Enhancing Soil Nitrogen Availability and Rice Growth by Using Urea Fertilizer Amended with Rice Straw Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Characterization
2.2. Characterization of Rice Straw
2.3. Rice Straw Biochar Production and Activation
2.4. Ammonia Volatilization Laboratory Incubation Study
2.5. Pot Experiment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Rice Straw Biochar on Ammonia Volatilization in Laboratory Incubation Study
3.2. Effect of Rice Straw Biochar on Selected Soil Chemical Properties in Pot Study
3.3. Effect of Rice Straw Biochar on Rice Plant Dry Matter Production and Nutrient Uptake
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Jones, C.A.; Koenig, R.T.; Ellsworth, J.W.; Brown, B.D.; Jackson, G.D. Management of Urea Fertilizer to Minimize Volatilization; Montana State University Extension: Bozeman, MT, USA, 2007; pp. 1–9. [Google Scholar]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Mansor, A.M.; Theo, W.L.; Lim, J.S.; Ani, F.N.; Hashim, H.; Ho, W.S. Potential commercialisation of biocoke production in Malaysia—A best evidence review. Renew. Sustain. Energy Rev. 2018, 90, 636–649. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gaind, S.; Ali, A.; Nain, L. Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation 2009, 20, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; MacêDo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horto, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Amirahmadi, E. Effect of rice husk Biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients. J. Appl. Sci. Environ. Manag. 2018, 22, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagodavithane, C.L.; Singh, B.; Fang, Y. Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Res. 2014, 52, 155–163. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.X.; Wu, W.X.; Shi, D.Z.; Yang, M.; Zhong, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 6th ed.; Pearson Publisher: Upper Saddle River, NJ, USA, 1999; p. 126. [Google Scholar]
- Peech, H.M. Hydrogen-ion activity. In Methods of Soil Analysis, Part 2; Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.E., Dinauer, R.C., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; p. 64. [Google Scholar]
- Tan, K.H. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 672. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis, Part 2; Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.F., Dinauer, R.C., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Mehlich, A. Determination of P, Ca, Mg, K, Na and NH4; North Carolina State University Soil Test Division: Raleigh, NC, USA, 1953; p. 145. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation. FAO Soils Bull. 1980, 38, 70–73. [Google Scholar]
- Rowell, D.L. Soil Science, Methods and Applications; Longman Group UK Limited: Harlow, UK, 1994; pp. 86–87. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.G., Keeney, D.R., Baker, D.E., Miller, R.H., Rhoades, J.D., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Selvarajh, G.; Ch’ng, H.Y.; Zain, N.M. Effects of rice husk biochar in minimizing ammonia volatilization from urea fertilizer applied under waterlogged condition. AIMS Agric. Food 2021, 6, 159–171. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, activation, and applications of biochar in recent times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Siva, K.B.; Aminuddin, H.; Husni, M.H.A.; Manas, A.R. Ammonia volatilization from urea as affected by tropical-based palm oil mill effluent (Pome) and peat. Commun. Soil Sci. Plan. 1999, 30, 785–804. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Aminuddin, H.; Husni, M.H.A. Effects of urea, humic acid and phosphate interactions in fertilizer microsites on ammonia volatilization and soil ammonium and nitrate contents. Int. J. Agric. Res. 2006, 1, 25–31. [Google Scholar]
- Ahmed, O.H.; Aminuddin, H.; Husni, M.H.A. Reducing ammonia loss from urea and improving soil-exchangeable ammonium retention through mixing triple superphosphate, humic acid and zeolite. Soil Use Manag. 2006, 22, 315–319. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Husin, A.; Hanif, A.H.M. Ammonia volatilization and ammonium accumulation from urea mixed with zeolite and triple superphosphate. Acta Agric. Scand. B Soil Plant Sci. 2008, 58, 182–186. [Google Scholar]
- Bozorgi, H.R.; Faraji, A.; Danesh, R.K. Effect of plant density on yield and yield components of rice. Appl. Sci. 2011, 12, 2053–2057. [Google Scholar]
- Muda Agricultural Development Authority M. Rice Check; Muda Agricultural Development Authority: Kedah, Malaysia, 2014.
