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Abstract: Corn borers are the most important pest affecting maize. Resistance to corn borer attack
may compromise plant fitness being detrimental for some important agronomic traits such as yield.
Against the attack of this pest, cell wall-bound hydroxycinnamates have been previously described
as a possible defense mechanism. In this study, agronomic characterization and cell wall-bound
hydroxycinnamates quantification was performed in a subset of Recombinant Inbred Lines (RILs)
from a Multiparent Advanced Generation Intercross (MAGIC) population that showed contrasting
behavior against corn borer attack. Resistant lines showed greater concentration of p-coumaric acid,
the only hydroxycinnamate that could have a role in the resistance in these particular materials.
In addition, results indicated that resistant lines showed precocity, low grain moisture at harvest,
and reduced plant height, thus, selecting for resistance may be detrimental for yield. In this way, a
breeding strategy directly targeting grain yield in order to tolerate corn borer attack would be the
recommended one.

Keywords: corn borer; yield; cell wall hydroxycinnamates; RILs; agronomic performance; resistance

1. Introduction

Maize is consumed by a large variety of herbivorous insects that have diverse feeding
habits and consume many plant parts. Stem corn borers include diverse lepidopteran
insects that feed on the pith of maize producing tunnels that can cause 30% yield losses,
equivalent to world-wide losses of 311.3 million tons every year [1]. In the northwest of
Spain, the average yield loss is around 15% and is mainly caused by the Mediterranean
corn borer, Sesamia nonagrioides Lef. (MCB); the damage produced by the European corn
borer, Ostrinia nubilalis (ECB), being less important. Both borers show similar life cycles
and herbivorous behavior, but the MCB is more voracious than the ECB [2].

MCB infestation on maize begins at an early phenological stage in this area. After
completing their first generation, that usually coincides with the plant juvenile stage,
stem borers of the second generation attack the plants during the reproductive stage.
The damage produced by second generation larvae causes the most important losses,
decreasing forage, stover and grain yields as a consequence. Tunnels produced in the stalk
pith interfere with nutrient assimilation moving toward the developing ear and increases
the lodging rate [1,3]. Corn borers attack the ears by causing direct damage to kernels and
increasing infections by mycotoxin-producing fungus [4,5].
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Breeding for increased resistance to borers has been effective for reducing the length
of tunnels made by borers but has provoked undesirable changes in agronomic traits [6–8].
Previous research indicated that recurrent selection for resistance to the European corn
borer (ECB) resulted in decreased yielding ability [6,9] and changes in important agronomic
traits [9]. Klenke et al. [6] found that four selection cycles reduced the damage from attacks
by both the first and second generation ECB but decreased grain yield, suggesting that
yield should be included in the selection criteria in a selection program. Likewise, recurrent
selection to improve resistance to MCB also led to a decrease in yield, even when yield was
included in the selection criteria [8].

On the other hand, several cell wall components have been associated with maize
resistance to corn borers. Many studies have focused on studying the cell wall as a biochem-
ical and structural barrier against insects [10–12]. In particular, the role of cell wall-bound
hydroxycinnamates in cell wall strengthening, stiffening, and fortification has been deeply
evaluated. The most important hydroxycinnamates are p-coumaric acid (PCA) and ferulic
acid (FA). The accumulation of PCA is considered a relevant indicator of lignin deposi-
tion, one of the main components of cell wall fibers, and lignin has been directly related
with corn borer resistance by increasing the rigidity of the cell wall [13,14]. On the other
hand, FA can undergo dehydrodimerization, and the resulting dimers (diferulates, DFAs)
crosslink heteroxylans that enhance cell wall stiffening and strengthening. Additionally,
during lignification, FA and diferulic esters form crosslinks through the etherification of
the phenolic hydroxyl group to lignin polymers, producing a polysaccharide-lignin ma-
trix [15–17]. Taking into account those functions, several studies have pointed out the role
of hydroxycinnamates in plant resistance to pests and diseases [10,18–20]. Furthermore,
negative correlations were observed between larval weight and DFA concentration in the
leaf-sheath of maize [21], and between stem tunnelling by ECB and MCB, and total PCA
and DFAs [19,22].

In addition, recurrent selection to improve resistance to corn borer attack has been
demonstrated to influence cell wall-bound hydroxycinnamates concentration. Higher
concentrations of total DFAs were associated with shorter tunnel lengths and fewer larvae
per stem over cycles of selection to MCB resistance in the maize synthetic EPS12 [23]. The
same relationship between resistance and DFA concentration was found when DFAs were
the primary selection criteria [24].

Studies on the relationship between resistance and agronomic or biochemical traits
have usually been carried out using a diverse set of genotypes (hybrids, inbred lines, pop-
ulations) with different levels of resistance [18,25]. One of the problems of this approach
is that each genotype comes from different genetic backgrounds and the relationships
between them are not known, which can lead to false associations [26]. On the other hand,
to study the relationships between resistance to corn borer and other traits, Recombinant In-
bred Lines (RILs) populations derived from biparental crosses have also been used [27–29].
The derived RILs have a common genetic background and are developed randomly, by the
single seed descending method, without selection or drift. The main disadvantage of this
approach is the limited variability of the biparental populations, with only two parents,
and great linkage disequilibrium [30]. To solve these problems, we have evaluated RILs
from a MAGIC (Multiparent Advanced Generation Intercross) population of eight parents,
with enough variability and reduced linkage disequilibrium, since six recombination cycles
have been performed before starting with the RILs development.

Hence, in the current research, agronomic characterization, and cell wall-bound
hydroxycinnamates quantification was performed in a subset of Recombinant Inbred Lines
derived from a MAGIC population chosen for their contrasting behavior against corn
borer attack. The main goals are to deepen the knowledge of: (1) the relationship between
resistance to corn borer and the main agronomic traits, and (2) the role of cell wall-bound
hydroxycinnamates as a defense mechanism against corn borers using RILs from the same
genetic background that have been randomly developed from the MAGIC population.
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2. Materials and Methods
2.1. Experimental Design, Plant and Insect Material

Misión Biológica de Galicia’s Maize Genetics and Breeding Group has developed a
MAGIC population with 700 RILs (currently, there are approximately 600 lines that can be
purchased on request). Details of further developing the MAGIC population was described
in Butrón et al. [31] and Jiménez-Galindo et al. [32]. Jiménez-Galindo et al. [32] evaluated
680 RILs for resistance to corn borers and agronomic traits. Based on that evaluation and
the seed availability for future evaluations, 56 RILs, presenting extremes values for tunnel
length, were selected and classified into two groups according to their resistance to corn
borer attack: (1) short tunnel length (resistant); (2) large tunnel length (susceptible).

