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Abstract: Utilization of maize stover to the production of meat and milk and saving the grains
for human consumption would be one strategy for the optimal usage of resources. Variance and
tendency analyses were applied to find the optimal nitrogen (N) fertilization dose (0, 100, 145, 190,
240, and 290 kg/ha) for forage (F), stover (S), cob (C), and grain (G) yields, as well as the optimal
grain-to-forage, cob-to-forage, and cob-to-stover ratios (G:F, C:F, and C:S, respectively). The study
was performed in central Mexico (20.691389° N and —101.259722° W, 1740 m a.m.s.l.; Cwa (Koppen),
699 mm annual precipitation; alluvial soils). N-190 and N-240 improved the individual yields and
ratios the most. Linear and quadratic models for CDM, GDM, and G:F ratio had coefficients of
determination (R2) of 0.20-0.46 (p < 0.03). Cubic showed R? = 0.30-0.72 (p < 0.02), and the best
models were for CDM, GDM, and the G:F, C:F, and C:S DM ratios (RZ = 0.60-0.72; p <0.0002). Neither
SHB nor SDM negatively correlated with CDM or GDM (r = 0.23-0.48; p < 0.0001). Excess of N had
negative effects on forage, stover, cobs, and grains yields, but optimal N fertilization increased the
proportion of the G:F, C:F, and C:S ratios, as well as the SHB and SDM yields, without negative effects
on grain production.

Keywords: maize hybrid; nitrogen fertilization; tendency models; grain yield; grain-to-stover ratio

1. Introduction

Due to climate change, caused by the release of greenhouse gases (GHG), in part
caused by crops and livestock [1-3], the increment in temperatures and changes in precip-
itation patterns might reduce the potential yields and nutrient availability of crops and
grasslands [4,5]. Furthermore, increasing demand for land and a reduction in the amount
and quality of spaces to produce grains for humans and forage for livestock are factors
threatening food security [6].

The efficiency of agricultural and livestock production plays an important role in
social and economic development. According to the FAO [7], maize is one of the world’s
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most widely cultivated crop, and one of the most important crops for world food security,
used to feed humans and livestock.

Utilization of maize stover in the production of meat and milk and saving the grains
for human consumption would be one strategy for the optimal usage of resources [8].
Increasing the grain and stover individual yields and quality, and on the other side, the
improvement of the starch:cell wall (neutral detergent fiber (NDF)) ratio of whole maize
plants would be an alternative to use higher amounts of forage in ruminant diets [9,10].

N deficiencies reduce the leaf area and the radiation interception, primarily decreasing
the photosynthetic rate per unit area, affecting the final grain composition and yield [11].
N fertilization can improve the yield and composition of maize grains and stalks [8,12,13],
such as the total crude protein (CP) proportion in grains to feed humans, but is also
inversely related to the NDFs [8,14], which might have a positive effect on the degradability
and CP availability of forages, and therefore on milk and meat production [10,15-18]. An
increase in CP might not be negatively related to the grain and forage yields [19,20].

However, excessive application of N fertilizer has negative effects on crops, greatly
reduces N-use efficiency, and causes significant nitrate leaching losses [11], contributing to
GHG since it is the major source of nitrous oxide (N2O) [3]. Therefore, N must be applied at
rates that satisfy both economic and environmental objectives and is critical for sustainable
agriculture [21].

Optimal fertilization is when the maximum yield: average N fertilization ratio is
reached (maximum yield conversion). The forage and grain yield increments show two
different economical processes: at first, the average yield reach a maximum when a linear
trend is observed from the origin to inflection point, after the tangent represents a reduction
in the yield: N fertilization ratio [22]. Tendency models are useful to describe dose-response
phenomena; in biological processes, quadratic and cubic models can find the inflection
points of optimal values and discriminate between the sub or over doses [10,18].

The present study had the objective of testing the effects of different N fertilization
doses on maize’s forage, stover, cob, and grain HB and DM yields, and the proportions
of the C:F, C:S, and G:F ratios, analyzing the relationships between those variables. Aside
from this, we obtained linear, quadratic, and cubic models to find the optimal N doses to
reach the maximum grain and stover productions, and the best C:F, C:S, and G:F ratios.