- Palanivell, P.; Ahmed, O.H.; Majid, A.N.M. Minimizing ammonia volatilization from urea, improving lowland rice (cv. MR219) seed germination, plant growth variables, nutrient uptake, and nutrient recovery using clinoptilolite zeolite. Arch. Agron. Soil Sci. 2016, 62, 708–724. [Google Scholar] [CrossRef]
- Lija, M.; Ahmed, O.H.; Susilawati, K. Maize (Zea mays L.) nutrient use efficiency as affected by formulated fertilizer with Clinoptilolite Zeolite. Emir. J. Food Agric. 2014, 26, 284–292. [Google Scholar] [CrossRef]
- Dobermann, A.R. Nitrogen use efficiency—State of the art. In Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; p. 17. [Google Scholar]
- Omar, O.L.; Ahmed, O.H.; Muhamad, A.N. Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water. Int. J. Phys. Sci. 2010, 5, 2193–2197. [Google Scholar]
- Gale, N.V.; Sackett, T.E.; Thomas, S.C. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds. PeerJ 2016, 4, e2385. [Google Scholar] [CrossRef] [PubMed]
- Maraseni, T.N. Biochar: Maximising the benefits. Int. J. Environ. Stud. 2010, 67, 319–327. [Google Scholar] [CrossRef]
- Xu, D.; Cao, J.; Li, Y.; Howard, A.; Yu, K. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste Manag. 2019, 87, 652–660. [Google Scholar] [CrossRef]
- Chen, C.R.; Phillips, I.R.; Condron, L.M.; Goloran, J.; Xu, Z.H.; Chan, K.Y. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand. Plant Soil 2013, 367, 301–312. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management–Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan Publisher: London, UK, 2009; pp. 1–9. [Google Scholar]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef]
- Waters, D.; Condon, J.; Van Zwieten, L.; Moroni, S. Biochar-ion interactions: An investigation of biochar charge and its effect on ion retention. In Proceedings of the 19th World Congress of Soil Science, Brisbane, Australia, 1–6 August 2010; pp. 20–25. [Google Scholar]
- Li, S.X.; Wang, Z.H.; Stewart, B.A. Responses of crop plants to ammonium and nitrate N. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2013; pp. 205–397. [Google Scholar]
- He, Z.L.; Calvert, D.V.; Alva, A.K.; Li, Y.C.; Banks, D.J. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil 2002, 247, 253–260. [Google Scholar] [CrossRef]
- Ros, M.; Klammer, S.; Knapp, B.; Aichberger, K.; Insam, H. Long term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use Manag. 2006, 22, 209–218. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Kanouo, B.M.D.; Allaire, S.E.; Munson, A.D. Quantifying the influence of eucalyptus bark and corncob biochars on the physico-chemical properties of a tropical oxisol under two soil tillage modes. Int. J. Recycl. Org. Waste Agric. 2019, 8, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, M.N.A. Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Exp. Agric. 2016, 52, 447. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Downie, A.; Chan, K.Y.; Cowie, A.; Wainberg, R.; Morris, S. Papermill Char: Benefits to soil health and plant production. In Proceedings of the Conference of the International Agrichar Initiative (Vol. 30), Terrigal, NSW, Australia, 30 April–2 May 2007; pp. 1–25. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Jin-Hua, Y.; Ren-Kou, X.U.; Ning, W.; Jiu-Yu, L.I. Amendment of acid soils with crop residues and biochars. Pedosphere 2011, 21, 302–308. [Google Scholar]
