Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost
Abstract
:1. Introduction
1.1. Background—Circular Food Production for a Sustainable Future
1.2. Objectives and Hypothesis of the Present Study
2. Materials and Methods
2.1. Experimental Design
2.1.1. General Set-Up
2.1.2. Growth Conditions
2.2. Fertilizer Trials
2.2.1. Treatments
2.2.2. Tested Composts
2.2.3. Nutrient Availability and Supplementation
2.3. Analysis, Sampling and Harvesting
2.3.1. Compost Analysis
2.3.2. Plant Harvest and Biomass Measurement
2.3.3. Plant Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of the Urban Organic Waste-Derived Composts
3.1.1. Nutrient Composition
3.1.2. OM Content and Nutrient Ratios
3.1.3. Additional Compost Characteristics Relevant for Plant Nutrition—pH, EC and Salt Content
3.1.4. Heavy Metal Content
3.2. Fertilizing Potential of the Studied Composts
3.2.1. Plant Growth Parameters for Lettuce
3.2.2. Plant Nutrient Uptake
3.3. Practical Applications of the Studied Composts in Urban Horticulture
3.3.1. Substrate Suitability
3.3.2. Urban Potential of Compost Production and P Recycling, Using the Example of Berlin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cu | Zn | As | Cd | Cr | Cr(VI) | Ni | Pb | |
---|---|---|---|---|---|---|---|---|
mg kg−1 DM | ||||||||
DüMV | 500 * | 1000 * | 40 (20 *) | 1.5 (1.0 *) | 2 | 80 (40 *) | 150 (100 *) | |
EU 2019/1009 | 300 | 800 | 40 | 1.5 | 2 | 50 | 120 | |
BGK | 100 | 400 | 40 | 1.5 | 100 | 50 | 150 |
Compost Treatment | Ntot [g kg−1] | Ptot [g kg−1] | Ktot [g kg−1] | Mgtot [g kg−1] | Catot [g kg−1] | Natot [g kg−1] |
---|---|---|---|---|---|---|
VC-C | 22.6 ± 1.4 d | 3.7 ± 0.3 b | 55.9 ± 5.6 b | 9.8 ± 1.1 a | 17.2 ± 1.8 bc | 5.0 ± 0.4 b |
VC-P | 33.2 ± 1.2 b | 2.0 ± 0.1 c | 38.2 ± 3.1 c | 5.9 ± 0.6 bc | 20.6 ± 2.9 ab | 5.1 ± 0.4 b |
TC-F | 31.5 ± 3.3 bc | 5.7 ± 0.6 a | 74.4 ± 6.6 a | 4.7 ± 0.3 c | 13.8 ± 1.1 c | 10.2 ± 1.2 a |
TC-G | 32.3 ± 2.7 b | 3.2 ± 0.5 b | 56.6 ± 3.7 b | 6.2 ± 0.5 bc | 22.6 ± 2.8 a | 4.1 ± 0.1 b |
TC-G2 | 35.1 ± 1.3 b | 3.2 ± 0.2 b | 39.5 ± 1.6 c | 7.5 ± 0.7 b | 24.2 ± 3.7 a | 4.6 ± 0.4 b |
TC-G3 | 40.0 ± 1.8 a | 3.3 ± 0.5 b | 38.4 ± 3.1 c | 6.9 ± 0.5 b | 22.4 ± 2.3 a | 4.6 ± 0.3 b |
SC | 27.7 ± 1.5 c | 6.0 ± 0.2 a | 19.6 ± 0.4 d | 9.2 ± 1.5 a | 12.2 ± 2.6 c | 4.6 ± 0.2 b |
Bergmann | 40–55 | 4.5–7.0 | 42–60 | 3.5–6.0 | 12–21 | - |
Parameter | Value | Unit | Source or Calculation |
---|---|---|---|
Feces potential | |||
Feces produced per person | 0.22 | kg FM day−1 | [114] |
or | 80.3 | kg FM year−1 | |
Installation potential of dry toilets in Berlin | |||
Number of allotment gardens | 70,000 | [117] | |
No. of people per garden | 2 | Assumption | |
Time of usage of gardens | 25 | % of the year | Assumption |
Fecal mass obtainable per year | 2,810,500 | kg FM | |
Mass calculation of fecal compost processing TC-F | |||
Total input mass of feces | 2,810,500 | kg FM | Calculation |
Share of feces in fecal compost | 25–30 | % | Practitioner information |
Total compost input material * | 936,833 | kg FM | |
Weight loss during composting process | 40 | % | Practitioner information; [118] |
Finished compost product mass | 5,621,000 | kg FM | |
Dry matter content of finished compost | 49.5 | % DM | Measured; [119] |
Total dry mass of fecal compost TC-F | 2,782,395 | kg DM | |
Ptot content of fecal compost | 0.00398 | kg Ptot kg−1 DM | Measured |
Psol content of fecal compost | 0.001986 | kg Psol kg−1 DM | Measured |
Ptot mass recycled per year | 11,074 | kg Ptot year−1 | |
Psol mass recycled per year | 5526 | kg Psol year−1 |
Parameter | Value | Unit | Source or Calculation |
---|---|---|---|
Food waste potential in Berlin | |||
Food waste produced per person and year | 81 | kg FM | [22] |
Percentage of food waste digestible by compost worms | 80 | % | Practitioner information |
No. of inhabitants in Berlin | 3,669,500 | [115] | |
Share of inhabitants starting VC | 10 | % | Assumption |
Usable food waste per year in Berlin | 23,778,360 | kg | |