2. Materials and Methods
2.1. The Study Area

The experiment was performed in a zone in North-Central Mexico (20.691389° N
and —101.259722° W; 1740 m above sea level), where the weather has been classified
as monsoon-influenced humid subtropical (Cwa; Kdppen classification), and the soil as
primarily alluvial (48.1%) (vertisol (71.6%), phaeozem (11.2%), and cambisol (4.9%)). The
average temperature and precipitation were 19.9 °C and 699 mm (rain mainly occurs
during the summer).

2.2. Biological Material

The N fertilization doses were evaluated in an intermediate/early corn hybrid A-7573
(Asgrow® (Semillas y Agroproductos Monsanto, S.A. de C.V., Mexico)), which could pro-
duce white and yellow grains. The hybrid A-7573 is bred from a triple cross of lines adapted
to spring and summer environmental conditions; the optimal crop density averages from
80,000 to 110,000 plants/ha, with minimal corn lodging.

2.3. Treatments and Crop Management

Crops were evaluated two times (15 May and 1 July) in three consecutive years (2018
to 2020) in two parcels located in the same region. Each treatment was randomly assigned
to plots (30 x 16 m) nested into blocks (32 x 68 m) located in the parcel (128 x 84 m;
0.82 ha), considering the variability in topography, hydrology (the flow of water), and
the sun’s direction, divided by irrigation canals. The distance between rows was 50 cm,
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and the space among plants was 20 cm; the final crop density was 83,932 plants/h. A
traditional soil management system was used (manual and minimum tillage). The scrubs
were manually eliminated after being sowed.

Table 1 shows the evaluated N fertilization doses (treatments). Doses of 0, 2.50, 3.75,
5, 6.25, and 7.50 g of urea/plant were individually weighed and manually added in the
base of each plant 5 cm beneath the soil, according to Wang and Xing [20,23] and Wang
et al. [24], respectively. Half of the urea doses were applied on cultures at sowing time (0 d),
and the rest 35 d after. Crops were not fertilized with phosphorous nor potassium (P, K).

Table 1. Nitrogen doses of fertilization added per hectare and per plant.

N-Doses N (kg/ha) Urea (kg/ha) Urea (g)/Plant
Control 0 0 0
N-100 97 210 2.50
N-145 145 315 3.75
N-190 193 420 5.00
N-240 241 525 6.25
N-290 290 630 7.50

N-Dose, nitrogen doses: Control (0), 100, 145, 190, 240, and 290 kg/ha.

2.4. Evaluated Variables

Time to masculine and feminine inflorescences (tassel and ears) was registered from
the sowing time to the moment when 50% of plants had pollen; 117 d after sowing (when
grains showed 3 of the milk line) [25], 10 plants per block were randomly selected and
harvested. The number of cobs per plant were counted (C/plant).

Whole plants (forage (F)) were sectioned into stalks and leaves (stover (S)), cobs (C),
and grain (G) and weighed, and then the plants’ parts were collocated into a forced-air oven
(Felisa®, FE-292 AD, Mexico) at 65 °C until reaching a constant weight (dry matter (DM)).

Data of the weights of the forage, stover, cobs, and grain in humid base (HB) (FHB,
SHB, CHB, and GHB, respectively), and after being dried (DM) (FDM, SDM, CDM, and
GDM, respectively) were included in the data bases. In addition, the grain-to-forage, cob-
to-forage, and cob-to-stover ratios (G:F, C:F, and C:S ratios, respectively) were calculated
for further analysis.

2.5. Statistical Analysis
2.5.1. Experimental Design and Variance Analysis (ANOVA)

The experiment was established in two parcels and carried out at different times (two
times in three consecutive years (runs)) where treatments were randomly assigned using
a block design (4 blocks per treatment). In addition, 10 sites (sub-runs) were randomly
sampled into each block. Statistical analysis was performed using ANOVA, considering
the fixed effects of the N doses and the random effects of runs nested into the parcels, and
sub-runs nested into the blocks, including the initial weight of the complete plants and
cobs (PW and CW) as covariates, according Models 1 and 2.

Statistical analysis was performed using the SAS software [26], and the determination
and variation coefficients (R?> and VC) were obtained using a lineal general modeling
procedure (Proc GLM), and the statistical significances of the fixed and random effects
were obtained using a mixed procedure (Proc Mixed).

