Uptake and Utilization of Nitrogen from Organic Fertilizers Influenced by Different Doses of Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Laboratory Analyses
2.3. Calculations
- NUN—nitrogen uptake by cocksfoot fertilized with CM, ChM, MS;
- Y—yield (dry matter) of cocksfoot fertilized with CM, ChM, MS;
- CN—nitrogen content in cocksfoot dry matter fertilized with CM, ChM, MS.
- NU0N—nitrogen uptake by cocksfoot not fertilized with organic material (control treatment);
- Y0—yield (dry matter) of cocksfoot not fertilized with organic material (control treatment);
- C0N—nitrogen content in cocksfoot dry matter not fertilized with organic material (control treatment).
- NUC—nitrogen utilization coefficient (%);
- NUN—nitrogen uptake by cocksfoot fertilized with CM, ChM, MS;
- NU0N—nitrogen uptake by cocksfoot not fertilized with organic material (control treatment);
- Namt—amount of nitrogen introduced into soil with CM, ChM, MS.
2.4. Statistical Analyses
3. Results
3.1. Nitrogen Content
3.2. Nitrogen Uptake
3.3. Nitrogen Utilization Coefficient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cicchella, D.; Giaccio, L.; Dinelli, E.; Albanese, S.; Lima, A.; Zuzolo, D.; Valera, P.; De Vivo, B. GEMAS: Spatial distribution of chemical elements in agricultural and grazing land soil of Italy. J. Geochem. Explor. 2015, 154, 129–142. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Andresen, E.; Peiter, E.; Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 2018, 69, 909–954. [Google Scholar] [CrossRef]
- Kuziemska, B.; Kalembasa, D.; Kalembasa, S. Possibilities of reducing the phytotoxic effect of nickel. Acta Agrophysica 2018, 25, 359–368. [Google Scholar] [CrossRef]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Aaron, S.E.; Aaron, J.-J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef]
- Wysokinski, A.; Kalembasa, S.; Kuziemska, B.; Łozak, I. Influence of mineral and organic additions to the sewage sludge as well as composting process of this mixtures on copper and zinc content in maize (Zea mays L.) and soil. Fresenius Environ. Bull. 2018, 27, 2003–2010. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, 04691. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kucharski, J.; Kucharski, M.; Borowik, A. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2012, 18, 769–796. [Google Scholar] [CrossRef]
- Wei, B.; Yu, J.; Cao, Z.; Meng, M.; Yang, L.; Chen, Q. The Availability and Accumulation of Heavy Metals in Greenhouse Soils Associated with Intensive Fertilizer Application. Int. J. Environ. Res. Public Health 2020, 17, 5359. [Google Scholar] [CrossRef]
- Xiong, Z.-T.; Liu, C.; Geng, B. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol. Environ. Saf. 2006, 64, 273–280. [Google Scholar] [CrossRef]