Vermicomposting process for VC-C | |||
Total input mass of food waste | 23,778,360 | kg | Calculation |
Share of food waste | 39.2 | % | [55] |
Share of bedding material coconut fiber | 60.8 | % | [55] |
Total mass of input material | 60,659,082 | kg FM | |
Weight loss during the composting process | 22.8 | % | [55] |
Finished compost product mass | 46,828,811 | kg FM | |
DM of processed compost | 12 | % | Measured |
Total dry mass of vermicompost VC-C | 5,619,457 | kg DM | |
Ptot content of vermicompost | 0.001646 | kg Ptot kg−1 DM | Measured |
Ptot mass from VC-C per year | 9250 | kg | |
Psol content of vermicompost | 0.000462 | kg Psol kg−1 DM | Measured |
Psol mass from VC-C per year | 2596 | kg | |
Subtraction of P input from coconut fiber | |||
total input mass coconut fiber | 36,880,722 | kg FM | Calculation (Total input mass—food waste input mass) |
DM of coconut fiber | 13.5 | % | [55] |
total dry input mass of coconut fiber | 4,978,897 | ||
Ptot content of coconut fiber | 0.000291 | kg Ptot kg−1 DM | [55] |
Ptot mass input from coconut fiber | 1449 | kg | DMcoconut fiber * c(Ptot) |
Psol content of coconut fiber | 0.00017 | kg Psol kg−1 DM | [55] |
Psol mass input from coconut fiber | 846 | kg | DMcoconut fiber * c(Psol) |
Ptot mass recycled per year | 7801 | kg Ptot year−1 | |
Psol mass recycled per year | 1750 | kg Psol year−1 |
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations. Agriculture Must Change; FAO: Rome, Italy, 2015. [Google Scholar]
- IAASTD International Assessment of Agricultural Knowledge, Science and Technology for Development. Synthesis Report; McIntyre, B.D., Herren, H.R., Wakhungu, J., Watson, R.T., Eds.; IAASTD: Washington, DC, USA, 2009. [Google Scholar]
- De Schutter, O. Agroecology and the Right to Food. In Report presented at the 16th Session of the United Nations Human Rights Council [A/HRC/16/49]; UN Special Rapporteur on the right to food: Geneva, Switzerland, 2010; Available online: http://www.srfood.org/images/stories/pdf/officialreports/20110308_a-hrc-16-49_agroecology_en.pdf (accessed on 7 June 2021).
- United Nations. World Urbanization Prospects: The 2018 Revision—Key Facts; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Weidner, T.; Yang, A. The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two european cities. J. Clean. Prod. 2020, 244, 118490. [Google Scholar] [CrossRef]
- Akram, U.; Quttineh, N.-H.; Wennergren, U.; Tonderski, K.; Metson, G.S. Enhancing nutrient recycling from excreta to meet crop nutrient needs in Sweden—A spatial analysis. Sci. Rep. 2019, 9, 10264. [Google Scholar] [CrossRef] [PubMed]
- Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; et al. Food beyond the city—Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. City Cult. Soc. 2019, 16. [Google Scholar] [CrossRef]
- European Parliament and European Council. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regula 2019; European Parliament and European Council: Luxembourg, 2019; pp. 1–114.
- Insam, H.; Bertoldi, M. Microbiology of the Composting Process. In Compost Science and Technology; Waste Management Series; Diaz, L.F., Bertoldi, M., Bidlingmaier, W., Eds.; Elsevier: Boston, MA, USA, 2007; pp. 26–48. ISBN 9780080545981. [Google Scholar]
- Shrestha, P.; Small, G.E.; Kay, A. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Morée, A.L.; Beusen, A.H.W.; Bouwman, A.F.; Willems, W.J. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Glob. Biogeochem. Cycles 2013, 27, 836–846. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.; Bhandari, R.; Gäth, S.A.; Himanshu, H.; Stobernack, N. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci. Total Environ. 2020, 721, 137731. [Google Scholar] [CrossRef]
- Hermann, T.; Weiss, V.; Bannick, C.G.; Claussen, U. Bioabfallkomposte und -gärreste in der Landwirtschaft; Position Paper; Umweltbundesamt: Dessau-Roßlau, Germany, 2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/170131_uba_pos_bioabfall_bf.pdf (accessed on 7 June 2021).