Selected RILs, along with eight inbred lines chosen as corn borer attack checks, were
evaluated for resistance to corn borer and agronomic traits (Supplementary Table S1). The
inbred checks included five of the eight MAGIC population founders that are partially
resistant to corn borer attack (A509, EP125, EP17, EP86, F473) and inbreds EP42, EP47, and
EP80, which are susceptible to corn borer attack.

Selected RILs and checks were evaluated across two years (2016 and 2017) in Ponteve-
dra (42◦26′01′′ N 8◦38′51′′ O). Each year, two adjacent trials were conducted with an 8 × 8
simple lattice design. The experimental plot consisted of 15 plants on an area of 2.2 m2 and
a density of 70,000 plants/ha.

One trial was protected with insecticide, treating the plants every 21 days from
approximately 45 days after sowing until harvest; the other was infested with S. nonagrioides
eggs prior to flowering. Standard procedures were followed for the insect rearing (carried
out in Misión Biológica de Galicia) and production of S. nonagrioides eggs [33]. Before
flowering, 10 plants from each plot were infested with ~40–80 S. nonagrioides eggs placed
between the sheath and the stem in the internode below the main ear.

2.2. Resistance Trait (Tunnel Length)

At harvest, ten infested plants per plot were collected in infested trials. The stalks were
split lengthwise, and the lengths of the tunnels (cm) produced by the larvae were measured.

2.3. Agronomic Traits

Agronomic traits were recorded in both the infested and protected trials.

2.4. Days to Silking/Anthesis

Considered as the time passed from the day of sowing until approximately 50% of the
plants showed either pollen (male anthesis) or silks (female silking). They were recorded
periodically by the time each plot started to show pollen and silks.

2.5. Plant Height

Considered as the mean plant height (in cm) of five plants per plot. Plant height was
measured from the base to the tip of flag leaf after flowering and the average of five plants
per plot was presented in this study.

2.6. Lodging

This was calculated as the sum of broken and leaning plants divided by the total
number of plants in the plot, expressed in percentage. A plant was considered broken
when it was split underneath the main ear and leaned when the stem formed an angle with
the ground at less than 45◦. It was recorded at harvest.

2.7. Grain Moisture

Expressed as a percentage, was recorded at harvest using a moisture meter Kett (model
PM-400) in a sample of 240 cm3.
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2.8. Grain Yield

Grain yield was calculated as the weight of grain in Mg ha−1 and adjusted at 14%
grain moisture. It was determined by the following Equation (1).

Grain Yield
(

Mg
ha

)
=

Plot weight (kg)× (100− Humidity)× Grain weight o f 5 ears (g)× 10
Sur f ace (m2)× 86× Total weight o f 5 ears (g)

(1)

where grain moisture was estimated as described above; surface was calculated as
the number of plants per plot multiplied by the space between rows (0.80 m) and the
space between plants (0.18 m). The value 86 on the equation corresponds to a constant to
adjust the yield at 14% humidity. Yields were calculated per plot and then transformed to
Mg ha−1; thus, this refers to a maximum potential yield.

2.9. Biochemical Analysis

The second internode below the main ear was collected from five plants in each plot
in protected trials. Samples were collected at 55 days after silking. For each harvested
internode, the pith was manually detached and frozen at −20 ◦C. Then, samples were
lyophilized and ground in a Wiley (Arthur H. Thomas, Philadelphia, PA, USA) mill with
a 0.75 mm screen before being analyzed. A recently optimized protocol was used for
hydroxycinnamate quantification [34]. Phenolic standards ferulic acid and p-coumaric acid
were purchased from Sigma-Aldrich Química SL, Madrid, Spain Sigma. The identities of
FA dimers were confirmed by a comparison with the authentic 5−5 standard or published
retention times and UV spectra. The total diferulate content (DFAT) was calculated as the
sum of the following three identified and quantified DFA isomers: DFA 8–O–4, DFA 5–5,
and DFA 8–5. The DFA 8–5 concentrations were calculated as the sum of 8−5-cyclic (or
benzofuran)-DFA and 8–5-noncyclic (or open).

2.10. Statistical Analysis

Combined analyses across years were performed for each trait for protected and in-
fested trials using the mixed model procedure of the SAS program (version 9.4) [35]. Means
for each trait were calculated based on combined data across years. Lines were considered
as fixed effects and years, replicates, and blocks as random effects. The comparison of
means was carried out using least significant difference (LSD).

2.11. Contrast Analysis

After a variance analysis, the RILs were, again, qualitatively classified according to
their BLUEs (Best Linear Unbiased Estimators) for tunnel length (under infestation) in
resistant, susceptible, or intermediate. Resistant and susceptible groups were formed by
20 RILs in each. With the qualitative dataset, including the checks, mean comparisons were
performed in order to determine the existence of significant differences for agronomic traits
and cell wall-bound hydroxycinnamates between groups of RILs with contrasting values
for resistance to corn borer. Discussion will focus on differences among resistant (short
tunnel length) and susceptible (large tunnel length) groups.

2.12. Correlation Analysis

Genotypic and phenotypic correlations were performed among tunnel length and
agronomic traits using Restricted Maximum Likelihood (REML) according to a published
SAS mixed model procedure [36].

2.13. Multiple Linear Regression Analysis

In order to understand the role of cell wall-bound hydroxycinnamates as one of the
defense mechanisms against corn borer, BLUES estimates were used to build multiple linear
regression models. The stepwise method following the PROC REG procedure in SAS was
used [35]. We have considered as dependent variables the trait involved in stalk resistance
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to corn borer (tunnel length). On the other side, cell wall-bound hydroxycinnamates were
considered as independent variables.

