Exploring Substrate Water Capture in Common Greenhouse Substrates through Preconditioning and Irrigation Pulsing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Substrates
2.2. Particle Size
2.3. Subirrigation System
2.4. Hydration Events
2.5. Container Capacity
2.6. Capture Rate
2.7. Capture Values
3. Results
3.1. Particle Size
3.2. Hydration Curves
3.3. Coir
3.4. Peat
3.5. Pine Bark
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raviv, M.; Lieth, J.H. Soilless Culture Theory and Practice; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- Mathers, H.M.; Case, L.T.; Yeager, T.H. Improving Irrigation Water Use in Container Nurseries. HortTechnology 2005, 15, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.A. Peat, horticulture and environment. Biodivers. Conserv. 1993, 2, 541–547. [Google Scholar] [CrossRef]
- Puustjarvi, V.; Robertson, R.A. Physical and chemical properties. In Peat in Horticulture; Academic Press: London, UK, 1975. [Google Scholar]
- Michel, J.C.; LRiviere, M.; Fontaine, M.N.B. Measurement of wettability of organic materials in relation to water content by the capillary rise method. Eur. J. Soil Sci. 2001, 52, 459–467. [Google Scholar] [CrossRef]
- Fields, J.S.; Fonteno, W.C.; Jackson, B.E.; Heitman, J.L.; Owen, J. Hydrophysical Properties, Moisture Retention, and Drainage Profiles of Wood and Traditional Components for Greenhouse Substrates. HortScience 2014, 49, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.; Frones, F.; Carrion, C.; Noguero, V. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.V. Greenhouse Operation and Management, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Fonteno, W.C.; Fields, J.S.; Jackson, B.E. A pragmatic approach to wettability and hydration of horticultural substrates. Acta Hortic. 2013, 1013, 15. [Google Scholar]
- Bilderback, T.E.; Warren, S.L.; Owen, J.; Albano, J.P. Healthy Substrates Need Physicals Too! HortTechnology 2005, 15, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Hayden, D. Soilless Substrate Management for Nursery Crops; University of Kentucky, College of Agriculture: Kentucky, UK, 2005. [Google Scholar]
- Pokorny, V.; Burda, V.; Flegr, V. Effect of Winter Wheat Proportion in Crop Rotation on the Reserve of Available Nutrients in Soil; Rostlinna Vyroba UVTIZ: Prague, Czech Republic, 1979. [Google Scholar]
- Ferrarezi, R.S.; Weaver, G.M.; van Iersel, M.; Testezlaf, R. Subirrigation: Historical Overview, Challenges, and Future Prospects. HortTechnology 2015, 25, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Uva, W.-F.L.; Weiler, T.C.; Milligan, R.A. Economic Analysis of Adopting Zero Runoff Subirrigation Systems in Greenhouse Operations in the Northeast and North Central United States. HortScience 2001, 36, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Dole, J.M.; Cole, J.C.; von Broembsen, S.L. Growth of poinsettias, nutrient leaching, and water-use efficiency respond to irrigation methods. HortScience 1994, 29, 858–864. [Google Scholar] [CrossRef]
- Elliott, G.C. Reduce water and fertilizer with ebb and flow. Greenh. Grow. 1990, 8, 70–73. [Google Scholar]
- Caron, J.; Elrick, D. Measuring the Unsaturated Hydraulic Conductivity of Growing Media with a Tension Disc. Soil Sci. Soc. Am. J. 2005, 69, 783–793. [Google Scholar] [CrossRef]
- Klock-Moore, K.A.; Broschat, T.K. Differences in Bedding Plant Growth and Nitrate Loss with a Controlled-release Fertilizer and Two Irrigation Systems. HortTechnology 1999, 9, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.S.; Jacobs, D.F.; Overton, R.P.; Dumroese, R.K. Influence of irrigation method and container type on northern red oak seedling growth and media electrical conductivity. Nativ. Plants J. 2008, 9, 4–12. [Google Scholar] [CrossRef]