Model 1

Y = p + Run(Parcel); + Traty + Bx—x1) + €ijk 1
where Y = C/Plant, FHB, SHB, CHB, GHB, FDM, CDM, GDM, C:F ratio, C:S ratio, and G:F
ratio; Run(Parcel); = the random effect of the it" run nested into the j" parcel; Trat, = the
fixed effect of the k' N dose of fertilization; Bx—x1) = covariates (PW and CW); and
&jjk= random error.
Model 2
Y = p + Sub-run(Block); + Traty + Bx—x1) + &ij (2)
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where Y = C/Plant, FHB, SHB, CHB, GHB, FDM, CDM, GDM, C:F ratio, C:S ratio, and
G:F ratio; Sub-run(Block);; = the random effect of the ith sub-run nested into the jth block;

Traty, = the fixed effect of the k' N dose of fertilization; B(x—x1) = covariates (PW and CW);
and ¢;x = random error.

2.5.2. Means Comparison

Adjusted means were obtained with the LsMeans instruction, and the least signif-
icant difference (LSD) was calculated using the standard errors (SE) obtained with the
instruction/pdiff.

2.5.3. Pearson’s Correlation, Trend Analysis, and Regression Models

Individual simple correlations (r) between variables were tested using Proc Corr [26].
Linear, quadratic, and cubic effects were assayed through orthogonal polynomial tests using
the statistical software Paquete de la Universidad de Nuevo Ledn [27]. The parameters for
the linear, quadratic, and cubic functions were obtained using Proc Reg and Proc NLin [26].

2.5.4. Selection and Validity of the Models of the Categorical and Continuous Variables

In addition to the probability values (p-values (Fischer and T-student)) and R?, Bayesian
(BIC) and Akaike (AIC) criteria were used to select and validate the models.

3. Results

The crop was harvested when the forage and grains’ DM were 22.48 +2.5g/100 g
and 40.88 £ 8.16 g/100 g.

3.1. Inflorescences and Humid Base Yields

Table 2 shows the masculine and feminine inflorescences, and the ANOVA did not
show differences among the N doses (p > 0.44); however, those variables showed quadratic
and cubic trends with N fertilization (p < 0.0001).

Table 2. Days to reach masculine and feminine inflorescences.

N-Doses Masculine Feminine
Inflorescences (d) Inflorescences (d)
Control 64.50 65.50
N-100 64.50 66.00
N-145 63.75 64.50
N-190 65.50 66.75
N-240 63.75 64.50
N-290 64.50 65.75
R? 0.67 0.71

VC (%) 1.99 3.85
p-value

N-Dose 0.437 0.783
Trends
Lineal 0.841 <0.0001

Quadratic <0.0001 <0.0001
Cubic <0.0001 <0.0001

N-dose, nitrogen fertilization: Control (0), 100, 145, 190, 240, and 290 kg/ha; R?, coefficient of determination; VC,
variation coefficient.

Treatments N-190 had the latest masculine and feminine inflorescences (65.50 vs. 64.50,
and 66.75 vs. 65.50 d, control vs. N-190).

There were no differences among the N doses for C/plant and CHB (Table 3; p > 0.26),
but both variables showed cubic trends, with the maximum values with N-100 (1.04 vs.
1.07, control vs. N-100) and N-240 (31.46 vs. 30.78 t/ha, control vs. N-240) (p < 0.0001).
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Table 3. Whole plant, cobs, and grain humid base (HB) yields (t/ha).

N-Doses C/Plant SHB FHB CHB GHB C:F ratio G:F Ratio C:S Ratio
Control 1.04 81.55ab 112.28b 30.78 22.51ab 0.28ab 0.20cd 0.39ab
N-100 1.07 79.37cd 111.66e 29.88 22.43ab 0.27ab 0.20bcd 0.37ab
N-145 1.01 84.31a 115.47a 29.46 21.61b 0.27b 0.19d 0.36b
N-190 1.04 81.29bc 111.08¢ 30.78 24.01a 0.28ab 0.22a 0.39ab
N-240 1.03 80.52¢ 109.3d 31.46 23.45a 0.29a 0.21abc 0.40a
N-290 1.00 77.45d 108.13f 31.11 23.79a 0.29a 0.21abc 0.40a
R? 0.45 0.96 0.99 0.64 0.63 0.37 0.42 0.35
VC (%) 14.14 3.95 10.65 10.99 11.74 9.93 10.7 13.93
p-value
N-Doses 0.59 <0.0001 <0.0001 0.261 <0.0001 0.01 0.002 0.01
LSD (0.05) = 0.11 2.01 1.98 2.01 0.86 0.017 0.014 0.033
Trends
Lineal <0.0001 0.55 0.695 <0.0001 0.012 0.013 <0.0001 <0.0001
Quadratic 0.535 <0.0001 <0.0001 <0.0001 0.609 0.244 0.05 0.384
Cubic <0.0001 <0.0001 <0.0001 <0.0001 0.189 0.55 0.03 0.421