3. Results

As a starting point, in means comparison analyses, RILs differ significantly for every
trait under study in both infestation conditions with the exception of grain moisture under
infestation (Supplementary Tables S1 and S2). Among others, the RILs differed significantly
in tunnel length under infestation conditions and that allowed the classification in resistant,
medium, or susceptible for contrast analysis (Supplementary Tables S1 and S2).

3.1. Contrast Analysis

RILs were classified in three groups according to their tunnel length under infesta-
tion conditions: (1) short tunnel length (resistant, 5–26 cm); (2) medium tunnel length
(26–44 cm); (3) large tunnel length (susceptible, 45–63 cm). The RIL of the resistant group
with the shortest tunnels (26 cm) differed significantly (p < 0.05) from the RIL of the suscep-
tible group with the largest tunnels (45 cm). Even though values for the checks and the
medium RILS are included, for the discussion, we will only focus on differences among
resistant (short tunnel length) and susceptible (large tunnel length) RILs. According to this
classification, significant differences for agronomic traits between groups are also shown in
Table 1.

Table 1. Contrast analysis for the t large, short and medium tunnel length groups and checks of RILs
classified according to resistance to corn borer. Means for agronomic traits and hydroxycinnamic
acids with significant differences among groups are included.

Tunnel Length (cm) Large Medium Short Checks LSD a

Under Control Condition (Insecticide Protected)

Days to Anthesis 67.0 a 65.8 b 63.2 c 67.7 a 0.8
Days to Silking 68.5 ab 67.4 b 64.1 c 69.3 a 1.4

Grain Yield (t ha−1) 5.48 a 5.24 a 4.01 b 5.37 a 0.88
Grain Moisture (%) 19.3 a 17.8 ab 16.4 b 18.6 ab 2.4
Plant Height (cm) 181 a 170 b 157 c 181 d 5

Lodging (%) 13.23 ab 20.67 a 22.01 a 9.19 b 10.69
PCA (mg/g) 6.43 a 8.07 b 10.0 c 9.71 c 1.58
FA (mg/g) 1.68 a 1.69 a 1.60 a 2.42 b 0.51

DFA 5-5 (mg/g) 0.058 a 0.062 a 0.067 a 0.087 b 0.017
DFA 8-O-4 (mg/g) 0.090 a 0.963 a 0.097 a 0.134 b 0.029
DFA 8-5-l (mg/g) 0.064 a 0.068 ab 0.065 a 0.084 b 0.011
DFA 8-5-b (mg/g) 0.083 a 0.090 a 0.089 a 0.127 b 0.017
DFA 8-5 (mg/g) 0.153 a 0.158 a 0.148 a 0.211 b 0.026

DFAT (mg/g) 0.301 a 0.317 a 0.312 a 0.435 b 0.079

Under Infestation Condition

Days to Anthesis 67.6 a 66.0 ab 63.2 b 66 ab 4.3
Days to Silking 69.3 a 67.3 b 64.5 c 69.9 a 1.2

Grain Yield (t ha−1) 5.69 a 5.59 a 4.20 a 5.52 a 2.12
Grain Moisture (%) 16.7 a 15.5 a 14.8 a 15.8 a 5.1
Plant Height (cm) 176 a 162 ab 146 b 165 ab 26

Lodging (%) 40.03 a 43.26 a 50.40 a 43.03 a 30.21
a. Least significant differences between means at the 0.05 significant level, according to Fisher protected LSD
method. Means showing the same letter do not differ significantly. PCA: p-coumaric acid; FA: Ferulic acid;
DFA5-5: diferulic acid 5-5; DFA 8-o-4: Diferulic acid 8-O-4, DFA85l: Diferulic acid 8-5-Linear; DFA85b: Diferulic
acid 8-5-Benzofuran; DFA8-5: Diferulic acid 8-5; DFAT: Total diferulic acids content.

RILS classified as resistant to corn borer attack, under control conditions, were the
earliest (63–64 days to anthesis, silking), the smallest (157 cm) and the driest (16.4%), in
addition to producing a lower yield (4 t ha−1). Furthermore, at a biochemical level, resistant
lines presented higher concentrations of PCA (10 mg/g).
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Under infestation with MCB eggs, resistant lines were also the earliest, showing
similar flowering dates as in controlled conditions, and the smallest (10 cm smaller than
the plants in control conditions). Nevertheless, resistant and susceptible RILs did not differ
in grain yield and moisture.

3.2. Correlation Analysis

The relationships among agronomic traits, under both infestation conditions, were
evaluated through genotypic and phenotypic correlations. Correlation coefficients are
shown in Table 2. In this section and further in the discussion, we will focus on correlations
above 0.50 (absolute value) highlighted in bold in Table 2. Apart from days to anthesis
and silking (rp 0.87 c, 0.93 ui), we did not find any other important phenotypic correlation
under both infestation conditions: control (c), under infestation (ui). On the other hand,
we found a strong positive genotypic correlation between tunnel length and grain yield
(rg 0.56 c, 0.68 ui) and moisture (rg 0.54 c, 1 ui) and between tunnel length and plant
height (rg 0.57 c, 0.60 ui) both in infested and control trials. Under infestation, we found
strong genotypic correlations between flowering time and grain moisture (rg 0.71, 0.55)
and between plant height and grain yield (rg 0.56).

Table 2. Genotypic (above diagonal) and phenotypic (below diagonal).

