, R.S.; Nesic, Z.; Johnson, M.S.; Smukler, S. Characterization of shortwave and longwave properties of several plastic film mulches and their impact on the surface energy balance and soil temperature. Solar Energy 2021, 214, 457–470. [Google Scholar] [CrossRef]
- Mcmillen, M. The Effect of Mulch Type and Thickness on the Soil Surface Evaporation Rate. Available online: https://digitalcommons.calpoly.edu (accessed on 1 June 2013).
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches. Agric. Water Manag. 2019, 223, 105707. [Google Scholar] [CrossRef]
- Massaccesi, L.; Rondoni, G.; Tosti, G.; Conti, E.; Agnelli, A. Soil functions are affected by transition from conventional to organic mulch-based cropping system. Appl. Soil Ecol. 2020, 153, 103639. [Google Scholar] [CrossRef]
- Ni, X.; Song, W.; Zhang, H.; Yang, X.; Wang, L. Effects of Mulching on Soil Properties and Growth of Tea Olive (Osmanthus fragrans). PLoS ONE 2016, 11, e0158228. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.; Gyasi-Agyei, Y.; Gates, W.; Rodrigo-Comino, J. Effects of solarisation on soil thermal-physical properties under different soil treatments: A review. Geoderma 2020, 363, 114137. [Google Scholar] [CrossRef]
- Pires, L.F.; Borges, J.A.; Rosa, J.A.; Cooper, M.; Heck, R.J.; Passoni, S.; Roque, W.L. Soil structure changes induced by tillage systems. Soil Tillage Res. 2017, 165, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Nzeyimana, I.; Hartemink, A.E.; Ritsema, C.; Stroosnijder, L.; Lwanga, E.H.; Geissen, V. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. CATENA 2017, 149, 43–51. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; Guercini, S.; Rumor, C.; Nold, F.; Sambo, P.; Gobbi, V.; Schimmer, C.; Chaabane, C.; Mouchard, M.L. Humusica 2, article 16: Techno humus systems and recycling of waste. Appl. Soil Ecol. 2017, 122, 220–236. [Google Scholar] [CrossRef]
- Moreno, M.M.; Moreno, A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci. Hortic. 2008, 116, 256–263. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Troeger, J.; Munoz, K.; Froer, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Pal, P.K.; Mahajan, M. Tillage system and organic mulch influence leaf biomass, steviol glycoside yield and soil health under sub-temperate conditions. Ind. Crops Prod. 2017, 104, 33–44. [Google Scholar] [CrossRef]
- Study on the Soil Ecological Effects and Physiological Response in Different Groundcover Pear Tree. Available online: https://kns.cnki.net/kns8 (accessed on 1 January 2013).
- Study on Soil Ecological Effect of Different Mulching Measures in Tea Garden. Available online: https://kns.cnki.net/kns8 (accessed on 12 June 2006).
- Olander, L.P.; Vitousek, P.M. Regulation of soil phosphatase and chitinase activityby N and P availability. Biogeochemistry 2000, 49, 175–190. [Google Scholar] [CrossRef]
- Qu, Y.; Feng, B.L. Straw mulching improved yield of field buckwheat (Fagopyrum) by increasing water-temperature use and soil carbon in rain-fed farmland. Acta Ecol. Sin. 2020, 3, 10–12. [Google Scholar] [CrossRef]
- Li, F.; Kong, Q.; Zhang, Q.; Wang, H.; Luo, T. Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Appl. Soil Ecol. 2020, 149, 103489. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Marble, S.C.; Koeser, A.K.; Hasing, G. A Review of Weed Control Practices in Landscape Planting Beds: Part II—Chemical Weed Control Methods. Hortscience 2015, 50, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Rabeharisoa, L.; Corbeels, M. Is mulching an efficient way to control weeds? Effects of type and amount of crop residue in rainfed rice based cropping systems in Madagascar. Field Crops Res. 2018, 217, 20–31. [Google Scholar] [CrossRef]
- Taak, P.; Koul, B.; Chopra, M.; Sharma, K. Comparative Assessment of Mulching and Herbicide Treatments for Weed Management in Stevia rebaudiana (Bertoni) Cultivation. Available online: https://www.sciencedirect.com/science (accessed on 10 June 2020).