Different letters represent significantly different means; N-doses, nitrogen fertilization: Control (0), 100, 145, 190, 240, and 290 kg/ha; HB,
humid base; C/Plant, cobs per plant; SHB, stover yield; FHB, forage yield; CHB, cob yields; GHB, grain yields; C:F, cobs-to-forage; G:F,
grain-to-forage; C:S, cobs-to-stover; R?, coefficient of determination; VC, variation coefficient; LSD, least significant difference.

GHB was linearly improved with N fertilization but the best yield was obtained with
N-190 (22.51 vs. 24.01 t/ha, control vs. N.190) (p < 0.01). The best production of FHB and
SHB was reached with N-145 (81.55 vs. 84.31, and 112.28 vs. 115.47 t/ha, control vs. N-145)
(p < 0.0001), showing quadratic and cubic trends (p < 0.0001).

The ratios C:F and C:S were affected by N fertilization, and were improved when
doses over 190 kg /ha were applied to the crops (0.28 vs. 0.29, and 0.30 vs. 0.40, control
vs. N-240) (p < 0.01); the G:F ratio also showed quadratic and cubic effects, suggesting an
inflection point at N-190 (0.20 vs. 22, control vs. N-190) (p < 0.05).

3.2. Dry Matter Yields

The DM vyields of forage, stover, cobs, and grain were affected by N dose (p < 0.01;
Table 4). FDM and SDM had the best yields when N-240 was used in crops (30.65 vs. 32.17,
and 18.51 vs. 19.68 t/ha, control vs. N-240), and CDM and GDM when N-190 was added
(12.31 vs. 13.12, and 9 vs. 10.26 t/ha, control vs. N-190); in addition, N fertilization affected
the ratios C:F, G:F, and C:S, which had the best means when N-190 was added (0.40 vs.
0.44, 0.30 vs. 0.35, and 0.68 vs. 0.81, control vs. N-190, respectively) (p < 0.003). All DM
yields and ratios showed quadratic and cubic trends (p < 0.0001).

3.3. Linear, Quadratic, and Cubic Models

The R? coefficients were higher in the cubic models than in the linear and quadratic
models (Table 5). There were significant linear models for the FHB, GHB, SHB, CDM, GDM,
and G:F HB and DM ratios (p < 0.01), whose R? varied from 0.17 to 0.38. Quadratic models
of FHB, CDM, GDM, SDM, G:F (HB and DM), C:S HB, and C:F HB showed R2 values from
0.23 to 0.46 (p < 0.03). Except for C/Plant, SHB, and GHB, the cubic models for the rest of
variables were significant (p < 0.02), with R? values from 0.30 to 0.72; however, the highest
R? models were observed for CDM, GDM, and the G:F, C:F, and C:S DM ratios, whose R?
values varied from 0.60 to 0.72 (p < 0.0002).
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Table 4. Whole plant, cobs, and grain dry matter (DM) yields (t/ha).