Tunnel
Length

Plant
Height

Days to
Anthesis

Days to
Silking

Grain
Yield Lodging Grain

Moisture

Under Control Condition (Insecticide Protected)

Tunnel Length 1 0.57 * 0.47 * 0.43 * 0.56 * −0.12 0.54 *
Plant Height 0.32 * 0.39 * 0.42 * 0.63 * 0.24 0.39 *

Days to Anthesis 0.27 * 0.18 0.96 * 0.04 0.08 0.37 *
Days to Silking 0.23 * 0.19 0.87 * −0.07 0.04 0.34 *

Grain Yield 0.13 0.20 * −0.07 −0.13 0.10 * 0.32
Lodging −0.09 0.10 −0.04 −0.03 0.18 0.32

Grain Moisture 0.30 * 0.15 0.25 * 0.24 * 0.16 * 0.13

Under Infestation Condition

Tunnel Length 0.60 * 0.43 * 0.48 * 0.68 * −0.04 1 *
Plant Height 0.43 * 0.32 0.35 0.56 * −0.11 0.40

Days to Anthesis 0.13 0.07 0.97 * 0.10 −0.10 0.71 *
Days to Silking 0.13 0.06 0.93 * 0.04 −0.09 0.55 *

Grain Yield 0.22 * 0.38 * 0.05 −0.10 0.04 0.44
Lodging 0.02 0.08 −0.01 −0.06 0.17 0.41

Grain Moisture 0.08 0.17 0.19 0.21 * 0.16 0.15

* Significant correlation coefficient because it exceeded twice its standard error. 1 Tunnel length data comes from
trial under infestation condition. Correlations above 0.50 (in absolute value) are highlighted in bold

3.3. Multiple Linear Regression Analysis

In order to understand the role of cell wall-bound hydroxycinnamates as a mechanism
of defense against corn borers, we performed multiple linear regression models. We
considered tunnel length (under infestation) as a dependent variable and cell wall-bound
hydroxycinnamates as independent variables. The best model for tunnel length explained
53% of the variance, mainly by PCA (15%), FA (28%) and DFA 5-5 (5%) and DFAT (4%)
(Table 3).
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Table 3. Multiple linear regression models (using stepwise selection) of tunnel length on hydroxycin-
namic acids.

Step Wise Selection

Tunnel Length (cm)

Step Variable introduced
in the Model R2 Partial R2

1 PCA (mg/g) 0.15 0.19
2 FA (mg/g) 0.28 0.44
3 DFA 5-5 (mg/g) 0.06 0.49
4 DFAT (mg/g) 0.04 0.53

Model TUNNEL LENGTH: 42.13−3.08 × PCA + 5.87 × FA + 132.1 × DFA-8-5-l

R2 partial: percentage of the variance explained by each independent variable; R2: Total percentage of the
variance explained by the model. PCA: p-coumaric acid; FA: Ferulic acid; DFA 5-5: Diferulic acid 5-5; DFAT: total
diferulates content.

4. Discussion

In order to achieve an accurate phenotyping, we repeated the evaluation of MAGIC
RILs performed by Jiménez-Galindo et al. [32] selecting those presenting extreme values
for tunnel length and according to their seed availability for future evaluations, resulting
in a total of 56 RILS [32]. From those 56, another selection according to tunnel length
under infestation was performed for contrast analysis, resulting in three groups: resistant,
intermediate, and susceptible. Further on we will discuss differences between resistant and
susceptible RILs.

4.1. Relationship between Resistance to Corn Borer and Main Agronomic Traits

Resistant and susceptible RILs differed in agronomic performance under both infesta-
tion conditions. Statistical analyses indicated that RILs presenting greater tunnel length,
hence classified as susceptible to corn borer attack, were taller, presented with delayed
maturity and had greater grain moisture at harvest. Besides, susceptible RILs yielded
significantly more than resistant RILs under controlled conditions. These results are in
agreement with previous findings observed in diverse genetic backgrounds [5,37–40].

The relationship between flowering time and resistance to corn borer attack is complex,
and results from experimentation may be contradictory since this is a trait dependent on
a lot of factors, such as the genetic background or the infestation time. Thereby, our
results agree with those obtained by Jimenez-Galindo et al. [41], Santiago et al. [18], and
Krakowsky et al. [42], but are opposite to those presented by Ordás et al. [27], Samayoa
et al. [39], and Bohn et al. [43].

Late flowering genotypes are related to greater plant height, vigor, and yield; traits that
have been negatively correlated to resistance to corn borer attack [27,44]. In northwestern
Europe, the damage produced by second generation larvae causes the most important
losses, damaging the plants during the reproductive stage [1,3]. An agronomic strategy
proposed in order to alleviate the larvae damage is to advance the sowing time producing
similar effects of those of early flowering. Early genotypes, with fast growth rate, would
be in an advanced developmental stage by the time the MCB infestation peak occurs.
Therefore, precocity would favor resistance to corn borer. Along with this, it has been
demonstrated that tissue toughness, and cell wall lignification and fortification increase
with plant maturity, interfering with the larvae progress.

The relationship between tunnel length and flowering time is clear in the contrast
analysis, but it was not observed in correlation analysis in the infection condition. We
identified genetic correlations above 0.5 between flowering time and grain moisture. Those
results indicate that tunnels produced by the larvae under infestation conditions cause a
delay in grain maturation [45] and could suggest that the period between flowering until
grain maturation is more decisive in resistance than the period before flowering.
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Moving on in our results, we found a high genetic correlation between plant height
and tunnel length. Velasco et al. [46] hypothesized that taller plants would provide larger
damage extent to the larvae. In an F2 derived from the cross of B73 and Dc811, Krakowsky
et al. [42] found positive genetic correlations between stalk tunneling and ear height, which
is highly correlated with plant height, indicating that the length of the stalk may be a
limiting issue in the larvae-lant interaction. The above is supported to a greater extent if
the positive relationship between plant height and days to flowering is taken into account:
tall plants presented delayed maturity and greater susceptibility. The same correlations
between plant height and tunnel length were found by Samayoa et al. [39] in bi-parental
populations derived from the cross of resistant and susceptible inbred lines, and from
crosses of a tolerant and sensible line [27,41]. In relation to these observations, several
authors have also found QTL co-localization between plant height and stalk tunneling,
reporting that favorable alleles increased the values for both traits, indicating an important
genomic region in relation to resistance and its influence in agronomic traits [27,39,47].
This association between traits need to be considered in order to breed for borer resistance.