- Namaghi, M.N.; Davarynejad, G.H.; Ansary, H.; Nemati, H.; Feyzabady, A.Z. Effects of mulching on soil temperature and moisture variations, leaf nutrient status, growth and yield of pistachio trees (Pistacia vera L). Sci. Hortic. 2018, 241, 115–123. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhao, X.; Wang, F. Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China. Agric. Water Manag. 2015, 154, 20–28. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- Suo, G.D.; Xie, Y.S.; Zhang, Y.; Luo, H. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Sci. Hortic. 2019, 246, 643–651. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Y.; Shi, L.; Guo, X.; Zhang, J. Effects of pruning and mulching measures on annual soil moisture, yield, and water use efficiency in jujube (Ziziphus jujube Mill.) plantations. Glob. Ecol. Conserv. 2018, 15, e00406. [Google Scholar] [CrossRef]
- Basile, B.; Solari, L.I.; Dejong, T.M. Intra-canopy variability of fruit growth rate in peach trees grafted on rootstocks with different vigour-control capacity. J. Hortic. Sci. Biotechnol. 2007, 82, 243–256. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Wang, H.; Hao, M. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107228. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wen, Y.; Bai, Q.; Ma, Z.; Ye, H.L.; Su, S.C. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn. Sci. Hortic. 2019, 251, 136–149. [Google Scholar] [CrossRef]
- Kar, G.; Kumar, A.; Martha, M. Water use efficiency and crop coefficients of dry season oilseed crops. Agric. Water Manag. 2007, 87, 73–82. [Google Scholar] [CrossRef]
Month | Average Temperature (°C) | Average Relative Humidity (%) | Average Rainfall (mm) | Average Sunshine Hours (h) |
---|---|---|---|---|
Jan. | −10 | 50.6 | 2.2 | 195.1 |
Feb. | −5.6 | 44.6 | 3.8 | 195.0 |
Mar. | 2.1 | 40.6 | 9.1 | 229.2 |
Apr. | 10.4 | 41.2 | 20.3 | 225.2 |
May. | 16.8 | 48.0 | 51.6 | 240.4 |
June. | 20.7 | 65.2 | 97.8 | 188.5 |
July. | 23.5 | 75.4 | 152.7 | 182.1 |
Aug. | 21.8 | 74.6 | 121.2 | 195.7 |
Sept. | 16.7 | 70.2 | 46.6 | 206.9 |
Oct. | 8.4 | 64.0 | 20.3 | 209.0 |
Nov. | −0.5 | 57.1 | 7.5 | 184.5 |
Dec. | −7.8 | 53.9 | 2.5 | 178.9 |
Soil Temperature | Mulch Treatments | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|
0 cm depth | MT1 | 15.46 ± 0.16 aA | 18.37 ± 0.52 bA | 22.76 ± 0.50 cA | 27.47 ± 0.44 dA | 17.51 ± 0.36 eA | 4.31 ± 0.37 fA | 0.45 ± 0.04 gA | −6.69 ± 0.49 hA |
MT2 | 14.86 ± 0.24 aB | 17.62 ± 0.47 bB | 22.13 ± 0.33 cB | 26.19 ± 0.44 dB | 16.94 ± 0.47 eA | 4.87 ± 0.15 fB | 0.62 ± 0.05 gB | −5.99 ± 0.21 hB | |
MT3 | 14.31 ± 0.18 aC | 16.77 ± 0.38 bC | 21.24 ± 0.31 cC | 25.00 ± 0.28 dC | 16.82 ± 0.63 bA | 5.51 ± 0.16 eC | 0.70 ± 0.04 fC | −5.24 ± 0.33 gC | |
CK | 15.98 ± 0.20 aD | 19.09 ± 0.47 bD | 23.85 ± 0.43 cD | 29.32 ± 0.29 dD | 18.42 ± 0.33 eB | 3.85 ± 0.39 fD | 0.33 ± 0.06 gD | −7.21 ± 0.39 hA | |