- Davis, A.S.; Pinto, J.R.; Jacobs, D.F. Early field performance of Acacia koa seedlings grown under subirrigation and overhead irrigation. Nativ. Plants J. 2011, 12, 94–99. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Jacobs, D.F.; Davis, A.S.; Pinto, J.R.; Landis, T.D. An Introduction to Subirrigation in Forest and Conservation Nurseries and Some Preliminary Results of Demonstrations; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007. [Google Scholar]
- Roeber, R.U. Environmentally sound plant production by means of soilless cultivation. Comun. Sci. 2010, 1, 1–8. [Google Scholar]
- Letey, J.; Osborn, J.; Pelishek, R.E. Measurement of liquid-solid contact angles in soil and sand. Soil Sci. 1962, 93, 149–153. [Google Scholar] [CrossRef]
- Plaut, Z. The effect of soil moisture tension and nitrogen supply on nitrate reduction and accumulation in wheat seedlings. Plant Soil 1973, 38, 81–94. [Google Scholar] [CrossRef]
- Fonteno, W.C.; Hardin, T.; Brewster, J.P. Procedures for Determining Physical Properties of Horticultural Substrates Using the NCSU Porometer; Horticultural Substrates Laboratory, North Carolina State University: Raleigh, NC, USA, 1995. [Google Scholar]
- Schulker, B.A.; Jackson, B.E.; Fonteno, W.C.; Heitman, J.L.; Albano, J.P. Comparison of Water Capture Efficiency through Two Irrigation Techniques of Three Common Greenhouse Soilless Substrate Components. Agronomy 2020, 10, 1389. [Google Scholar] [CrossRef]
- Geuijen, W.; Verhagen, J. Analysis of water uptake of growing media on the relation to water uptake in horticultural practice. Acta Hortic. 2017, 113–118. [Google Scholar] [CrossRef]
- Michel, J.C. Study of the Wettability of Organic Materials Used as a Culture Support. Ph.D. Thesis, Agrocampus Ouest, Rennes, France, 1998. [Google Scholar]
- Valat, B.; Jouany, C.; Riviere, L.M. Characterization of the wetting properties of air-dried peats and composts. Soil Sci. 1991, 152, 100–107. [Google Scholar] [CrossRef]
- Handreck, K.A.; Black, N.D. Growing Media for Ornamental Plants and Turf; New South Wales University Press: Kensington, Australia, 1984; pp. 115–117. [Google Scholar]
- Drzal, M.; Cassel, D.K.; Fonteno, W. Pore fraction analysis: a new tool for substrate testing. Acta Hortic. 1999, 481, 43–54. [Google Scholar] [CrossRef]
Particle Size Distribution (%) z | |||
---|---|---|---|
Sieve (mm) | Coir | Peat | Pine Bark |
>6.3 | 0.2 | 2.8 | 11.2 |
6.3–2.0 | 6.6 | 12.8 | 45.8 |
2.0–0.71 | 42.6 | 31.6 | 28.4 |
0.71–0.5 | 19.8 | 11.4 | 5.2 |
0.5–0.25 | 24.0 | 24.8 | 7.2 |
0.25–0.11 | 4.8 | 10.4 | 1.2 |
<0.11 (pan) | 2.0 | 6.2 | 1.0 |
Texture | |||
Coarse y | 6.8 C c v,u | 15.6 B b | 57.0 A a |
Medium x | 62.4 A a | 43.0 A b | 33.6 B b |
Fines w | 30.8 B a | 41.4 A a | 9.4 C b |
Coir 33% IMC, 2 mm | Coir 50% IMC, 2 mm | Coir 67% IMC, 2 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 26 ez | x | x | x | x | 5 | 25 e | x | x | x | x | 5 | 26 d | x | x | x | x |
10 | 25 e | 31 d | x | x | x | 10 | 23 f | 29 c | x | x | x | 10 | 23 e | 29 c | x | x | x |
20 | 26 e | 30 d | x | 36 b | x | 20 | 28 d | 26 d | x | 32 b | x | 20 | 28 c | 26 d | x | 32 b | x |
30 | 27 e | x | 33 c | x | 39 a | 30 | 27 d | x | 28 d | x | 35 a | 30 | 25 d | x | 27 d | x | 34 a |
60 | 30 d | x | x | x | x | 60 | 29 c | x | x | x | x | 60 | 27 d | x | x | x | x |
Coir 33% IMC, 20 mm | Coir 50% IMC, 20 mm | Coir 67% IMC, 20 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 27 f | x | x | x | x | 5 | 31 d | x | x | x | x | 5 | 34 c | x | x | x | x |
10 | 30 f | 31 e | x | x | x | 10 | 32 d | 34 c | x | x | x | 10 | 33 c | 36 b | x | x | x |
20 | 34 d | 34 d | x | 35 cd | x | 20 | 35 c | 35 c | x | 37 b | x | 20 | 34 c | 35 b | x | 39 a | x |