N-Doses FDM SDM CDM GDM C:F Ratio G:FRatio C:S Ratio
Control 30.65b  18.51ab  12.31b 9.00c 0.40bc 0.30b 0.68bc
N-100 31.04b  18.85ab  12.69ab 9.56b 0.40bc 0.30b 0.68bc
N-145 30.24b  18.78ab  12.13b 8.90c 0.38¢ 0.29b 0.63c
N-190 29.78b 16.76¢ 13.12a 10.26a 0.44a 0.35a 0.81a
N-240 32.17a 19.68a 12.33b 9.17bc 0.39bc 0.29b 0.66bc
N-290 29.86b  17.54bc  12.30b 9.40bc 0.42ab 0.33ab 0.74ab
R? 0.76 0.62 0.77 0.7 0.3 0.29 0.29
VC (%) 8.83 14.03 10.56 12.95 12.76 14.5 20.91
p-value
N-Doses 0.005 0.001 0.01 0.001 0.006 0.0001 0.003
LSD (0.05) = 1.42 1.36 0.7 0.65 0.31 0.03 0.09
Trends
Lineal 0.589 <0.0001 0.677 0.096 0.58 0.32 0.04
Quadratic <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Cubic <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Different letters are significant different means; N-doses, nitrogen fertilization: Control (0), 100, 145, 190, 240, and

290 kg/ha; DM, dry matter; SDM, stover yield; FMD, forage yield; CDM, cob yields; GDM, grain yields; C:F,
cobs-to-forage; G:F, grain-to-forage; C:S, cobs-to-stover; R2, coefficient of determination; VC, variation coefficient;
LSD, least significant difference.

Table 5. Linear, quadratic, and cubic models for forage, stover, cob, and grains humid base (HB) and

dry matter (DM) yields.
Variable (Y;) Trend p-Value R?
Linear: Yi =0+ [31Xi + &
Bo B1

C/plant 1.13 —0.0006 0.09 0.10
FHB 113.47 —0.012 0.004 0.26
CHB 30.48 0.001 0.03 0.17
GHB 22.38 0.004 0.74 0.05
SHB 82.99 —0.013 0.004 0.26

G:F ratio HB 0.197 0.00007 0.05 0.20
C:S ratio HB 0.37 0.0001 0.07 0.11
C:F ratio HB 0.27 0.00005 0.07 0.12
CDM 12.42 0.0007 0.0003 0.38
GDM 9.13 0.002 0.007 0.24
SDM 18.99 —0.004 0.35 0.03
G:F ratio DM 0.29 0.0001 0.01 0.22
C:F ratio DM 0.4 0.00006 0.09 0.10
C:S ratio DM 0.67 0.0002 0.08 0.11

Quadratic: Y; = Bg + B1X; + B2X;% + g
Bo B1 B2

C/plant 1.19 —0.002 0.000005 0.09 0.16
FHB 112.7 0.007 0.00006 0.006 0.31
CHB 30.87 —0.008 0.00003 0.07 0.18
GHB 22.57 —0.0008 0.00002 0.94 0.05
SHB 81.86 0.015 —0.0001 0.003 0.35

G:F ratio HB 0.2 —0.00005 0.0000004 0.0003 0.46
C:S ratio HB 0.38 —0.0002 0.000001 0.001 0.39
C:F ratio HB 0.28 —0.0001 0.0000005 0.001 0.40
CDM 12.39 0.001 —0.000002 0.001 0.39
GDM 9.05 0.004 —0.000006 0.03 0.24
SDM 18.76 0.002 —0.00002 0.01 0.28
G:F ratio DM 0.29 0.00007 0.0000001 0.03 0.23
C:F ratio DM 0.4 —0.00004 0.0000003 0.17 0.12
C:S ratio DM 0.67 0.0009 0.0000004 0.18 0.12
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Table 5. Cont.

Variable (Y;) Trend p-Value R?
Cubic: Y = Bo + lei + [32Xi2 + B3Xi3 + &
Bo P1 B2 B3

C/plant 1.2 —0.004 0.00002 —0.00000003 0.17 0.17
FHB 113.6 —0.121 0.001 —0.000003 0.02 0.31
CHB 31 —0.062 0.0006 —0.000001 0.89 0.02
GHB 22.86 —0.42 0.0004 —0.0000009 0.89 0.03
SHB 82.38 —0.06 0.0006 —0.000002 0.009 0.35
G:F ratio HB 0.2 —0.0002 0.000002 —0.000000003 0.02 0.44
C:S ratio HB 0.38 —0.0005 0.000004 —0.000000006 0.003 0.42
C:F ratio HB 0.28 —0.0003 0.000002 —0.000000004 0.003 0.41
CDM 12.58 —0.025 0.0003 —0.0000006 0.0001 0.60
GDM 9.2 —0.017 0.0002 —0.0000005 0.0001 0.61
SDM 18.9 —0.018 0.0002 —0.0000004 0.03 0.30
G:F ratio DM 0.29 —0.00005 0.000001 —0.000000003 0.0001 0.72
C:F ratio DM 0.4 —0.0003 0.000002 —0.000000005 0.0002 0.64
C:S ratio DM 0.29 —0.00005 0.000001 —0.000000003 0.0002 0.63