10 cm depth | MT1 | 14.61 ± 0.18 aA | 17.31 ± 0.31 bA | 20.56 ± 0.28 cA | 25.23 ± 0.43 dA | 17.01 ± 0.22 bA | 5.09 ± 0.23 eA | 0.56 ± 0.08 fA | −5.12 ± 0.39 gA |
MT2 | 14.15 ± 0.24 aB | 16.85 ± 0.43 bA | 19.99 ± 0.17 cB | 24.61 ± 0.38 dB | 16.46 ± 0.19 bB | 5.60 ± 0.20 eB | 0.86 ± 0.13 fB | −4.21 ± 0.30 gB | |
MT3 | 13.93 ± 0.20 aB | 16.00 ± 0.35 bB | 19.03 ± 0.22 cC | 23.91 ± 0.42 dC | 16.21 ± 0.25 bB | 6.06 ± 0.18 eC | 1.15 ± 0.12 fC | −3.42 ± 0.18 gC | |
CK | 15.04 ± 0.30 aC | 17.90 ± 0.31 bC | 21.20 ± 0.30 cD | 26.49 ± 0.25 dD | 17.53 ± 0.27 bC | 4.49 ± 0.21 eD | 0.38 ± 0.07 fD | −5.77 ± 0.44 gD | |
20 cm depth | MT1 | 13.95 ± 0.28 aAB | 16.67 ± 0.39 bA | 19.99 ± 0.24 cAB | 24.56 ± 0.27 dA | 16.80 ± 0.16 bA | 6.34 ± 0.35 eAB | 1.28 ± 0.19 fAB | −4.46 ± 0.35 gA |
MT2 | 13.64 ± 0.14 aAC | 16.42 ± 0.26 bA | 19.78 ± 0.21 cA | 23.97 ± 0.35 dB | 16.58 ± 0.21 bAB | 6.68 ± 0.20 eAC | 1.56 ± 0.21 fAC | −3.85 ± 0.19 gB | |
MT3 | 13.42 ± 0.26 aC | 15.65 ± 0.48 bB | 19.14 ± 0.33 cC | 23.60 ± 0.22 dB | 16.36 ± 0.25 eB | 6.95 ± 0.28 fC | 1.77 ± 0.28 gC | −3.37 ± 0.07 hC | |
CK | 14.28 ± 0.31 aB | 16.99 ± 0.26 bA | 20.37 ± 0.22 cB | 25.22 ± 0.26 dC | 17.19 ± 0.21 bC | 6.06 ± 0.42 eB | 1.16 ± 0.24 fB | −4.85 ± 0.36 gA |
Soil Water | Mulch Treatments | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|
15 cm depth | MT1 | 19.64 ± 1.06 aA | 22.47 ± 1.23 bcA | 23.35 ± 1.43 bA | 20.11 ± 1.02 adA | 21.11 ± 1.05 acdA | 21.36 ± 1.02 cdA | 19.78 ± 0.97 adA | 9.25 ± 0.46 eA |
MT2 | 20.01 ± 1.09 aA | 25.54 ± 1.53 bB | 26.31 ± 0.89 bB | 22.32 ± 0.96 cdB | 22.69 ± 1.10 cA | 22.27 ± 1.00 cdA | 20.84 ± 0.66 adAB | 10.34 ± 0.38 eB | |
MT3 | 20.90 ± 3.37 aA | 21.73 ± 1.16 aA | 22.38 ± 1.10 aAC | 20.89 ± 1.27 aAB | 21.05 ± 1.31 aA | 21.63 ± 1.17 aA | 21.46 ± 0.47 aB | 13.86 ± 0.47 bC | |
CK | 15.87 ± 1.25 aB | 20.32 ± 1.77 bA | 20.51 ± 1.37 bC | 19.64 ± 1.32 bcA | 20.84 ± 1.11 bA | 21.01 ± 0.74 bA | 18.33 ± 0.99 cC | 8.78 ± 0.46 dA | |
30 cm depth | MT1 | 20.90 ± 0.50 aAB | 24.54 ± 1.42 bAB | 24.71 ± 1.01 bAB | 21.87 ± 1.24 acAB | 22.35 ± 1.07 acAB | 23.27 ± 0.76 bcAB | 21.24 ± 0.86 aA | 12.26 ± 0.33 dA |
MT2 | 22.66 ± 1.28 abB | 26.05 ± 1.40 cA | 25.58 ± 1.06 cA | 23.34 ± 0.91 aA | 23.56 ± 0.90 aA | 23.86 ± 1.04 aA | 21.59 ± 0.67 bA | 14.52 ± 0.35 dB | |
MT3 | 22.13 ± 1.88 abB | 22.15 ± 1.18 abC | 23.51 ± 0.87 aBC | 21.54 ± 0.64 bB | 21.75 ± 1.04 bB | 22.38 ± 0.97 abB | 21.77 ± 0.30 bA | 18.44 ± 0.38 cC | |
CK | 18.99 ± 1.09 aA | 22.76 ± 0.83 bBC | 22.82 ± 0.90 bC | 21.14 ± 1.19 cdB | 22.18 ± 0.79 bcAB | 22.04 ± 0.82 bcdB | 20.83 ± 0.63 dA | 10.28 ± 0.27 eD | |
45 cm depth | MT1 | 24.23 ± 1.95 abA | 25.45 ± 1.64 aAB | 25.81 ± 0.93 aA | 23.66 ± 0.52 bA | 23.67 ± 0.49 bA | 23.52 ± 0.61 bAB | 21.76 ± 0.45 cAB | 19.46 ± 0.41 dA |