- Liu, J.J.; Wei, Z.; Li, J.H. Effects of copper on leaf membrane structure and root activity of maize seedling. Bot. Stud. 2014, 55, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Pietrini, F.; Carnevale, M.; Beni, C.; Zacchini, M.; Gallucci, F.; Santangelo, E. Effect of Different Copper Levels on Growth and Morpho-Physiological Parameters in Giant Reed (Arundo donax L.) in Semi-Hydroponic Mesocosm Experiment. Water 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Di Palma, L.; Ferrantelli, P.; Merli, C.; Petrucci, E.; Pitzolu, I. Influence of Soil Organic Matter on Copper Extraction from Contaminated Soil. Soil Sedim. Contam. Int. J. 2007, 16, 323–335. [Google Scholar] [CrossRef]
- Matijevic, L.; Romić, D.; Romić, M. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants. Environ. Geochem. Health 2014, 36, 883–896. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Yu, Q.; Zhang, H.; Shao, L.; Lü, F. Removal of Copper (II) by Biochar Mediated by Dissolved Organic Matter. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Naresh, R.; Mandal, A.; Singh, R.; Dhaliwal, M. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Kuziemska, B.; Wysokiński, A.; Trębicka, J. The effect of different copper doses and organic fertilisation on soil’s enzymatic activity. Plant Soil Environ. 2020, 66, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.Y.; Sun, B.Y.; Liu, C.S. Advances in the study of plants copper toxicity. J. Shandong Agric. Univ. 2000, 31, 227–230. [Google Scholar]
- Olszewska, M.; Grzegorczyk, S.; Alberski, J.; Bałuch-Małecka, A.; Kozikowski, A. Effect of copper deficiency on gas exchange parameters, leaf greenness (SPAD) and yield of perennial ryegrass (Lolium perenne L.) and orchard grass (Dactylis glomerata L.). J. Elem. 2008, 13, 597–604. [Google Scholar]
- Cuba-Díaz, M.; Marín, C.; Castel, K.; Machuca, Á.; Rifo, S. Effect of copper (II) ions on morpho-physiological and biochemical variables in Colobanthus quitensis. J. Soil Sci. Plant Nutr. 2017, 17, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Henriques, F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 1991, 57, 246–273. [Google Scholar] [CrossRef]
- Balik, J.; Pavlíková, D.; Tlustoš, P.; Cerny, J.; Jakl, M. The fluctuation of copper content in oilseed rape plants (Brassica napus L.) after the application of nitrogen and sulphur fertilizers. Plant Soil Environ. 2008, 53, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Meller, E.; Jarnuszewski, G. Chemical composition of plants grown on post-bog soils fertilised with zinc and copper. Zielona Góra Environ. Eng. 2015, 159, 45–53. [Google Scholar]
- Kozlowska-Strawska, J.; Chwil, S. The effect of different soil conditions on the copper the crops grown on area of lubelski region. Environ. Nat. Resour. J. 2012, 4, 150–157. [Google Scholar]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 2013, 374, 593–610. [Google Scholar] [CrossRef] [Green Version]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Rosa, D.J.; Prado, J.P.C.; Borghezan, M.; de Melo, G.W.B.; Soares, C.R.F.D.S.; Comin, J.J.; Simão, D.G.; Brunetto, G. Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol. Biochem. 2015, 96, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Arunakumara, K.K.I.U.; Walpola, B.C.; Yoon, M.-H. Alleviation of phyto-toxicity of copper on agricultural plants. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 505–517. [Google Scholar] [CrossRef]