HM, humid base; DM, dry matter; C/plant; cob per plant; FHB, forage yield in HB; SHB, stover yield in DM; CHB,
cob yield in HB; GHB, grain yield in HB; CDM, cob yield in DM; GDM, grain yield in DM; SDM, stover yield in
DM; F; C:E, cobs-to-forage; G:F, grain-to-forage; C:S, cobs-to-stover; p-value, probability values; R?, coefficient of
determination.

3.4. Pearson’s Correlations

Table 6 shows the individual Pearson’s correlations between the evaluated variables.
Almost all correlations were significant (p < 0.01). All the variables evaluated in HB highly
correlated with the DM yields (r > 0.74); similarly, C:F HB, G:F HB, and C:S HB correlated
with the C:F, G:E, C:S DM ratios (r > 0.60). However, FHB highly correlated with the CDM
and GDM yields (r > 0.57). Neither SHB nor SDM negatively correlated with cobs or grain
DM yields (r varied from 0.23 to 0.48).

Table 6. Pearson’s correlations between the yield variables evaluated in the humid base (HB) and dry matter (DM).

K:F C:S C:F K:F C:S C:F
CHB KHB SHB HB HB HB CDM KDM SDM DM DM DM
FHB 0.74 *** 0.70 *** 0.98 *** —0.41 *** —0.41 *** —0.42 *** 0.62 *** 0.57 *** 0.72 *** —0.14 —-0.17 —0.14
CHB 0.96 *** 0.58 *** 0.24 ** 0.29 *** 0.28 ** 0.84 *** 0.80 *** 0.40 *** 0.27 ** 0.30 ** 0.35 **
KHB 0.54 *** 0.35 *** 0.31 ** 0.30 ** 0.84 *** 0.86 *** 0.33 ** 0.41 *** 0.37 *** 0.37 ***
SHB —0.58 *#** —0.59 *** —0.61 *** 0.48 *** 0.44 *** 0.74 *** —0.26 ** —0.30 ** —0.27 **
Ratios:
K:F HB 0.93 *** 0.93 *** 0.25 ** 0.34 ** —0.52 ** 0.70 *** 0.69 *** 0.66 ***
C:S HB 0.99 *** 0.26 ** 0.27 ** —0.50 *** 0.60 *** 0.67 *** 0.65 ***
C:F HB 0.26 ** 0.26 ** —0.50 *** 0.59 *** 0.66 *** 0.64 ***
CDM 0.97 *** 0.29 ** 0.51 *** 0.53 *** 0.55 ***
KDM 0.23 % 0.61 *** 0.58 *** 0.58 ***
SDM —0.61 *** —0.62 *** —0.63 ***
Ratios:
K:F DM 0.96 *** 0.96 ***
C:S DM 0.99 ***

*, **, or *** represent p-values < 0.05, <0.01, and <0.0001, respectively; HM, humid base; DM, dry matter; C/plant; cob per plant; FHB,
forage (whole plant) yield in HB; SHB, stover (stalks and leaves) yield in DM; CHB, cob yield in HB; GHB, grain yield in HB; CDM, cob
yield in DM; GDM, grain yield in DM; SDM, stover (stalks and leaves) yield in DM; F; C:E, cobs-to-forage ratio; G:F, grain-to-forage ratio;

C:S, cobs-to-stover ratio.

4. Discussion

World food security depends on reaching crop and livestock-feeding efficiency. Im-
proving the forage yield and quality is an alternative to reduce the costs of livestock
feedstuffs’ environmental and economic costs [1,2,15-17].

In Mexico, maize has been a crop for 7000 years. The International Maize and Wheat
Improvement Center (CIMMYT) is a Mexican government program [28], focused on pre-
serving seeds and obtaining new varieties primarily adapted to drought and warming
to increase the grain and forage yields. Genetic improvement and crop management
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programs try to balance the production with maize nutritional quality, all related to the
total and grain yield and composition, the thickness of the stalks, growing capability, the
number of leaves, and the chemical composition and digestibility of the plants [29-33].