- Bundesrepublik Deutschland. Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz–KrWG ); Published 24 February 2012, revised 23 October 2020; Bundesministeriums der Justiz und für Verbraucherschutz und Bundesamts für Justiz, 2012; pp. 1–54. Available online: www.gesetze-im-internet.de (accessed on 7 June 2021).
- Ernst, F.; Worlitzer, R. BSR-Entsorgungsbilanz 2017. Available online: https://www.bsr.de/faq-zur-biosammlung-25276.php (accessed on 2 February 2020).
- Destatis. Abfallbilanz (Abfallaufkommen/-Verbleib, Abfallintensität, Abfallaufkommen nach Wirtschaftszweigen)—2017; Statistisches Bundesamt: Wiesbaden, Germany, 2019.
- Krause, P.; Oetjen-Dehne, R.; Dehne, I.; Dehnen, D.; Erchinger, H. Verpflichtende Umsetzung der Getrenntsammlung von Bioabfällen; Umweltbundesamt: Dessau-Roßlau, Germany, 2014.
- Abgeordnetenhaus Berlin. Schriftliche Anfrage des Abgeordneten Georg Kössler (GRÜNE) vom 15. März 2017 und Antwort Vision Zero Waste I—Bioabfallsammlung Verbessern; Abgeordnetenhaus: Berlin, Germany, 2017.
- Sherman, R.L.; Appelhof, M. Small-Scale and Domestic Vermicomposting Systems. In Vermiculture Technology: Eathworms, Organic Wastes, and Environmental Management; Edwards, C.A., Arancon, N.Q., Sherman, R., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; pp. 67–78. [Google Scholar]
- Dominguez, J. State-of-the-Art and New Perspectives on Vermicomposting Research. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 401–424. [Google Scholar]
- Lim, S.L.; Lee, L.H.; Wu, T.Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 2016, 111, 262–278. [Google Scholar] [CrossRef]
- Tognetti, C.; Laos, F.; Mazzarino, M.J.; Hernández, M.T. Composting vs. Vermicomposting: A Comparison of End Product Quality. Compost Sci. Util. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.V.; Vajranabhaiah, S.N. Biological activity of earthworm casts: An assessment of plant growth promotor levels in the casts. Proc. Anim. Sci. 1986, 95, 341–351. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattnaik, S.; Reddy, M.V. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species— Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hanc, A.; Dreslova, M. Effect of composting and vermicomposting on properties of particle size fractions. Bioresour. Technol. 2016, 217, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour. Conserv. Recycl. 2014, 83, 213–228. [Google Scholar] [CrossRef]
- Herrmann, T.; Klaus, U. Fluxes of nutrients in urban drainage systems: Assessment of sources, pathways and treatment techniques. Water Sci. Technol. 1997, 36, 167–172. [Google Scholar] [CrossRef]
- Simha, P.; Ganesapillai, M. Ecological Sanitation and nutrient recovery from human urine: How far have we come? A review. Sustain. Environ. Res. 2017, 27, 107–116. [Google Scholar] [CrossRef]
- Bundesrepublik Deutschland. Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost (Klärschlammverordnung—AbfKlärV); Bundesministeriums der Justiz und für Verbraucherschutz und Bundesamts für Justiz: Berlin, Germany, 2020. Available online: www.gesetze-im-internet.de (accessed on 7 June 2021).
- Roskosch, A.; Heidecke, P. Klärschlamm Entsorgung in der Bundesrepublik Deutschland; Umweltbundesamt: Dessau-Roßlau, Germany, 2018.
- Kraus, F.; Zamzow, M.; Conzelmann, L.; Remy, C.; Kleyböcker, A.; Seis, W.; Miehe, U.; Hermann, L.; Hermann, R.; Kabbe, C. Ökobilanzieller Vergleich der P-Rückgewinnung aus dem Abwasserstrom mit der Düngemittel-Produktion aus Rohphosphaten unter Einbeziehung von Umweltfolgeschäden und deren Vermeidung—Abschlussbericht; TEXTE 13/2019; Umweltbundesamt: Dessau-Roßlau, Germany, 2019.
- Fricke, K. Energieeffizienz Kommunaler Kläranlagen; Umweltbundesamt: Dessau-Roßlau, Germany, 2009; p. 10.