- Fageria, N.K. Nitrogen Management in Crop Production; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kumar, V.; Yadav, D.V.; Yadav, D.S. Effects of nitrogen sources and copper levels on yield, nitrogen and copper contents of wheat (Triticum aestivum L.). Plant Soil 1990, 126, 79–83. [Google Scholar] [CrossRef]
- Rietra, P.J.J.R.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fer-tilizer Use Efficiency, Comm. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef] [Green Version]
- Alhasany, A.; Noaema, A.H.; Alhmadi, H.B. The role of spraying copper and zinc on the growth and yield of Vicia faba L. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 012048. [Google Scholar] [CrossRef] [Green Version]
- Krzywy-Gawrońska, E. Chemical and Agricultural Analysis of Soils and Plants; Scientific Publisher AR: Szczecin, Poland, 2007; pp. 1–199. [Google Scholar]
- Kuziemska, B.; Trębicka, J.; Wysokinski, A.; Jaremko, D. Supplementation of Organic Amendments Improve Yield and Adaptability by Reducing the Toxic Effect of Copper in Cocksfoot Grass (Dactylis glomerata L. Cv Amera). Agronomy 2021, 11, 791. [Google Scholar] [CrossRef]
- Snowball, K.; Robson, A.D.; Loneragan, J.F. The Effect of Copper on Nitrogen Fixation in Subterranean Clover (Trifolium subterraneum). New Phytol. 1980, 85, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Caselles, J.; Moral, R.; Perez-Murcia, M.; Espinosa, A.P.; Rufete, B. Nutrient Value of Animal Manures in Front of Environmental Hazards. Commun. Soil Sci. Plant Anal. 2002, 33, 3023–3032. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2017, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, A. Rational and effective nitrogen fertilization. ZESZYT 2014, 37, 33–46. [Google Scholar] [CrossRef]
- Sradnick, A.; Feller, C. A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems. Agronomy 2020, 10, 1448. [Google Scholar] [CrossRef]
- Kalembasa, S.; Wysokiński, A. The influence of alkalization type waste activated sludges on the yield, content and value of utilization coefficient of nitrogen by tested plants. Polish J. Soil Sci. 2006, 39, 197–209. [Google Scholar]
- Wysokiński, A.; Kalembasa, S. The yield and utilization coefficient of nitrogen by plant after applying of fresh and composted sewage sludge with mineral and organic additions. Polish J. Environ. Stud. 2011, 20, 1617–1625. [Google Scholar]
- Premi, P.R.; Cornfield, A.H. Effects of addition of copper, manganese, zinc and chromium compounds on ammonification and nitrification during incubation of soil. Plant Soil 1969, 31, 345–352. [Google Scholar] [CrossRef]