- Omar, L.; Osumanu, A.H.; Majid, N.M. Effect of organic amendment derived from co-composting of chicken slurry and rice straw on reducing nitrogen loss from urea. Commun. Soil Sci. Plant Anal. 2016, 47, 639–656. [Google Scholar] [CrossRef]
- Shah, Z.; Ali, S.; Shah, T.; Amanulah. Recovering soil health of eroded lands through fertilizers and crop rotation. Soil Environ. 2016, 35, 194–206. [Google Scholar]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res. 2011, 4, 312–323. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; pp. 47–82. [Google Scholar]
- Glaser, B. Eigenschaften und Stabilität des Humuskörpers der Indianerschwarzerden Amazoniens. Ph.D. Thesis, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Bayreuth, Germany, 1999. [Google Scholar]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The Terra Preta phenomenon—A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara. E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Selvarajh, G.; Ch’ng, H.Y.; Zain, N.M.; Sannasi, P.; MohammadAzmin, S.N.H. Improving soil nitrogen availability and rice growth performance on a tropical acid soil via mixture of rice husk and rice straw biochars. Appl. Sci. 2021, 11, 108. [Google Scholar] [CrossRef]
- Smith, C.W.; Dilday, R.H. Rice: Origin, History, Technology, and Production; Wiley Series in Crop Science; Wiley: Hoboken, NJ, USA, 2002; pp. 1–10. [Google Scholar]
Property | Value Obtained |
---|---|
pH (H2O using soil:water ratio of 1:2.5) | 5.5 |
EC (dS m−1) | 0.022 |
Soil organic matter (%) | 6.24 |
Carbon (%) | 3.62 |
Ash content (%) | 6.4 |
Cation Exchange Capacity (CEC) (cmolc kg−1) | 5.4 |
NH4+ (mg kg−1) | 89 |
NO3− (mg kg−1) | 30 |
N (%) | 0.07 |
P (mg kg−1) | 0.385 |
K+ (cmolc kg−1) | 0.084 |
Ca2+ (cmolc kg−1) | 0.10 |
Mg2+ (cmolc kg−1) | 0.082 |
Na+ (cmolc kg−1) | 0.024 |
Fe2+ (cmolc kg−1) | 0.091 |
Exchangeable acidity (cmolc kg−1) | 0.7 |
Al3+ (cmolc kg−1) | 1.14 |
Property | Rice Straw | Rice Straw Biochar |
---|---|---|
pH (water) | 7.0 ± 0.07 a | 9.2 ± 0.12 b |
Cation exchange capacity (CEC) (cmolc kg−1) | 38.0 ± 2.39 a | 75.6 ± 0.16 b |
Nitrogen (%) | 0.38 ± 0.01 a | 0.45 ± 0.02 b |
NH4+ (mg kg−1) | 187.11 ± 0.05 a | 179.05 ± 0.12 a |
NO3− (mg kg−1) | 38.0 ± 0.03 a | 36.0 ± 0.02 a |
P (mg kg−1) | 10.7 ± 0.12 a | 14.3 ± 0.17 b |
Ca2+ (mg kg−1) | 3205 ± 0.14 a | 3599 ± 0.9 b |
Mg2+ (mg kg−1) | 1288 ± 0.06 b | 809 ± 0.01 a |
K+ (mg kg−1) | 25,450 ± 0.03 a | 12,030 ± 0.04 b |
Na+ (mg kg−1) | 52.1 ± 0.001 a | 246.3 ± 0.002 b |
Treatment | Description |
---|---|
S | 100 g soil only (Negative control) |
U | 100 g soil + 175 kg urea ha−1 (0.7 g per pot) (Positive control) |
B1 | 100 g soil + 175 kg urea ha−1 (0.7 g per pot) + 5 t rice straw biochar ha−1 (2.8 g per pot) |