- Vinnerås, B. Comparison of composting, storage and urea treatment for sanitising of faecal matter and manure. Bioresour. Technol. 2007, 98, 3317–3321. [Google Scholar] [CrossRef]
- Krause, A.; Kaupenjohann, M.; George, E.; Koeppel, J. Nutrient recycling from sanitation and energy systems to the agroecosystem-Ecological research on case studies in Karagwe, Tanzania. Afric. J. Agric. Res. 2015, 10, 4039–4052. [Google Scholar] [CrossRef]
- Ogwang, F.; Tenywa, J.S.; Otabbong, E.; Tumuhairwe, J.B.; Amoding-Katusabe, A. Faecal Blending for Nutrient Enrichment and Speedy Sanitisation for Soil Fertility Improvement. ISRN Soil Sci. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sangare, D.; Sou/Dakoure, M.; Hijikata, N.; Lahmar, R.; Yacouba, H.; Coulibaly, L.; Funamizu, N. Toilet compost and human urine used in agriculture: Fertilizer value assessment and effect on cultivated soil properties. Environ. Technol. 2015, 36, 1291–1298. [Google Scholar] [CrossRef]
- Tilley, E.; Ulrich, L.; Luethi, C.; Reymond, P.; Zurburegg, C.; Lüthi, C.; Morel, A.; Zurbrügg, C.; Schertenleib, R. Compendium of Sanitation Systems and Technologies; Swiss Agency for Development and Cooperation: Bern, Switzerland, 2014.
- Krause, A.; Nehls, T.; George, E.; Kaupenjohann, M. Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: A field experiment in a tropical Andosol. SOIL 2016, 2, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Niwagaba, C.; Nalubega, M.; Vinnerås, B.; Sundberg, C.; Jönsson, H. Bench-scale composting of source-separated human faeces for sanitation. Waste Manag. 2009, 29, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Udert, K.K.M.; Lienert, J. Source Separation and Decentralization for Wastewater Management; Iwa Publishing: London, UK, 2013. [Google Scholar]
- Morgan, P. Toilets That Make Compost: Low-Cost, Sanitary Toilets that Produce Valuable Compost for Crops in an African Context; Stockholm Environment Institute: Stockholm, Sweden, 2007. [Google Scholar]
- Bauhaus University Weimar; German Association for Water Wastewater and Waste (DWA). New Alternative Sanitation Systems—NASS: Terminology, Material Flows, Treatment of Partial Flows, Utilisation; Weiterbildendes Studium Wasser und Umwelt, Bauhaus Universiy: Weimar, Germany, 2016; ISBN 9783957732132. [Google Scholar]
- World Health Organization. Guidelines on Sanitation and Health; WHO: Geneva, Switzerland, 2018; ISBN 9789241514705. [Google Scholar]
- Korduan, J. Rechtliche Rahmenbedingungen für die Anwendung von Recyclingprodukten aus Menschlichen Fäkalien für Gartenbau und Landwirtschaft in Deutschland; Technische Universität Berlin: Berlin, Germany, 2020. [Google Scholar]
- Drangert, J.-O.; Tonderski, K.; McConville, J. Extending the European Union Waste Hierarchy to Guide Nutrient-Effective Urban Sanitation toward Global Food Security—Opportunities for Phosphorus Recovery. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Douhaire, C. Rechtsfragen der Düngung: Eine Steuerungs-und Rechtswissenschaftliche Analyse vor dem Hintergrund Unions-und Völkerrechtlicher Verpflichtungen und Politischer Zielsetzungen zum Umwelt-und Ressourcenschutz. In Schriften zum Umweltrecht, Band 189; Kloepfer, M., Ed.; Duncker & Humblot: Berlin, Germany, 2019; ISBN 978-3-428-15618-4. [Google Scholar]
- Vandecasteele, B.; Willekens, K.; Steel, H.; D’Hose, T.; Van Waes, C.; Bert, W. Feedstock Mixture Composition as Key Factor for C/P Ratio and Phosphorus Availability in Composts: Role of Biodegradation Potential, Biochar Amendment and Calcium Content. Waste Biomass Valoriz. 2017, 8, 2553–2567. [Google Scholar] [CrossRef]
- Winker, M.; Vinnerås, B.; Muskolus, A.; Arnold, U.; Clemens, J. Fertiliser products from new sanitation systems: Their potential values and risks. Bioresour. Technol. 2009, 100, 4090–4096. [Google Scholar] [CrossRef]
- Braun, P. Stickstoffbilanzen Dezentraler Wurmkompostierungvon Bioabfällen (Nitrogen Balance of Small-Scale Vermicomposting Systems with Organic Household Waste); Technische Universität Berlin: Berlin, Germany, 2019. [Google Scholar]
- Bergmann, W. Ernährungsstörungen bei Kulturpflanzen, 3rd ed.; Fischer: Jena, Germany, 1993; ISBN 3334604144. [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Lehrbuch der Bodenkunde, 16th ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; ISBN 978-3-8274-1444-1. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). DIN 19747:2009—Investigation of Solids—Pre-Treatment, Preparation and Processing of Samples for Chemical, Biological and Physical Investigations; Beuth: Berlin, Germany, 2009. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). EN 15933:2012—Sludge, Treated Biowaste and Soil—Determination of pH, German version; Beuth: Berlin, Germany, 2012. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). CEN/TS 15937:2013—Sludge, Treated Biowaste and Soil—Determination of Specific Electrical Conductivity, German version; Beuth: Berlin, Germany, 2013. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). EN 15935:2012—Sludge, Treated Biowaste and Soil—Determination of Loss on Ignition, German version; Beuth: Berlin, Germany, 2012. [Google Scholar]
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten (VDLUFA). Methodenbuch Band I Die Untersuchung von Böden; Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug; VDLUFA-Verlag: Darmstadt, Germany, 2012; Chapter A 6.2.1.1. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). EN 16179:2012—Sludge, Treated Biowaste and Soil—Guidance for Sample Pretreatment, German version; Beuth: Berlin, Germany, 2012. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). EN 16174:2012—Sludge, Treated Biowaste and Soil—Determination of Aqua Regia Soluble Fractions of Elements, German version; Beuth: Berlin, Germany, 2012. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). DIN EN 12880:2001-02—Characterization of Sludges—Determination of Dry Residue and Water Content, German version; Beuth: Berlin, Germany, 2001. [Google Scholar]