Finally, susceptible RILs yielded significantly more than resistant RILs under protected
conditions, and we observed a strong, positive genetic correlation between grain yield
and tunnel length under both infestation conditions. Breeding for increased resistance to
corn borer attack has been related to decreases in grain yield [3–6], which agrees with our
results. In contrast analysis, under infestation, we did not observe differences in grain yield
between resistant and susceptible groups, which was contrary to controlled conditions.
This could be explained because resistant RILs invest in constitutive defenses against the
pest, which may imply a reduction of its yield. Under protected conditions, susceptible
RILs do not suffer the attack of the plague producing significantly greater grain yield than
resistant RILs, since they do not produce constitutive defenses. However, these differences
are no longer significant when the RILs are exposed to the attack of the larvae: resistant
RILs maintain their yield because of their defense mechanism and, in contrast, susceptible
RILs see their grain yield compromised.

To sum up, greater tunnel length has been related to delayed maturity, which corre-
sponds to a lower development of the plant tissues at the time of the larvae attack and
greater grain moisture at the time of harvest. Delayed maturity also correlates with taller
plants that present a greater extent to be consumed by the larvae. Lastly, susceptible RILs
presented greater grain yield than resistant RILs when not exposed to the pest.

4.2. Role of Cell Wall Hydroxycinnamates as Defence Mechanism against Corn Borers

Resistant and susceptible RILs differed in cell wall-bound hydroxycinnamates con-
tent under both infestation conditions. From a biochemical point of view, the cell wall
fortification mediated by hydroxycinnamates has been proposed as a defense mechanism
against diverse pests [48]. Specifically, Santiago et al. [7] observed significant variation for
cell wall phenylpropanoids in maize inbred lines presenting a wide range of susceptibility
against S. nonagrioides attack. They observed significant differences in FA and DFATs pith
concentrations, being greater in resistant inbreds. Subsequently, a successful selection for
higher DFATs in maize pith resulted in increased resistance to corn borer attack, as a result
of increases in the cell wall stiffening and strengthening by crosslinking hemicellulose
chains [24]. However, in the current study, we did not observe an influence of DFATs on
tunnel length. Even so, we did find in the regression analysis a positive influence of FA
in greater tunnel length, the opposite of what was found by Santiago et al. [7]. There is
a dependency relationship between FA and DFAT, since DFAT are a consequence of FA
monomer dimerization, which is supported by strong genotypic and phenotypic correla-
tions between those traits [49,50]. In this sense, greater concentrations of FA could indicate
lower dimerization, hence lower crosslink, and stiffening. This would explain the major
positive effect of FA in the tunnel length regression model.

On the other hand, a higher concentration of PCA monomer in the pith of maize was
related to higher resistance to corn borer damage in both the regression model and contrast
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analysis. Increases in PCA concentration have previously been observed in both pith [18,19]
and rind tissues [18] of maize resistant inbreds. In subsequent studies, Santiago et al. [51]
concluded that alleles for increased ester hydroxycinnamates content, affecting one or
more hydroxycinnamate compounds, could be associated with increased stem resistance to
MCB; PCA being the hydroxycinnamate with the highest contribution to it. Furthermore,
in a recent study, Gesteiro et al. [52] selected 10 F2:3 families with contrasting values for
PCA, DFAT, and tunnel length in order to elucidate how cell wall-bound phenolic affects
borer resistance. They observed a negative correlation between tunnel length and PCA
concentration, in agreement with our results.

In maize, lignins (primarily syringyl units) are acylated at the γ-position by p-
coumarates [53]. Most PCA accretion occurs in tandem with lignification and its accumulation
could be considered a relevant indicator of lignin deposition. The fact that, in Gesteiro et al. [8],
families showing the highest levels of PCA also showed the highest proportion of subunit S,
suggests that the role of PCA in resistance could be associated not only to the lignin content
but also to the lignin composition and structure [2]. S lignin, indirectly associated to more
PCA acetylation, has been noted in resistance against different biotic stresses [52,54,55].

To sum up, the present study using MAGIC RILS adds to the list of evidence for the
potential role of PCA in pest resistance. However, in this vegetal material, stiffening and
crosslinking of DFAs does not take a part in the resistance to corn borer attack.

5. Conclusions

Corn borer resistant RILs showed precocity, low grain moisture at harvest, and reduced
plant height. We observed that the negative correlation between yield and tunnel length,
previously observed in other vegetal materials, is maintained after all of the recombination
events in this MAGIC population. Therefore, breeding using the tunnel length criteria
should be carried out with caution because this may compromise plant fitness and grain
yield. In this case, we recommend a breeding strategy directly targeting grain yield.

Furthermore, taking account of a higher level of PCA acetylation in the selected
materials as a secondary criteria could be advisable in future breeding programs, although
negative correlations between plant fitness and p-coumarilation need to be addressed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11061132/s1, Supplementary Table S1: Means for agronomic traits and cell wall-
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evaluated. Supplementary Table S2: Means for agronomic traits under infestation conditions of the
RILs evaluated.

Author Contributions: R.A.M., R.S. conceived the study and participated in its design; R.S., R.A.M.,
A.L.-M., J.C.J.-G. and Z.R. carried out the field trial and sample collection; A.L.-M., R.A.M., Z.R.
performed data analysis; A.L.-M. wrote the manuscript. Z.R. performed and assisted in the laboratory
analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been developed in the frame of the Agri-Food Research and Transfer Cen-
tre of the Water Campus (CITACA) at the University of Vigo (Spain), which is economically supported
by the Galician Government and in the Misión Biológica de Galicia-CSIC. It was funded by the “Plan
Estatal de Ciencia y Tecnología de España” (projects RTI2018–096776-B-C21, RTI2018–096776-B-C22,
and PID2019-108127RB-I00 co-financed with European Union funds under the FEDERprogram). A.
López-Malvar’s contract was charged to the project RTI2018–096776-B-C22. J.C. Jiménez Galindo’s
contract was financed by a PhD scholarship #314685 from the National Council for Science and
Technology (CONACYT), Mexico. Zoila Resendiz’s contracts were financed by a Scholarship from
the National Council of Science and Technology (CONACYT) to carry out Postdoctoral studies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

https://www.mdpi.com/article/10.3390/agronomy11061132/s1
https://www.mdpi.com/article/10.3390/agronomy11061132/s1