In the present study, an Asgrow® (Semillas y Agroproductos Monsanto, S.A. de
C.V., Mexico) hybrid was used to test different N fertilization doses. AS-757 is widely
commercialized in many countries of America primarily for grain production, although
it is also widely used for silage elaboration to feed livestock [34]. In the present study;,
masculine and feminine inflorescences occurred 64.5 and 65.5 d after sowing, corroborating
data reported by Sanchez et al. [35] and Pefia et al. [31,36] (63.96 to 64.3 d, and 64.3 to
68.3 d), who evaluated the hybrid at the same crop density.

Inflorescence is affected by crop density, but N fertilization can reduce the negative
effects of early inflorescences on grain yield [37]; however, in the present work the inflores-
cences did not vary across N dose. Nonetheless, orthogonal polynomial analysis detected
cubic trends, and N-190 was the optimal dose to delay the inflorescence time.

Almost all yields and C:S, G:F, and C:F ratios evaluated were positively affected when
were fertilized with 190 to 240 kg N/ha; furthermore, almost all cubic models of those
variables had high R? coefficients and were significant, showing that excess N negatively
affected all yields and plant proportions, and negatively contribute to GHG emissions
through N, O releasing [3].

N availability affects the foliar area index, and therefore the solar light caption [13,23].
Su et al. [11], using 0, 150, 225, and 300 kg/ha of N, found that grain yield decreased from
3 to 21.9% with an N reduction because of the lower radiation-use efficiency; in turn, the
leaf area index increases with the optimal N dose, and thus plant height and weight also
improve with the grain yields [13,38].

Optimal N doses from 120 to 360 kg/ha had previously been reported [8,13,19].
In the present study, the individual N application underneath soil might reduce the N
optimal dose [24]. However, other factors must be considered to determine the optimal
N-dose, such as the variability in soil, topography, hydrology [21], soil humidity [38-40],
irrigation [23,24,41], and maize genotype [42].

The C:S, G:F, and C:F ratios are affected by N availability [38], and these ratios’ changes
might affect the starch, CP, NDEF, and digestibility of the whole plant [36,43].

In maize forage, the starch:NDF ratio also affects the DMI, milk production (R2 =0.60) [9],
and fat milk quality [44]; in addition, the NDF and the starch content of ruminant diets
depend on the forage-to-grain ratio, which affect the long-chain unsaturated fatty acid
profile at the rumen level, and thereby the milk and meat yields and quality [10,18,45].

Correlation analysis of the present work did suggest that optimal N fertilization can
improve both grain and stover yields to assume the double purpose of increasing the grain
and stover yields to feed humans and ruminants, or on the other hand, to improve the
nutritional quality of forage. According to Khan et al. [12], the correct N fertilization level
increased the number of seeds per cob and the plant height, improving the grain and stover
yields [8,13,38]. Besides this, an inverse relation between NDF and CP is not only due to the
C:S, G:F and C:F ratios [46,47]. Ming et al. [8] analyzed the composition of the maize stalks,
finding that adding N of 225 kg /ha improved the CP contents by 12—44%, and reduced the
NDF and acid detergent fiber (ADF) by 5.44-10.1% and 12.04-22.03% (depending the high
of the stalks and the N dose).

5. Conclusions

Tendency models allowed to obtain the inflection points among the N fertilization
doses and maximum cob and grain yields. The cubic and quadratic models of CDM, GDM,
and the G:F, C:F, and C:S DM had the best R? values (0.60-0.72; p < 0.0002). Although any
forage or stover tendency model showed a high R?, no negative Pearson’s correlation was
found between SHB and SDM, and CDM and GDM yields (r = 0.23-0.48), suggesting that
optimal N fertilization can improve both grain and stover yields. N-190 was the optimal
N dose to reach the maximum cob and grain yields, and the best G:F HB, C:S HB, C:F
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DM, G:F DM, and C:S DM ratios. Tendency modeling might be useful to avoid overdose
fertilization, having the double purpose of increasing the grain and stover yields to feed
humans and ruminants, or on the other hand, to improve the nutritional quality of forage.
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