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten (VDLUFA). Bestimmung von Nitrat-Stickstoff, Photometrische Bestimmung mit 24-Dimethylphenol. In Das VDLUFA Methodenbuch: Band II.1 Grundwerk—Die Untersuchung von Düngemitteln; VDLUFA-Verlag: Darmstadt, Germany, 1995; p. 1040. [Google Scholar]
- Strach, K. Bestimmung des Ammoniumstickstoffgehaltes. In Messmethodensammlung Biogas: Methoden zur Bestimmung von Analytischen und Prozessbeschreibenden Parametern im Biogasbereich: Energetische Biomassenutzung; Liebetrau, J., Pfeiffer, D., Thrän, D., Eds.; DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH (DBFZ): Leipzig, Germany, 2013; Volume 2, p. 35. [Google Scholar]
- DIN-Normenausschuss Lebensmittel und Landwirtschaftliche Produkte (NAL). EN 13038:2011—Soil Improvers and Growing Media—Determination of Electrical Conductivity, German version; Beuth: Berlin, Germany, 2012. [Google Scholar]
- DIN-Normenausschuss Wasserwesen (NAW). EN ISO 11885:2009—Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ISO 11885:2007), German version; Beuth: Berlin, Germany, 2009. [Google Scholar]
- Bundesgütegemeinschaft Kompost e.V. (BGK). Methodenbuch zur Analyse Organischer Düngemittel, Bodenverbesserungsmittel und Substrate; Bundesgütegemeinschaft Kompost e.V. (BGK): Köln, Germany, 2006. [Google Scholar]
- DIN-Arbeitsausschuss NA 062-05-82 AA “Feste Biobrennstoffe”. In DIN EN 15104:2011-04—Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen—Instrumental Methods, German version EN 15104:2011; Beuth: Berlin, Germany, 2011.
- Alef, K. Biologische Bodensanierung; VCH: Weinheim, Germany, 1994; ISBN 9783527300587. [Google Scholar]
- Zoltán, C. The Factors Influencing the Buffering Capacity of Soils and Their Importance in Horticultural Cultivation; Budapesti Corvinus Egyetem: Budapest, Hungary, 2010. [Google Scholar]
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten (VDLUFA). Methodenbuch Band III Die Chemische Untersuchung von Futtermitteln; Mikrowellenbeheizter Druckaufschluss; VDLUFA-Verlag: Darmstadt, Germany, 2012; Chapter 10.8.1.2. [Google Scholar]
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten (VDLUFA). Bestimmung von Gesamtstickstoff nach trockener Verbrennung (Elementaranalyse). In Methodenbuch Band I die Untersuchung von Böden; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Hernández, A.; Castillo, H.; Ojeda, D.; Arras, A.; López, J.; Sánchez, E. Effect of Vermicompost and Compost on lettuce Production. Chil. J. Agric. Res. 2010, 70, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Welch, C.; Metzger, J.D. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004, 93, 145–153. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; de Neergaard, A.; Jensen, L.S. Composting of solids separated from anaerobically digested animal manure: Effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosyst. Eng. 2014, 124. [Google Scholar] [CrossRef]
- Meerow, A.W. Growth of two subtropical ornamentals using coir (coconut mesocarp pith) as a peat substitute. HortScience 1994, 29, 1484–1486. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms Enhance the Work of Microbes. In Microbes at Work: From Wastes to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–114. ISBN 9783642040436. [Google Scholar]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehres, B.; Vogtmann, H. Qualitätskriterien und Güterichtlinien für Kompost aus organischen Abfallstoffen. Müll Abfall 1988, 5, 218–221. [Google Scholar]
- Ruiz, J.L.; Del Carmen Salas, M. Evaluation of organic substrates and microorganisms as bio-fertilisation tool in container crop production. Agronomy 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Vermiculture Technology; Edwards, C.A.; Arancon, N.Q.; Sherman, R. (Eds.) CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; ISBN 978-1-4398-0987-7. [Google Scholar]
- Vanden Nest, T.; Vandecasteele, B.; Ruysschaert, G.; Cougnon, M.; Merckx, R.; Reheul, D. Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long term trial on a silt loam soil. Agric. Ecosyst. Environ. 2014, 197, 309–317. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils—Implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Amery, F.; Fryda, L.; Boogaerts, C.; Bilbao, J.; Vandecasteele, B. Renewable P sources: P use efficiency of digestate, processed animal manure, compost, biochar and struvite. Sci. Total Environ. 2021, 750, 141699. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J. The Microbiology of Vermicomposting. In Vermiculture Technology: Eathworms, Organic Wastes, and Environmental management; Edwards, C.A., Arancon, N.Q., Sherman, R., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; pp. 53–66. [Google Scholar]
- Durak, A.; Altuntaş, Ö.; Kutsal, İ.K.; Işık, R.; Karaat, F.E. The Effects of Vermicompost on Yield and Some Growth Parameters of Lettuce. Turk. J. Agric. Food Sci. Technol. 2017, 5, 1566–1570. [Google Scholar] [CrossRef] [Green Version]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compos. Sci. Util. 2020, 28. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Richards, L.A., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1954; Volume Agriculture.