- Wiśniewska-Kadżajan, B.; Jankowski, K. Effect of mushroom substrate supplemented with minerals on yield of biomass and protein of orchard Grass. Acta Agrophysica 2015, 22, 335–344. [Google Scholar]
- Rao, J.R.; Watabe, M.; Stewart, T.A.; Millar, B.C.; Moore, J.E. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands. Waste Manag. 2007, 27, 1117–1128. [Google Scholar] [CrossRef]
- Polat, E.; Uzun, I.H.; Topcuoglu, B.; Önal, K.; Onus, A.N.; Karaca, M. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol. 2009, 8, 176–180. [Google Scholar]
Organic Fertilizers | Dry Matter (%) | Corg | Ntot | P | K | Ca | Mg | S | Corg:Ntot | Cu mg∙kg−1 dm |
---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 dm | ||||||||||
Cattle manure | 20.0 | 394.5 | 23.70 | 6.50 | 17.02 | 11.28 | 3.24 | 3.68 | 16.6:1 | 5.97 |
Chicken manure | 29.0 | 160.3 | 14.10 | 8.74 | 9.10 | 13.59 | 2.43 | 3.07 | 11.4:1 | 42.98 |
Mushroom substrate | 31.0 | 315.7 | 24.50 | 6.14 | 17.20 | 45.18 | 3.12 | 26.20 | 12.9:1 | 15.61 |
Organic Fertilizer | Year | Copper Dose (mg Cu∙kg−1 of Soil) | Mean | |||
---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | |||
Without organic fertilization | 1st | 17.07 ± 0.45 | 17.57 ± 0.45 | 18.23 ± 0.53 | 19.85 ± 0.24 | 18.26 ± 1.14 B |
2nd | 15.23 ± 0.26 | 16.57 ± 0.46 | 17.14 ± 0.20 | 16.24 ± 0.51 | 16.30 ± 0.79 A | |
3rd | 17.81 ± 0.58 | 17.56 ± 0.37 | 17.48 ± 0.44 | 17.54 ± 0.80 | 17.60 ± 0.58 B | |
mean | 16.70 ± 1.17 A | 17.23 ± 0.64 AB | 17.72 ± 0.72 AB | 17.88 ± 1.60 B | 17.38 ± 1.19 a | |
Cattle manure | 1st | 18.25 ± 0.55 | 20.43 ± 0.55 | 21.90 ± 0.55 | 19.87 ± 0.29 | 20.11 ± 1.40 C |
2nd | 17.60 ± 0.98 | 17.42 ± 0.72 | 17.25 ± 0.79 | 16.60 ± 0.44 | 17.22 ± 0.85 A | |
3rd | 18.65 ± 0.59 | 18.52 ± 1.11 | 18.68 ± 1.31 | 18.14 ± 0.77 | 18.50 ± 1.01 A | |
mean | 18.17 ± 0.85 A | 18.79 ± 1.49 AB | 19.28 ± 2.16 B | 18.20 ± 1.44 A | 18.61 ± 1.62 b | |
Chicken manure | 1st | 21.73 ± 0.60 | 22.12 ± 0.69 | 22.78 ± 0.55 | 23.10 ± 1.22 | 22.43 ± 0.97 C |
2nd | 18.26 ± 0.67 | 17.50 ± 1.33 | 16.90 ± 1.08 | 16.72 ± 0.94 | 17.35 ± 1.20 A | |
3rd | 20.65 ± 0.61 | 20.28 ± 0.62 | 19.54 ± 0.80 | 19.15 ± 1.43 | 19.91 ± 1.10 B | |
mean | 20.21 ± 1.58 A | 19.97 ± 2.12 A | 19.74 ± 2.55 A | 19.66 ± 2.90 A | 19.89 ± 2.35 c | |
Mushroom substrate | 1st | 17.82 ± 0.55 | 19.94 ± 0.28 | 19.07 ± 0.46 | 21.66 ± 0.44 | 19.62 ± 1.47 C |
2nd | 18.03 ± 0.79 | 17.02 ± 0.28 | 16.70 ± 0.52 | 16.38 ± 0.60 | 17.03 ± 0.85 A | |
3rd | 19.00 ± 0.32 | 18.40 ± 0.30 | 18.00 ± 0.56 | 17.84 ± 0.91 | 18.31 ± 0.73 B | |
mean | 18.28 ± 0.78 A | 18.45 ± 1.23 A | 17.92 ± 1.10 A | 18.63 ± 2.33 A | 18.32 ± 1.50 b | |
Mean for Cu dose | 18.34 ± 1.69 a | 18.61 ± 1.73 a | 18.66 ± 1.99 a | 18.59 ± 2.25 a | 18.55 ± 1.94 | |
Mean for years | 1st | 18.72 ± 1.89 A | 20.02 ± 1.71 B | 20.57 ± 1.88 BC | 21.12 ± 1.52 C | 20.11 ± 1.96 c |
2nd | 17.28 ± 1.41 A | 17.13 ± 0.88 A | 17.00 ± 0.76 A | 16.49 ± 0.68 A | 16.97 ± 1.02 a | |