B2 | 100 g soil + 175 kg urea ha−1 (0.7 g per pot) + 10 t rice straw biochar ha−1 (5.5 g per pot) |
B3 | 100 g soil + 175 kg urea ha−1 (0.7 g per pot) + 15 t rice straw biochar ha−1 (8.3 g per pot) |
B4 | 100 g soil + 175 kg urea ha−1 (0.7 g per pot) + 20 t rice straw biochar ha−1 (11.1 g per pot) |
CB1 | 50 g soil + 50 g commercial biochar potting media 175 kg urea ha−1 (0.7 g per pot) |
CB2 | 100 g of commercial biochar potting media + 175 kg urea ha−1 (0.7 g per pot) |
Treatment | Description |
---|---|
S | 5 kg soil (Negative control) |
U | 5 kg soil + 175 kg urea ha−1 (3.96 kg per pot), 97.8 kg CIRP ha−1 (2.21 kg per pot), and 130 kg MOP ha−1 (2.94 kg per pot) (Positive control) |
B1 | 5 kg soil + 175 kg urea ha−1 (3.96 kg per pot), 97.8 kg CIRP ha−1 (2.21 kg per pot), and 130 kg MOP ha−1 (2.94 kg per pot) + 5 t rice straw biochar ha−1 (0.11 kg per pot) |
B2 | 5 kg soil + 175 kg urea ha−1 (3.96 kg per pot), 97.8 kg CIRP ha−1 (2.21 kg per pot), and 130 kg MOP ha−1 (2.94 kg per pot) + 10 t rice straw biochar ha−1 (0.23 kg per pot) |
CB1 | 2.5 kg soil + 2.5 kg commercial biochar potting media + 175 kg urea ha−1 (3.96 kg per pot), 97.8 kg CIRP ha−1 (2.21 kg per pot), and 130 kg MOP ha−1 (2.94 kg per pot) (50% soil + 50% commercial biochar potting media) |
CB2 | 5 kg commercial biochar potting media+ 175 kg urea ha−1 (3.96 kg per pot), 97.8 kg CIRP ha−1 (2.21 kg per pot), and 130 kg MOP ha−1 (2.94 kg per pot) (100% commercial biochar potting media) |
Treatments | N (%) | NH4+ (mg kg−1) | NO3− (mg kg−1) |
---|---|---|---|
S | 0.07 ± 0.02 a | 23.35 ± 2.34 a | 25.69 ± 6.18 a |
U | 0.15 ± 0.01 b | 31.35 ± 5.24 a | 38.52 ± 2.02 ab |
B1 | 0.20± 0.01 c | 73.53 ± 2.01 b | 66.55 ± 2.02 c |
B2 | 0.22 ± 0.02 c | 94.57 ± 2.02 c | 89.06 ± 2.01 d |
CB1 | 0.07 ± 0.01 a | 35.03 ± 4.04 a | 46.70 ± 2.34 b |
CB2 | 0.05 ± 0.02 a | 31.52 ± 2.02 a | 42.03 ± 4.04 ab |
Treatments | CEC (cmolc kg−1) | Exchangeable Acidity (cmolc kg−1) | Exchangeable Al3+ (cmolc kg−1) | P (mg kg−1) |
---|---|---|---|---|
S | 2.95 ± 0.26 a | 0.33 ± 0.04 b | 0.26 ± 0.02 a | 2.57 ± 0.68 a |
U | 4.17 ± 0.27 b | 0.32 ± 0.03 b | 0.18± 0.03 a | 29.38 ± 3.99 b |
B1 | 5.83 ± 0.18 c | 0.26 ± 0.03 b | 0.17 ± 0.02 a | 93.60 ± 2.54 d |
B2 | 7.60 ± 0.17 d | 0.16 ± 0.01 a | 0.16 ± 0.01 a | 122.00 ± 4.59 e |
CB1 | 4.47 ± 0.26 b | 0.32 ± 0.01 b | 0.35± 0.02 a | 51.37 ± 0.97 c |
CB2 | 3.80 ± 0.21 ab | 0.52 ± 0.04 c | 0.58± 0.09 b | 37.50 ± 3.18 bc |
Treatments | pH (Water) | EC (ds m−1) | Total Organic Matter (%) | Total C (%) |
---|---|---|---|---|
S | 5.81 ± 0.13 a | 0.006 ± 0.01 a | 0.70 ± 0.06 a | 0.41 ± 0.03 a |
U | 6.17 ± 0.03 a | 0.007 ± 0.01 a | 1.02 ± 0.19 a | 0.59 ± 0.11 a |
B1 | 6.96 ± 0.09 b | 0.02 ± 0.01 b | 3.63 ± 0.21 b | 2.10 ± 0.12 b |
B2 | 6.88 ± 0.14 b | 0.02 ± 0.02 b | 5.80 ± 0.32 c | 3.36 ± 0.19 c |
CB1 | 6.83 ± 0.06 b | 0.02 ± 0.01 b | 2.91 ± 0.59 b | 1.69 ± 0.34 b |
CB2 | 6.67 ± 0.07 b | 0.01 ± 0.01 bc | 3.35 ± 0.27 b | 1.94 ± 0.16 b |
Treatments | K+ (cmol kg−1) | Ca2+ (cmol kg−1) | Mg2+ (cmol kg−1) | Zn2+ (cmol kg−1) | Fe2+ (cmol kg−1) |