Agronomy 2021, 11, 1132 10 of 11

Acknowledgments: We thank Ana Carballeda for her technical assistance in the laboratory analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meissle, M.; Mouron, P.; Musa, T.; Bigler, F.; Pons, X.; Vasileiadis, V.P.; Otto, S.; Antichi, D.; Kiss, J.; Pálinkás, Z.; et al. Pests,

pesticide use and alternative options in European maize production: Current status and future prospects. J. Appl. Entomol. 2010,
134, 357–375. [CrossRef]

2. Butrón, A.; Malvar, R.A.; Cartea, M.E.; Ordás, A.; Velasco, P. Resistance of maize inbreds to pink stem borer. Crop Sci. 1999, 39,
102–107. [CrossRef]

3. López, C.; Sans, A.; Asin, L.; EizaGuirre, M. Phenological Model for Sesamia nonagrioides (Lepi-doptera: Noctuidae). Environ.
Entomol. 2001, 30, 23–30. [CrossRef]

4. Avantaggiato, G.; Quaranta, F.; Desiderio, E.; Visconti, A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia.
J. Sci. Food Agric. 2003, 83, 13–18. [CrossRef]

5. Butrón, A.; Santiago, R.; Mansilla, P.; Pintos-Varela, C.; Ordás, A.; Malvar, R.A. Maize (Zea mays L.) genetic factors for preventing
fumonisin contamination. J. Agric. Food Chem. 2006, 54, 6113–6117. [CrossRef] [PubMed]

6. Klenke, J.R.; Russell, W.A.; Guthrie, W.D. Recurrent selection for resistance to European corn borer in corn synthetic and correlated
effects on agronomic traits. Crop Sci. 1986, 26, 864–868. [CrossRef]

7. Sandoya, G.; Malvar, R.A.; Santiago, R.; Alvarez, A.; Revilla, P.; Butrón, A. Effects of selection for resistance to Sesamia nonagrioides
on maize yield, performance and stability under infestation with Sesamia nonagrioides and Ostrinia nubilalis in Spain. Ann. Appl.
Biol. 2010, 156, 377–386. [CrossRef]

8. Butrón, A.; Romay, M.C.; Peña-Asín, J.; Alvarez, A.; Malvar, R.A. Genetic relationship between maize resistance to corn borer
attack and yield. Crop Sci. 2012, 52, 1176–1180. [CrossRef]

9. Russell, W.A.; Wa, R. Effects of recurrent selection for European corn borer resistance on other agronomic characters in synthetic
cultivars of maize. Maydica 1979, 24, 33–47.

10. Bergvinson, D.J.; Arnason, J.T. Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop
Sci. 1997, 37, 1567–1572. [CrossRef]

11. Buendgen, M.R.; Coors, J.G.; Grombacher, A.W.; Russell, W.A. European corn borer resistance and cell wall composition of tree
maize populations. Crop Sci. 1990, 30, 505–510. [CrossRef]

12. Ostrander, B.M.; Coors, J.G. Relationship between plant composition and European corn borer resistance in three maize
populations. Crop Sci. 1997, 37, 1741–1745. [CrossRef]

13. Fontaine, A.S.; Briand, M.; Barrière, Y. Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize
stover at silage harvest. Maydica 2003, 48, 75–84.

14. Méchin, V.; Argillier, O.; Menanteau, V.; Barrière, Y.; Mila, I.; Rollet, B.; Lapierre, C. Relationship of cell wall composition to
in vitro cell wall digestibility of maize inbred line stems. J. Sci. Food Agric. 2000, 80, 574–580. [CrossRef]

15. Scalbert, A.; Monties, B.; Lallemand, J.Y.; Guittet, E.; Rolando, C. Ether linkage between phenolic acids and lignin fractions from
wheat straw. Phytochemistry 1985, 26, 1359–1362. [CrossRef]

16. Iiyama, K.; Lam, T.; Stone, B.A. Covalent crosslinks in the cell wall. Plant Physiol. 1994, 104, 315–320. [CrossRef]
17. Grabber, J.H.; Mertens, D.R.; Kim, H.; Funk, C.; Lu, F.; Ralph, J. Cell wall fermentation kinetics are impacted more by lignin

content and ferulate cross-linking than by lignin composition. J. Sci. Food Agric. 2009, 89, 122–129. [CrossRef]
18. Santiago, R.; Butron, A.; Arnason, J.T.; Reid, L.M.; Souto, X.C.; Malvar, R.A. Putative role of pith cell wall phenylpropanoids in

Sesamia nonagrioides (Lepidoptera: Noctuidae) resistance. J. Agric. Food Chem. 2006, 54, 2274–2279. [CrossRef] [PubMed]
19. Barros-Rios, J.; Malvar, R.A.; Jung, H.J.G.; Santiago, R. Cell wall composition as a maize defense mechanism against corn borers.

Phytochemistry 2011, 72, 365–371. [CrossRef]
20. Assabgui, R.A. Correlation of kernel (E)ferulic acid content of maize with resistance to fusarium graminearum. Phytopathology

1993, 83, 949. [CrossRef]
21. Santiago, R.; Butrón, A.; Reid, L.M.; Arnason, J.T.; Sandoya, G.; Souto, X.C.; Malvar, R.A. Diferulate content of maize sheaths is

associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Agric. Food Chem.
2006, 54, 9140–9144. [CrossRef] [PubMed]

22. Barros-Rios, J.; Malvar, R.A.; Jung, H.J.G.; Bunzel, M.; Santiago, R. Divergent selection for ester-linked diferulates in maize pith
stalk tissues. Effects on cell wall composition and degradability. Phytochemistry 2012, 83, 43–50. [CrossRef] [PubMed]

23. Santiago, R.; Sandoya, G.; Butrón, A.; Barros, J.; Malvar, R.A. Changes in phenolic concentrations during recurrent selection for
resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). J. Agric. Food Chem. 2008, 56, 8017–8022. [CrossRef]

24. Barros-Rios, J.; Santiago, R.; Jung, H.J.G.; Malvar, R.A. Covalent cross-linking of cell-wall polysaccharides through esterified
diferulates as a maize resistance mechanism against corn borers. J. Agric. Food Chem. 2015, 63, 2206–2214. [CrossRef] [PubMed]

25. Cartea, M.E.; Malvar, R.A.; Revilla, P.; Ordás, A.; Alvarez, A. Seasonal occurrence and response of maize inbred lines to pink stem
borer in the northwest of Spain. Maydica 1994, 39, 191–196.