MT2 | 24.77 ± 0.68 aA | 26.86 ± 0.72 bA | 27.35 ± 0.50 bB | 23.81 ± 0.72 cA | 23.72 ± 0.66 cA | 23.79 ± 0.84 cA | 22.06 ± 0.39 dA | 20.87 ± 0.40 eB | |
MT3 | 24.90 ± 1.81 aA | 24.14 ± 1.35 abB | 24.51 ± 1.01 abAC | 23.08 ± 0.55 bcAB | 23.78 ± 0.35 abcA | 23.25 ± 0.62 bcAB | 22.36 ± 0.35 cdA | 21.19 ± 0.33 dB | |
CK | 21.62 ± 1.76 aB | 23.69 ± 1.22 bB | 23.57 ± 1.06 bC | 22.24 ± 0.67 abB | 22.57 ± 0.93 abB | 22.36 ± 0.85 abB | 21.25 ± 0.47 aB | 17.31 ± 0.50 cC |
Months | Mulch Treatments | Weed Species | The Number of Weed Species | Weed Biomass (g m−2) | Weed Control Efficiency (%) |
---|---|---|---|---|---|
June | MT1 | Taraxacum mongolicum Hand.-Mazz., Amaranthus retroflexus L., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance, Equisetum hyemale L., Conyza canadensis (L.) Cronq., Tagetes erecta L., Eleusine indica (L.) Gaertn. | 8 | 328.32 ± 24.46 | 79.01 |
MT2 | Taraxacum mongolicum Hand.-Mazz., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance, Eleusine indica (L.) Gaertn., Amaranthus retroflexus L. | 5 | 110.63 ± 10.32 | 92.93 | |
MT3 | Taraxacum mongolicum Hand.-Mazz., Ixeris sonchifolia (Bunge) Hance, Eleusine indica (L.) Gaertn. | 3 | 32.84 ± 3.26 | 97.90 | |
CK | Taraxacum mongolicum Hand.-Mazz., Amaranthus retroflexus L., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance, Conyza canadensis (L.) Cronq., Cirsium setosum (Willld.) MB., Tagetes erecta L., Eleusine indica (L.) Gaertn., Descurainia sophia (L.)Webb. ex Prantl, Equisetum hyemale L., Artemisia lavandulaefolia DC., Xanthium strumarium L., Mentha haplocalyx Linnaeus, Hemisteptia lyrata (Bunge) Bunge | 14 | 1563.86 ± 116.33 | – | |
August | MT1 | Amaranthus retroflexus L., Ixeris sonchifolia (Bunge) Hance, Eleusine indica (L.) Gaertn., Equisetum hyemale L., Tagetes erecta L., Mentha haplocalyx Linnaeus, Chenopodium album L. | 7 | 452.57 ± 28.63 | 48.25 |
MT2 | Amaranthus retroflexus L., Eleusine indica (L.) Gaertn., Chenopodium album L., Mentha haplocalyx Linnaeus, Ixeris sonchifolia (Bunge) Hance | 5 | 387.71 ± 20.54 | 55.66 | |
MT3 | Amaranthus retroflexus L., Eleusine indica (L.) Gaertn., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance | 4 | 258.62 ± 16.71 | 70.43 | |
CK | Amaranthus retroflexus L., Ixeris sonchifolia (Bunge) Hance, Artemisia lavandulaefolia DC., Eleusine indica (L.) Gaertn., Mentha haplocalyx Linnaeus, Equisetum hyemale L., Chenopodium album L., Tagetes erecta L., Cirsium setosum (Willld.) MB., Humulus scandens L. | 10 | 874.48 ± 60.56 | – | |
October | MT1 | Ixeris sonchifolia (Bunge) Hance, Geranium carolinianum L., Equisetum hyemale L., Chenopodium album L. | 4 | 62.36 ± 8.27 | 80.42 |
MT2 | Geranium carolinianum L., Xanthium strumarium L., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance | 4 | 38.55 ± 4.62 | 87.89 | |