3rd | 19.03 ± 1.16 A | 18.69 ± 1.20 A | 18.43 ± 1.14 A | 18.17 ± 1.18 A | 18.56 ± 1.21 b |
Organic Fertilizer | Year | Copper Dose (mg Cu∙kg−1 of Soil) | Mean | |||
---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | |||
Without organic fertilization | 1st | 0.267 ± 0.001 | 0.221 ± 0.006 | 0.202 ± 0.015 | 0.251 ± 0.006 | 0.235 ± 0.027 B |
2nd | 0.197 ± 0.017 | 0.239 ± 0.015 | 0.230 ± 0.015 | 0.185 ± 0.014 | 0.213 ± 0.027 B | |
3rd | 0.161 ± 0.014 | 0.159 ± 0.002 | 0.147 ± 0.007 | 0.132 ± 0.003 | 0.150 ± 0.014 A | |
mean | 0.208 ± 0.046 A | 0.206 ± 0.036 A | 0.193 ± 0.037 A | 0.189 ± 0.049 A | 0.199 ± 0.043 a | |
Cattle manure | 1st | 0.456 ± 0.022 | 0.571 ± 0.051 | 0.535 ± 0.005 | 0.403 ± 0.013 | 0.491 ± 0.072 B |
2nd | 0.237 ± 0.013 | 0.258 ± 0.015 | 0.258 ± 0.008 | 0.229 ± 0.008 | 0.246 ± 0.017 A | |
3rd | 0.222 ± 0.019 | 0.216 ± 0.014 | 0.267 ± 0.033 | 0.279 ± 0.011 | 0.246 ± 0.035 A | |
mean | 0.305 ± 0.108 A | 0.349 ± 0.161 B | 0.353 ± 0.130 B | 0.304 ± 0.074 A | 0.328 ± 0.124 c | |
Chicken manure | 1st | 0.586 ± 0.009 | 0.579 ± 0 027 | 0.635 ± 0.040 | 0.562 ± 0.029 | 0.591 ± 0.039 C |
2nd | 0.273 ± 0.017 | 0.252 ± 0.027 | 0.240 ± 0.011 | 0.243 ± 0.018 | 0.259 ± 0.023 B | |
3rd | 0.213 ± 0.005 | 0.235 ± 0.016 | 0.201 ± 0.022 | 0.204 ± 0.020 | 0.213 ± 0.022 A | |
mean | 0.357 ± 0.164 A | 0.356 ± 0.160 A | 0.358 ± 0.198 A | 0.336 ± 0.162 A | 0.352 ± 0.172 d | |
Mushroom substrate | 1st | 0.402 ± 0.003 | 0.463 ± 0.017 | 0.456 ± 0.018 | 0.472 ± 0.026 | 0.448 ± 0.033 C |
2nd | 0.262 ± 0.022 | 0.267 ± 0.005 | 0.251 ± 0.009 | 0.215 ± 0.004 | 0.249 ± 0.024 B | |
3rd | 0.204 ± 0.002 | 0.220 ± 0.014 | 0.206 ± 0.008 | 0.195 ± 0.012 | 0.206 ± 0.014 A | |
mean | 0.289 ± 0.084 A | 0.317 ± 0.106 B | 0.304 ± 0.110 AB | 0.294 ± 0.127 AB | 0.301 ± 0.108 b | |
Mean for Cu dose | 0.290 ± 0.121 ab | 0.307 ± 0.140 c | 0.302 ± 0.148 bc | 0.281 ± 0.124 a | 0.295 ± 0.134 | |
Mean for years | 1st | 0.428 ± 0.115A | 0.459 ± 0.147 B | 0.457 ± 0.162 B | 0.422 ± 0.116 A | 0.441 ± 0.138 c |
2nd | 0.242 ± 0.034 B | 0.254 ± 0.020 B | 0.245 ± 0.015 B | 0.218 ± 0.025 A | 0.240 ± 0.028 b | |
3rd | 0.200 ± 0.026 A | 0.208 ± 0.032 A | 0.205 ± 0.047 A | 0.203 ± 0.054 A | 0.204 ± 0.041 a |
Organic Fertilizer | Copper Dose (mg Cu∙kg−1 of Soil) | Mean | |||
---|---|---|---|---|---|
0 | 100 | 200 | 300 | ||
Without organic fertilization | 0.625 ± 0.027 A | 0.618 ± 0.019 A | 0.579 ± 0.017 A | 0.568 ± 0.014 A | 0.598 ± 0.031 a |
Cattle manure | 0.914 ± 0.016 A | 1.046 ± 0.062 B | 1.060 ± 0.034 B | 0.912 ± 0.008 A | 0.983 ± 0.079 c |
Chicken manure | 1.072 ± 0.023 A | 1.067 ± 0.053 A | 1.075 ± 0.027 A | 1.009 ± 0.028 A | 1.056 ± 0.044 d |
Mushroom substrate | 0.868 ± 0.023 A | 0.951 ± 0.019 B | 0.913 ± 0.030 AB | 0.882 ± 0.018 AB | 0.903 ± 0.039 b |
Mean | 0.870 ± 0.132 ab | 0.920 ± 0.185 c | 0.907 ± 0.201 bc | 0.843 ± 0.166 a | 0.885 ± 0.182 |
Specification | Cocksfoot Yield | N Uptake | Cu Content | Cu Dose |
---|---|---|---|---|