- Papathanasiou, F.; Tsakiris, I.; Tamoutsidis, E.; Papadopoulos, I. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce. J. Food Agric. Environ. 2012, 10, 677–682. [Google Scholar]
- Coria-Cayupán, Y.S.; Sánchez de Pinto, M.I.; Nazareno, M.A. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J. Agric. Food Chem. 2009, 57, 10122–10129. [Google Scholar] [CrossRef] [PubMed]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lee, S.; Welch, C. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiologia 2003, 47, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Bundesgütegemeinschaft Kompost e.V. (BGK). Schwellenwerte und Grenzwerte Kompost, RAL-Gütesicherung Dok. 251-006-4 2021; Bundesgütegemeinschaft Kompost e.V. (BGK): Köln, Germany, 2021. [Google Scholar]
- Cai, Q.-Y.; Mo, C.-H.; Li, H.-Q.; Lü, H.; Zeng, Q.-Y.; Li, Y.-W.; Wu, X.-L. Heavy metal contamination of urban soils and dusts in Guangzhou, South China. Environ. Monit. Assess. 2013, 185, 1095–1106. [Google Scholar] [CrossRef]
- Sahakyan, L.; Maghakyan, N.; Belyaeva, O.; Tepanosyan, G.; Kafyan, M.; Saghatelyan, A. Heavy metals in urban dust: Contamination and health risk assessment: A case study from Gyumri, Armenia. Arab. J. Geosci. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Rubatzky, V.E.; Yamaguchi, M. World Vegetables—Principles, Production and Nutritive Values, 2nd ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 1997; ISBN 978-1-4615-6015-9. [Google Scholar]
- León, A.P.; Pérez Martín, J.; Chiesa, A. Vermicompost Application and Growth Patterns of Lettuce (Lactuca sativa L.). Agric. Trop. Subtrop. 2012, 45, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-G.; van Iersel, M.W. Nutrient Solution Concentration Affects Shoot:Root Ratio, Leaf Area Ratio, and Growth of Subirrigated Salvia (Salvia splendens). HortScience 2004, 39, 49–54. [Google Scholar] [CrossRef]
- Anderson, E.L. Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant Soil 1988, 108, 245–251. [Google Scholar] [CrossRef]
- Anghinoni, I.; Barber, S.A. Phosphorus Influx and Growth Characteristics of Corn Roots as Influenced by Phosphorus Supply. Agronomy 1980, 72, 685–688. [Google Scholar] [CrossRef]
- Fricke, K. Grundlagen zur Bioabfallkompostierung; 2 T4-un.; Die Werkstatt: Vienna, Austria, 1990. [Google Scholar]
- Peterson, J.C. Effects of pH Upon Nutrient Availability in a Commercial Soilless Root Medium Utilized for Floral Crop Production. Ohio State Univ. Ohio Res. Dev. Cent. Cir. 1982, 268, 16–19. [Google Scholar]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of Plants to Adverse Chemical Soil Conditions. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, H., Marschner, P., Eds.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2012; pp. 409–472. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager, I. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, H., Marschner, P., Eds.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2012; pp. 135–189. [Google Scholar]
- McCall, D.; Willumsen, J. Effects of nitrate, ammonium and chloride application on the yield and nitrate content of soil-grown lettuce. J. Hortic. Sci. Biotechnol. 1998, 73, 698–703. [Google Scholar] [CrossRef]
- Frossard, E.; Skrabal, P.; Sinaj, S.; Bangerter, F.; Traore, O. Forms and exchangeability of inorganic phosphate in composted solid organic wastes. Nutr. Cycl. Agroecosyst. 2002, 62, 103–113. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, S.T. Interaction between Plant Nutrients: III. Antagonism between Potassium, Magnesium and Calcium. Acta Agric. Scand. Sect. B Soil Plant Sci. 1993, 43, 1–5. [Google Scholar] [CrossRef]
- Finck, A. Pflanzenernährung und Düngung in Stichworten (Plant Nutrition and Fertilization in Keywords), 6th ed.; Gebrüder Borntraeger: Stuttgart, Germany, 2007; ISBN 978-3443031169. [Google Scholar]
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Millaway, R.M.; Wiersholm, L. Calcium and metabolic disorders. Commun. Soil Sci. Plant Anal. 1979, 10, 1–28. [Google Scholar] [CrossRef]
- Palmquist, H.; Jönsson, H. Urine, faeces, greywater and biodegradable solid waste as potential fertilisers. In Proceedings of the 2nd International Symposium on Ecological Sanitation, Incorporating the 1st IWA Specialist Group Conference on Sustainable Sanitation, Lübeck, Germany, 7–11 April 2004; p. 825. [Google Scholar]
- Basisdaten Bevölkerungsstand Berlin Brandenburg. Available online: https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas-Bevoelkerungsstand.asp?Ptyp=300&Sageb=12015&creg=BBB&anzwer=6 (accessed on 20 March 2021).