MT3 | Ixeris sonchifolia (Bunge) Hance | 1 | 10.73 ± 3.39 | 96.63 | |
CK | Equisetum hyemale L., Chenopodium album L., Ixeris sonchifolia (Bunge) Hance, Artemisia lavandulaefolia DC., Portulaca oleracea L., Cirsium setosum (Willld.) MB., Xanthium strumarium L. | 7 | 318.46 ± 20.13 | – |
Nut Traits | MT1 | MT2 | MT3 | CK |
---|---|---|---|---|
Individual-plant yield (g/tree) | 1027.06 ± 151.71 A | 1045.26 ± 146.41 A | 1019.50 ± 144.15 A | 1001.40 ± 144.54 A |
L (mm) | 19.92 ± 2.87 AB | 20.47 ± 2.23 A | 20.71 ± 3.07 A | 19.22 ± 2.28 B |
W (mm) | 17.96 ± 2.34 A | 18.18 ± 2.11 A | 17.78 ± 1.93 AB | 16.97 ± 1.90 B |
T (mm) | 16.77 ± 2.29 AB | 16.97 ± 1.95 A | 16.53 ± 2.08 AB | 16.05 ± 1.70 B |
D (mm) | 18.13 ± 2.15 A | 18.45 ± 1.76 A | 18.23 ± 2.13 A | 17.34 ± 1.70 B |
V (cm3) | 3.25 ± 1.11 A | 3.38 ± 0.93 A | 3.29 ± 1.01 A | 2.81 ± 0.82 B |
∅ | 0.92 ± 0.08 A | 0.91 ± 0.07 AB | 0.89 ± 0.06 B | 0.91 ± 0.06 AB |
NSI | 0.88 ± 0.12 A | 0.86 ± 0.11 AB | 0.84 ± 0.09 B | 0.87 ± 0.09 AB |
NM (g) | 2.40 ± 0.78 A | 2.56 ± 0.73 A | 2.45 ± 0.69 A | 2.08 ± 0.63 B |
KM (g) | 0.95 ± 0.29 A | 1.00 ± 0.30 A | 0.95 ± 0.29 A | 0.82 ± 0.21 B |
PK (%) | 40.28 ± 6.43 A | 40.02 ± 9.93 A | 38.96 ± 7.69 A | 39.69 ± 5.43 A |
CPC (%) | 21.16 ± 1.15 A | 22.18 ± 1.15 A | 21.70 ± 1.00 A | 20.89 ± 1.45 A |
SSC (%) | 4.11 ± 0.18 A | 4.23 ± 0.15 A | 4.18 ± 0.11 A | 4.05 ± 0.24 A |
CFC (%) | 60.29 ± 1.68 AB | 61.87 ± 1.41 A | 60.63 ± 1.25 AB | 59.82 ± 1.89 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Zhang, Y.-Q.; Wang, L.-J.; Hu, G.-L.; Gong, X.-Q.; Bai, Q.; Su, S.-C.; Qi, J.-X. Short-Term Effects of Spent Mushroom Substrate Mulching Thickness on the Soil Environment, Weed Suppression, Leaf Nutrients, and Nut Characteristics in a Hazelnut Orchard. Agronomy 2021, 11, 1122. https://doi.org/10.3390/agronomy11061122
Ma Z, Zhang Y-Q, Wang L-J, Hu G-L, Gong X-Q, Bai Q, Su S-C, Qi J-X. Short-Term Effects of Spent Mushroom Substrate Mulching Thickness on the Soil Environment, Weed Suppression, Leaf Nutrients, and Nut Characteristics in a Hazelnut Orchard. Agronomy. 2021; 11(6):1122. https://doi.org/10.3390/agronomy11061122
Chicago/Turabian StyleMa, Zhong, Yun-Qi Zhang, Lu-Jun Wang, Guang-Long Hu, Xiao-Qiang Gong, Qian Bai, Shu-Chai Su, and Jian-Xun Qi. 2021. "Short-Term Effects of Spent Mushroom Substrate Mulching Thickness on the Soil Environment, Weed Suppression, Leaf Nutrients, and Nut Characteristics in a Hazelnut Orchard" Agronomy 11, no. 6: 1122. https://doi.org/10.3390/agronomy11061122
APA StyleMa, Z., Zhang, Y. -Q., Wang, L. -J., Hu, G. -L., Gong, X. -Q., Bai, Q., Su, S. -C., & Qi, J. -X. (2021). Short-Term Effects of Spent Mushroom Substrate Mulching Thickness on the Soil Environment, Weed Suppression, Leaf Nutrients, and Nut Characteristics in a Hazelnut Orchard. Agronomy, 11(6), 1122. https://doi.org/10.3390/agronomy11061122