26. Santiago, R.; Souto, X.C.; Sotelo, J.; Butrón, A.; Malvar, R.A. Relationship between maize stem structural characteristics and
resistance to pink stem borer (Lepidoptera: Noctuidae) attack. J. Econ. Entomol. 2003, 96, 1563–1570. [CrossRef]

http://doi.org/10.1111/j.1439-0418.2009.01491.x
http://doi.org/10.2135/cropsci1999.0011183X003900010016x
http://doi.org/10.1603/0046-225X-30.1.23
http://doi.org/10.1002/jsfa.1272
http://doi.org/10.1021/jf0611163
http://www.ncbi.nlm.nih.gov/pubmed/16881725
http://doi.org/10.2135/cropsci1986.0011183X002600050005x
http://doi.org/10.1111/j.1744-7348.2010.00395.x
http://doi.org/10.2135/cropsci2011.11.0584
http://doi.org/10.2135/cropsci1997.0011183X003700050026x
http://doi.org/10.2135/cropsci1990.0011183X003000030005x
http://doi.org/10.2135/cropsci1997.0011183X003700060011x
http://doi.org/10.1002/(SICI)1097-0010(200004)80:5&lt;574::AID-JSFA575&gt;3.0.CO;2-R
http://doi.org/10.1016/S0031-9422(00)81133-4
http://doi.org/10.1104/pp.104.2.315
http://doi.org/10.1002/jsfa.3418
http://doi.org/10.1021/jf0524271
http://www.ncbi.nlm.nih.gov/pubmed/16536607
http://doi.org/10.1016/j.phytochem.2011.01.004
http://doi.org/10.1094/Phyto-83-949
http://doi.org/10.1021/jf061830k
http://www.ncbi.nlm.nih.gov/pubmed/17117802
http://doi.org/10.1016/j.phytochem.2012.07.026
http://www.ncbi.nlm.nih.gov/pubmed/22938993
http://doi.org/10.1021/jf800922j
http://doi.org/10.1021/jf505341d
http://www.ncbi.nlm.nih.gov/pubmed/25619118
http://doi.org/10.1093/jee/96.5.1563


Agronomy 2021, 11, 1132 11 of 11

27. Ordas, B.; Malvar, R.A.; Santiago, R.; Butron, A. QTL mapping for Mediterranean corn borer resistance in European flint
germplasm using recombinant inbred lines. BMC Genom. 2010, 11, 174. [CrossRef]

28. Cardinal, A.J.; Lee, M.; Sharopova, N.; Woodmanclikeman, W.L.; Long, M.J.; European, T.; Hu, O. Tunneling by the European
Corn Borer in Maize. Crop Sci. 2001, 41, 835–845. [CrossRef]

29. Papst, C.; Bohn, M.; Utz, H.F.; Melchinger, A.E.; Klein, D.; Eder, J. QTL mapping for European corn borer resistance (Ostrinia
nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize (Zea mays L.)
germplasm. Theor. Appl. Genet. 2004, 108, 1545–1554. [CrossRef]

30. Glowinski, A.; Flint-Garcia, S. Germplasm resources for mapping quantitative traits in maize. In The Maize Genome; Bennetzen, J.,
Flint-Garcia, S., Hirsch, C., Tuberosa, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 143–159. ISBN
978-3-319-97427-9.

31. Butrón, A.; Santiago, R.; Cao, A.; Samayoa, L.; Malvar, R. QTLs for Resistance to fusarium ear rot in a multiparent advanced
generation intercross (MAGIC) maize population. Plant Dis. 2019, 103, 897–904. [CrossRef]

32. Jiménez-Galindo, J.C.; Malvar, R.A.; Butrón, A.; Santiago, R.; Samayoa, L.F.; Caicedo, M.; Ordás, B. Mapping of resistance to corn
borers in a MAGIC population of maize. BMC Plant Biol. 2019, 19, 1–17. [CrossRef]

33. Eizaguirre, M.; Albajes, R. Diapause induction in the stem corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Entomol.
Gen. 1992, 17, 277–283. [CrossRef]

34. Santiago, R.; López-Malvar, A.; Souto, C.; Barros-Ríos, J. Methods for determining cell wall-bound phenolics in maize stem
tissues. J. Agric. Food Chem. 2018, 66, 1279–1284. [CrossRef]

35. SAS Institute. Base SAS 9.4 Procedures Guide; SAS Institute: Cary, NC, USA, 2015.
36. Holland, J.B. Estimating genotypic correlation and their standard errors using multivariate restricted maximum likelihood

estimation with SAS Prco MIXED. Crop Sci. 2006, 46, 642–656. [CrossRef]
37. Butrón, A.; Revilla, P.; Sandoya, G.; Ordás, A.; Malvar, R.A. Resistance to reduce corn borer damage in maize for bread, in Spain.

Crop Prot. 2009, 28, 134–138. [CrossRef]
38. Sandoya, G.; Santiago, R.; Malvar, R.A.; Butrón, A. Evaluation of structural and antibiosis resistance mechanisms during selection

against Mediterranean corn borer (Sesamia nonagrioides Lef) in the maize synthetic EPS12. Crop Prot. 2010, 29, 7–10. [CrossRef]
39. Samayoa, L.F.; Butron, A.; Malvar, R.A. QTL mapping for maize resistance and yield under infes-tation with Sesamia nonagrioides.