- Bundesrepublik Deutschland. Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmittels; Bundesministeriums der Justiz und für Verbraucherschutz und Bundesamts für Justiz: Berlin, Germany, 2019; pp. 1–118. Available online: www.gesetze-im-internet.de (accessed on 7 June 2021).
- Senatsverwaltung für Stadtentwicklung und Umwelt, Referat Freiraumplanung und Stadtgrün. Das Bunte Grün-Kleingärten in Berlin; Senatsverwaltung für Stadtentwicklung und Umwelt: Berlin, Germany, 2012; p. 52.
- Krause, A.; Rotter, V.S. Recycling improves soil fertility management in smallholdings in Tanzania. Agriculture 2018, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Krause, A.; Rotter, V.S. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania. Sci. Total Environ. 2017, 590–591, 514–530. [Google Scholar] [CrossRef]
Element | Supplied Form | VC-C, VC-P, TC-F, TC-G | TC-G2 | TC-G3 | SC |
---|---|---|---|---|---|
mg pot−1 | |||||
NH4-N | NH4NO3 | 188.0 | 283.0 | 378.0 | 188.0 |
NO3-N | NH4NO3 | 188.0 | 281.0 | 377.0 | 187.0 |
∑ NH4NO3 | 376.0 | 564.0 | 755.0 | 376.0 | |
K | KH2PO4 K2SO4 | n.a. | n.a. | n.a. | 114.0 191.0 |
P | KH2PO4 | n.a. | n.a. | n.a. | 90.1 |
Mg | MgSO4 | 80.9 | 80.9 | 80.9 | 161.0 |
Ca | Ca(SO4)2 | 30.2 | 30.2 | 30.2 | 130.0 |
Fe | C10H12N2NaFeO8 | 10.4 | 10.4 | 10.4 | 10.4 |
Mn | MnSO4 | 5.0 | 5.0 | 5.0 | 5.0 |
Zn | ZnSO4 | 5.1 | 5.1 | 5.1 | 5.1 |
B | H3BO4 | 5.1 | 5.1 | 5.1 | 5.1 |
Cu | CuSO4 | 2.0 | 2.0 | 2.0 | 2.0 |
Mo | MoO3 | 2.1 | 2.1 | 2.1 | 2.1 |
S | s.a. | 131.0 | 130.8 | 131.0 | 356.0 |
Na | C10H12N2NaFeO8 | 4.0 | 4.0 | 4.0 | 4.0 |
Compost | Ctot | Ntot | Ptot | PCAL | Ktot | KCAL | Mgtot | MgCaCl2 | Catot | Natot | |
---|---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | |||||||||||
VC-C | 436 | 16.2 | 1.7 | 0.46 | 14.7 | 12.2 | 3.0 | 1.1 | 9.7 | 1.3 | |
VC-P | 227 | 10.3 | 1.0 | 0.14 | 6.3 | 4.2 | 2.0 | 0.4 | 15.0 | 0.5 | |
TC-F | 299 | 19.4 | 4.0 | 1.99 | 12.8 | 6.3 | 3.9 | n.d. | 21.2 | 2.4 | |
TC-G | 185 | 10.4 | 1.5 | 0.41 | 6.4 | 5.0 | 1.9 | 0.6 | 16.8 | 0.3 | |
Compost | NO3-N | NH4-N | Fe | Mn | Cu | Zn | As | Cd | Cr | Ni | Pb |
mg kg−1 | |||||||||||
VC-C | 690.2 | 10.7 | 2250 | 124 | 15 | 54 | <1.5 | 0.16 | 8.8 | 3.9 | 3.8 |
VC-P | 3.6 | 6.2 | 6498 | 163 | 12 | 39 | 3.0 | 0.29 | 12.1 | 5.6 | 10.2 |
TC-F | 470.0 | 0 | 5900 | n.d. | 26 | 103 | 2.1 | <0.50 | 7.1 | 4.7 | 13 |
TC-G | 0 | 7.9 | 6189 | 252 | 29 | 146 | 2.9 | 0.50 | 19.5 | 9.1 | 31.8 |
Compost | pH | EC | OM | DM | C:N | C:P | N:P | Ca:P | |||