---|---|---|---|---|---|
S | 0.0009 ± 0.0001 a | 0.0022 ± 0.0001 a | 0.0007 ± 0.00002 a | 6(10−6) ± 0.000006 a | 0.0004 ± 0.0002 ab |
U | 0.0016 ± 0.0004 a | 0.0038 ± 0.0011 a | 0.0006 ± 0.00001 a | 7(10−6) ± 0.00003 ab | 0.0003 ± 0.0001 a |
B1 | 0.0023 ± 0.0001 ab | 0.0092 ± 0.0003 b | 0.0004 ± 0.00003 a | 2(10−5) ± 0.00007 c | 0.0002 ± 0.0001 a |
B2 | 0.0023 ± 0.0001 b | 0.0166 ± 0.0003 c | 0.0005 ± 0.00002 a | 4(10−5) ± 0.000009 d | 0.0001 ± 0.0001 a |
CB1 | 0.0006 ± 0.00002 a | 0.0005 ± 0.0001 a | 0.0003 ±0.00001 a | 2(10−5) ± 0.000001 c | 0.0007 ± 0.0003 b |
CB2 | 0.0007 ± 0.00001 a | 0.0031 ± 0.0006 a | 0.0004 ±0.00001 a | 2(10−6) ± 0.00003 bc | 0.0013 ± 0.0013 c |
Treatments | Dry Weight (g) | Height (cm) | Tiller Number | Panicle Number | Greenness (%) |
---|---|---|---|---|---|
S | 7.64 ± 0.84 a | 41.94 ± 0.19 a | 2.00 ± 0.33 a | 1.00 ± 0.02 a | 100.00 ± 0.97 a |
U | 22.97 ± 2.99 cd | 76.18 ± 2.92 bc | 3.00 ± 0.34 a | 2.00 ± 0.33 a | 106.31 ± 3.47 a |
B1 | 28.30 ± 1.99 d | 81.47 ± 0.72 c | 7.00 ± 0.35 b | 5.00 ± 0.57 b | 113.06 ± 2.63 ab |
B2 | 37.43 ± 0.87 e | 97.13 ± 1.16 d | 7.00 ± 0.58 b | 9.00 ± 0.58 c | 146.28 ± 2.56 c |
CB1 | 17.54 ± 1.14 bc | 73.20 ± 3.07 bc | 3.00 ± 0.37 a | 3.00 ± 0.33 a | 125.23 ± 2.84 b |
CB2 | 14.62 ± 1.37 ab | 67.67 ± 0.98 b | 2.00 ± 0.37 a | 1.00 ± 0.34 a | 123.31 ± 3.58 b |
Treatments | N (%) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|
S | 0.31 ± 0.02 a | 3.87 ± 0.35 a | 0.35 ± 6.47 a |
U | 0.89 ± 0.07 b | 6.77 ± 0.49 bc | 2.30 ± 1.26 cd |
B1 | 1.09 ± 0.04 a | 33.33 ± 2.70 d | 2.84 ± 5.75 d |
B2 | 1.48 ± 0.01 c | 33.6 ± 2.86 d | 2.49 ± 1.49 d |
CB1 | 0.90 ± 0.03 b | 18.43 ± 0.55 c | 1.90 ± 1.26 bc |
CB2 | 0.80 ± 0.15 b | 12.53 ± 0.72 bc | 1.63 ± 1.38 b |
Treatments | N Use Efficiency (%) | P Use Efficiency (%) | K Use Efficiency (%) |
---|---|---|---|
U | 18.99 ± 3.40 ab | 0.013 ± 0.002 a | 49.36 ± 6.89 b |
B1 | 29.42 ± 1.80 b | 0.09 ± 0.013 b | 76.15 ± 4.43 c |
B2 | 54.16 ± 1.25 c | 0.12 ± 0.014 b | 88.62 ± 3.53 c |
CB1 | 14.45 ± 1.65 a | 0.03 ± 0.003 a | 30.27 ± 1.61 ab |
CB2 | 10.68 ± 3.18 a | 0.02 ± 0.004 a | 21.48 ± 3.59 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvarajh, G.; Ch’ng, H.Y. Enhancing Soil Nitrogen Availability and Rice Growth by Using Urea Fertilizer Amended with Rice Straw Biochar. Agronomy 2021, 11, 1352. https://doi.org/10.3390/agronomy11071352
Selvarajh G, Ch’ng HY. Enhancing Soil Nitrogen Availability and Rice Growth by Using Urea Fertilizer Amended with Rice Straw Biochar. Agronomy. 2021; 11(7):1352. https://doi.org/10.3390/agronomy11071352
Chicago/Turabian StyleSelvarajh, Gunavathy, and Huck Ywih Ch’ng. 2021. "Enhancing Soil Nitrogen Availability and Rice Growth by Using Urea Fertilizer Amended with Rice Straw Biochar" Agronomy 11, no. 7: 1352. https://doi.org/10.3390/agronomy11071352
APA StyleSelvarajh, G., & Ch’ng, H. Y. (2021). Enhancing Soil Nitrogen Availability and Rice Growth by Using Urea Fertilizer Amended with Rice Straw Biochar. Agronomy, 11(7), 1352. https://doi.org/10.3390/agronomy11071352