Mol. Breed. 2014, 34, 1331–1344. [CrossRef]
40. Krakowsky, M.D.; Lee, M.; Woodman-Clikeman, W.L.; Long, M.J.; Sharopova, N. QTL mapping of resistance to stalk tunneling by

the european corn borer in RILs of maize population B73 X De811. Crop Sci. 2004, 44, 274–282. [CrossRef]
41. Jiménez-Galindo, J.C.; Ordás, B.; Butrón, A.; Samayoa, L.F.; Malvar, R.A. QTL mapping for yield and resistance against

mediterranean corn borer in maize. front. Plant Sci. 2017, 8, 2–11.
42. Krakowsky, M.D.; Brinkman, M.J.; Woodman-Clikeman, W.L.; Lee, M. Genetic components of resistance to stalk tunneling by the

European corn borer in maize. Crop Sci. 2002, 42, 1309–1315. [CrossRef]
43. Bohn, M.; Schulz, B.; Kreps, R.; Klein, D.; Melchinger, A.E. QTL mapping for resistance against the European corn borer (Ostrinia

nubilalis H.) in early maturing European dent germplasm. Theor. Appl. Genet. 2000, 101, 907–917. [CrossRef]
44. Sandoya, G.; Butrón, A.; Alvarez, A.; Ordás, A.; Malvar, R.A. Direct response of a maize synthetic to recurrent selection for

resistance to stem borers. Crop Sci. 2008, 48, 113–118. [CrossRef]
45. Ordás, B.; Revilla, P.; Romay, M.C.; Malvar, R.A.; Butrón, A.; Ordás, A. Eighteen cycles of recur-rent mass selection for early

flowering in two maize synthetics. Euphytica 2019, 215, 49. [CrossRef]
46. Velasco, P.; Revilla, P.; Monetti, L.; Butrón, A.; Ordás, A.; Malvar, R.A. Corn borers (Lepidoptera: Noctuidae, Crambidae) in

Northwestern Spain: Population dynamics and distribution. Maydica 2007, 52, 195–203.
47. Schön, C.C.; Lee, M.; Woodman, W.L.; Melchinger, A.E.; Guthrie, W.D. Mapping and character-zation of quantitative trait loci

affecting resistance against second generation european corn bo-er in maize with the aid of rflps. Heredity 1993, 70, 660. [CrossRef]
48. Santiago, R.; Malvar, R.A. Role of dehydrodiferulates in maize resistance to pests and diseases. Int. J. Mol. Sci. 2010, 11, 691–703.

[CrossRef]
49. López-Malvar, A.; Butrón, A.; Samayoa, L.F.; Figueroa-Garrido, D.J.; Malvar, R.A.; Santiago, R. Genome-wide association analysis

for maize stem Cell Wall-bound Hydroxycinnamates. BMC Plant Biol. 2019, 19, 1–12. [CrossRef] [PubMed]
50. Barros-Rios, J.; Santiago, R.; Malvar, R.A.; Jung, H.J.G. Chemical composition and cell wall polysaccharide degradability of pith

and rind tissues from mature maize internodes. Anim. Feed Sci. Technol. 2012, 172, 226–236. [CrossRef]
51. Santiago, R.; Malvar, R.A.; Barros-Rios, J.; Samayoa, L.F.; Butrón, A. Hydroxycinnamate synthesis and association with mediter-

ranean corn borer resistance. J. Agric. Food Chem. 2016, 64, 539–551. [CrossRef]
52. Gesteiro, N.; Butrón, A.; Estévez, S.; Santiago, R. Unraveling the role of maize (Zea mays L.) cell-wall phenylpropanoids in

stem-borer resistance. Phytochemistry 2021, 185, 112683. [CrossRef]
53. Ralph, J.; Hatfield, R.D.; Quideau, S.; Helm, R.F.; Grabber, J.H.; Jung, H.J.G. Pathway of p-coumaric acid incorporation into maize

lignin as revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448–9456. [CrossRef]
54. Zhao, Q.; Wang, H.; Yin, Y.; Xu, Y.; Chen, F.; Dixon, R.A. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall

master switch. Proc. Natl. Acad. Sci. USA 2010, 107, 14496–14501. [CrossRef] [PubMed]
55. Ma, Q.H.; Zhu, H.H.; Qiao, M.Y. Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco. Plant

Pathol. 2018, 67, 642–650. [CrossRef]

http://doi.org/10.1186/1471-2164-11-174
http://doi.org/10.2135/cropsci2001.413835x
http://doi.org/10.1007/s00122-003-1579-3
http://doi.org/10.1094/PDIS-09-18-1669-RE
http://doi.org/10.1186/s12870-019-2052-z
http://doi.org/10.1127/entom.gen/17/1992/277
http://doi.org/10.1021/acs.jafc.7b05752
http://doi.org/10.2135/cropsci2005.0191
http://doi.org/10.1016/j.cropro.2008.09.007
http://doi.org/10.1016/j.cropro.2009.09.010
http://doi.org/10.1007/s11032-014-0119-y
http://doi.org/10.2135/cropsci2004.0274
http://doi.org/10.2135/cropsci2002.1309
http://doi.org/10.1007/s001220051561
http://doi.org/10.2135/cropsci2007.02.0084
http://doi.org/10.1007/s10681-019-2374-9
http://doi.org/10.1038/hdy.1993.93
http://doi.org/10.3390/ijms11020691
http://doi.org/10.1186/s12870-019-2135-x
http://www.ncbi.nlm.nih.gov/pubmed/31775632
http://doi.org/10.1016/j.anifeedsci.2012.01.005
http://doi.org/10.1021/acs.jafc.5b04862
http://doi.org/10.1016/j.phytochem.2021.112683
http://doi.org/10.1021/ja00100a006
http://doi.org/10.1073/pnas.1009170107
http://www.ncbi.nlm.nih.gov/pubmed/20660755
http://doi.org/10.1111/ppa.12767

	Introduction 
	Materials and Methods 
	Experimental Design, Plant and Insect Material 
	Resistance Trait (Tunnel Length) 
	Agronomic Traits 
	Days to Silking/Anthesis 
	Plant Height 
	Lodging 
	Grain Moisture 
	Grain Yield 
	Biochemical Analysis 
	Statistical Analysis 
	Contrast Analysis 
	Correlation Analysis 
	Multiple Linear Regression Analysis 

	Results 
	Contrast Analysis 
	Correlation Analysis 
	Multiple Linear Regression Analysis 

	Discussion 
	Relationship between Resistance to Corn Borer and Main Agronomic Traits 
	Role of Cell Wall Hydroxycinnamates as Defence Mechanism against Corn Borers 

	Conclusions 
	References