in CaCl2 | µS/cm | % DM | % FM | wt ratio | molar ratio | ||||||
VC-C | 6.1 | 773 | 81.3 | 26.3 | 26.9 | 264 | 9.8 | 4.5 | |||
VC-P | 7.2 | 276 | 42.0 | 44.7 | 21.9 | 229 | 10.4 | 11.7 | |||
TC-F | 8.8 | 1977 | 29.1 | 49.6 | 15.4 | 75 | 4.9 | 4.1 | |||
TC-G | 7.6 | 376 | 30.3 | 72.2 | 17.9 | 124 | 7.0 | 8.7 |
Compost Treatment | Shoot FM Respectively Marketable Yield * | Shoot DM | Root DM | Root:Shoot |
---|---|---|---|---|
g per Plant | ||||
VC-C | 244 ± 16 | 15.7 ± 1.4 a | 2.70 ± 0.53 a | 0.17 ± 0.03 a |
VC-P | 157 ± 11 | 10.1 ± 1.0 c | 1.77 ± 0.19 b | 0.18 ± 0.01 a |
TC-F | 187 ± 25 | 11.4 ± 2.1 bc | 1.47 ± 0.32 b | 0.13 ± 0.04 ab |
TC-G | 161 ± 12 | 9.5 ± 1.0 c | 1.28 ± 0.16 b | 0.14 ± 0.02 ab |
TC-G2 | 208 ± 15 | 13.2 ± 0.4 b | 1.36 ± 0.44 b | 0.12 ± 0.03 b |
TC-G3 | 209 ± 11 | 13.4 ± 1.0 ab | 1.20 ± 0.26 b | 0.10 ± 0.03 b |
SC | 104 ± 8 | 10.8 ± 0.6 c | 1.53 ± 0.42 b | 0.11 ± 0.02 b |
Compost Treatment | Ntot [mg] | Ptot [mg] | Ktot [mg] | Mgtot [mg] | Catot [mg] | Natot [mg] |
---|---|---|---|---|---|---|
VC-C | 354 ± 32 c | 57.0 ± 4.7 a | 871 ± 14 a | 153.0 ± 7.6 a | 268 ± 15 ab | 78.7 ± 3.9 b |
VC-P | 333 ± 25 cde | 20.2 ± 1.5 c | 382 ± 16 c | 59.3 ± 9.2 c | 206 ± 30 c | 51.1 ± 7.2 cd |
TC-F | 353 ± 34 cd | 63.8 ± 10.5 a | 834 ± 86 a | 53.7 ± 10.2 c | 157 ± 32 cd | 115 ± 17.2 a |
TC-G | 305 ± 13 de | 30.0 ± 3.3 c | 534 ± 33 b | 58.7 ± 8.0 c | 213 ± 27 bc | 38.6 ± 3.9 d |
TC-G2 | 465 ± 11 b | 42.3 ± 1.2 b | 523 ± 10 b | 98.9 ± 9.9 b | 321 ± 49 a | 46.5 ± 10.9 c |
TC-G3 | 537 ± 31 a | 43.5 ± 4.6 b | 513 ± 16 b | 92.9 ± 5.2 b | 299 ± 17 a | 53.7 ± 31.4 c |
SC | 298 ± 7 e | 64.4 ± 3.4 a | 210 ± 9 d | 98.7 ± 11.0 b | 130 ± 21 d | 49.9 ± 1.1 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schröder, C.; Häfner, F.; Larsen, O.C.; Krause, A. Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy 2021, 11, 1175. https://doi.org/10.3390/agronomy11061175
Schröder C, Häfner F, Larsen OC, Krause A. Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy. 2021; 11(6):1175. https://doi.org/10.3390/agronomy11061175
Chicago/Turabian StyleSchröder, Corinna, Franziska Häfner, Oliver Christopher Larsen, and Ariane Krause. 2021. "Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost" Agronomy 11, no. 6: 1175. https://doi.org/10.3390/agronomy11061175
APA StyleSchröder, C., Häfner, F., Larsen, O. C., & Krause, A. (2021). Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy, 11(6), 1175. https://doi.org/10.3390/agronomy11061175