N content | 0.639 * | 0.768 * | 0.188 | 0.033 |
N uptake | 0.979 * | - | 0.279 | −0.025 |
Organic Fertilizer | Year | Copper Dose (mg Cu∙kg−1 of Soil) | Mean | |||
---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | |||
Cattle manure | 1st | 13.1 ± 1.6 | 24.3 ± 3.2 | 23.1 ± 0.9 | 10.6 ± 1.2 | 17.8 ± 6.3 C |
2nd | 2.8 ± 1.5 | 1.3 ± 1.6 | 1.9 ± 1.4 | 3.1 ± 1.3 | 2.3 ± 1.6 A | |
3rd | 4.2 ± 0.5 | 4.0 ± 1.1 | 8.4 ± 1.9 | 10.2 ± 0.9 | 6.7 ± 2.9 B | |
Mean | 6.7 ± 4.7 A | 9.9 ± 10.5 B | 11.1 ± 9.0 B | 8.0 ± 3.6 A | 8.9 ± 7.7 c | |
Chicken manure | 1st | 14.8 ± 0.3 | 16.6 ± 1.4 | 20.0 ± 1.6 | 14.4 ± 1.6 | 16.5 ± 2.6 B |
2nd | 3.5 ± 1.3 | 0.6 ± 1.9 | 0.4 ± 1.2 | 2.7 ± 1.1 | 1.9 ± 1.9 A | |
3rd | 2.4 ± 0.8 | 3.6 ± 0.8 | 2.5 ± 1.0 | 3.3 ± 1.0 | 2.9 ± 1.0 A | |
Mean | 6.9 ± 5.7 A | 6.9 ± 7.1 A | 7.7 ± 8.9 A | 6.8 ± 5.5 A | 7.1 ± 6.9 b | |
Mushroom substrate | 1st | 7.0 ± 0.1 | 12.6 ± 1.1 | 13.3 ± 1.7 | 11.5 ± 1.1 | 11.1 ± 2.7 B |
2nd | 3.4 ± 0.8 | 1.4 ± 0.9 | 1.1 ± 0.5 | 1.5 ± 0.7 | 1.9 ± 1.2 A | |
3rd | 2.2 ± 0.7 | 3.2 ± 0.6 | 3.1 ± 0.4 | 3.2 ± 0.8 | 2.9 ± 0.8 A | |
Mean | 4.2 ± 2.1 A | 5.8 ± 5.0 A | 5.8 ± 5.4 A | 5.4 ± 4.4 A | 5.3 ± 4.5 a | |
Mean for Cu dose | 5.9 ± 4.6 a | 7.5 ± 8.1 bc | 8.2 ± 8.3 c | 6.7 ± 4.7 ab | 7.1 ± 6.7 | |
Mean for years | 1st | 11.6 ± 3.5 A | 17.9 ± 5.3 B | 18.8 ± 4.4 B | 12.2 ± 2.1 A | 15.1 ± 5.1 c |
2nd | 3.3 ± 1.3 B | 1.1 ± 1.6 A | 1.1 ± 1.2 A | 2.4 ± 1.2 AB | 2.0 ± 1.6 a | |
3rd | 2.9 ± 1.1 A | 3.6 ± 0.9 B | 4.6 ± 2.9 BC | 5.6 ± 3.4 C | 4.2 ± 2.6 b |
Organic Fertilizer | Copper Dose (mg Cu∙kg−1 of Soil) | Mean | |||
---|---|---|---|---|---|
0 | 100 | 200 | 300 | ||
Cattle manure | 20.1 ± 3.0 A | 29.7 ± 3.0 B | 33.4 ± 1.2 B | 23.8 ± 1.1 A | 26.7 ± 5.6 c |
Chicken manure | 20.7 ± 1.5 A | 20.8 ± 3.3 A | 22.0 ± 1.7 A | 20.4 ± 1.9 A | 21.2 ± 2.5 b |
Mushroom substrate | 12.6 ± 0.4 A | 17.3 ± 2.0 A | 17.4 ± 2.0 A | 16.3 ± 1.0 A | 15.9 ± 2.5 a |
Mean | 17.8 ± 4.1 a | 22.6 ± 5.9 bc | 24.6 ± 6.8 c | 20.2 ± 3.4 ab | 21.3 ± 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuziemska, B.; Trębicka, J.; Wysokinski, A. Uptake and Utilization of Nitrogen from Organic Fertilizers Influenced by Different Doses of Copper. Agronomy 2021, 11, 1219. https://doi.org/10.3390/agronomy11061219
Kuziemska B, Trębicka J, Wysokinski A. Uptake and Utilization of Nitrogen from Organic Fertilizers Influenced by Different Doses of Copper. Agronomy. 2021; 11(6):1219. https://doi.org/10.3390/agronomy11061219
Chicago/Turabian StyleKuziemska, Beata, Joanna Trębicka, and Andrzej Wysokinski. 2021. "Uptake and Utilization of Nitrogen from Organic Fertilizers Influenced by Different Doses of Copper" Agronomy 11, no. 6: 1219. https://doi.org/10.3390/agronomy11061219
APA StyleKuziemska, B., Trębicka, J., & Wysokinski, A. (2021). Uptake and Utilization of Nitrogen from Organic Fertilizers Influenced by Different Doses of Copper. Agronomy, 11(6), 1219. https://doi.org/10.3390/agronomy11061219