30 | 37 abc | x | 36 bcd | x | 38 ab | 30 | 33 c | x | 37 b | x | 40 a | 30 | 36 b | x | 34 b | x | 40 a |
60 | 40 a | x | x | x | x | 60 | 38 b | x | x | x | x | 60 | 39 a | x | x | x | x |
Coir 33% IMC, 35 mm | Coir 50% IMC, 35 mm | Coir 67% IMC, 35 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 36 e | x | x | x | x | 5 | 37 e | x | x | x | x | 5 | 36 c | x | x | x | x |
10 | 37 e | 40 d | x | x | x | 10 | 32 f | 40 d | x | x | x | 10 | 36 c | 38 b | x | x | x |
20 | 40 d | 41 d | x | 44 b | x | 20 | 44 bc | 35 e | x | 43 bc | x | 20 | 39 b | 38 b | x | 39 b | x |
30 | 42 c | x | 43 b | x | 47 a | 30 | 43 bc | x | 37 e | x | 45 b | 30 | 40 a | x | 40 a | x | 41 a |
60 | 45 b | x | x | x | x | 60 | 49 a | x | x | x | x | 60 | 42 a | x | x | x | x |
Peat 33% IMC, 2 mm | Peat 50% IMC, 2 mm | Peat 67% IMC, 2 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 5 abz | x | x | x | x | 5 | 10 f | x | x | x | x | 5 | 17 f | x | x | x | x |
10 | 5 ab | 5 ab | x | x | x | 10 | 11 f | 13 d | x | x | x | 10 | 20 e | 20 e | x | x | x |
20 | 4 b | 5 ab | x | 5 ab | x | 20 | 12 de | 13 d | x | 16 c | x | 20 | 22 d | 23 cd | x | 23 cd | x |
30 | 6a | x | 5 ab | x | 5 ab | 30 | 13 d | x | 15 c | x | 18 b | 30 | 24 bc | x | 25 b | x | 25 b |
60 | 4 b | x | x | x | x | 60 | 20 a | x | x | x | x | 60 | 30 a | x | x | x | x |
Peat 33% IMC, 20 mm | Peat 50% IMC, 20 mm | Peat 67% IMC, 20 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 5 ab | x | x | x | x | 5 | 13 f | x | x | x | x | 5 | 25 f | x | x | x | x |
10 | 4 b | 5 ab | x | x | x | 10 | 16 e | 17 e | x | x | x | 10 | 28 e | 28 e | x | x | x |
20 | 5 ab | 4 b | x | 5 ab | x | 20 | 23 c | 20 d | x | 21 cd | x | 20 | 33 c | 31 d | x | 31 d | x |
30 | 5 ab | x | 5 ab | x | 5 ab | 30 | 27 b | x | 22 c | x | 23 c | 30 | 35 b | x | 33 c | x | 33 c |
60 | 6a | x | x | x | x | 60 | 30 a | x | x | x | x | 60 | 37 a | x | x | x | x |
Peat 33% IMC, 35 mm | Peat 50% IMC, 35 mm | Peat 67% IMC, 35 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 5 c | x | x | x | x | 5 | 21 f | x | x | x | x | 5 | 33 c | x | x | x | x |
10 | 5 c | 6 bc | x | x | x | 10 | 25 e | 25 e | x | x | x | 10 | 34 c | 33 c | x | x | x |
20 | 6 bc | 6 bc | x | 7 b | x | 20 | 31 c | 29 d | x | 29 d | x | 20 | 37 b | 37 b | x | 38 b | x |
30 | 7 b | x | 7 b | x | 7 b | 30 | 33 b | x | 31 c | x | 31 c | 30 | 39 ab | x | 38 b | x | 40 a |
60 | 9a | x | x | x | x | 60 | 35 a | x | x | x | x | 60 | 39 ab | x | x | x | x |
Pine Bark 33% IMC, 2 mm | Pine Bark 50% IMC, 2 mm | Pine Bark 67% IMC, 2 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 19 cz | x | x | x | x | 5 | 21 a | x | x | x | x | 5 | 16 ab | x | x | x | x |
10 | 17 d | 22 b | x | x | x | 10 | 20 ab | 21 a | x | x | x | 10 | 17 a | 16 ab | x | x | x |
20 | 17 d | 19 c | x | 24 ab | x | 20 | 22 a | 21 a | x | 22 a | x | 20 | 15 b | 17 a | x | 17 a | x |
30 | 19 c | x | 20 c | x | 25 a | 30 | 22 a | x | 21 a | x | 22 a | 30 | 17 a | x | 15 b | x | 17 a |
60 | 20 c | x | x | x | x | 60 | 22 a | x | x | x | x | 60 | 17 a | x | x | x | x |
Pine Bark 33% IMC, 20 mm | Pine Bark 50% IMC, 20 mm | Pine Bark 67% IMC, 20 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 22 c | x | x | x | x | 5 | 30 b | x | x | x | x | 5 | 24 b | x | x | x | x |
10 | 23 c | 24 bc | x | x | x | 10 | 31 ab | 30 b | x | x | x | 10 | 25 b | 25 b | x | x | x |
20 | 26 b | 24 bc | x | 26 b | x | 20 | 32 a | 31 ab | x | 31 ab | x | 20 | 25 b | 26 ab | x | 25 b | x |
30 | 28 ab | x | 25 bc | x | 26 b | 30 | 32 a | x | 31 ab | x | 31 ab | 30 | 27 a | x | 27 a | x | 26 ab |
60 | 30 a | x | x | x | x | 60 | 33 a | x | x | x | x | 60 | 28 a | x | x | x | x |
Pine Bark 33% IMC, 35 mm | Pine Bark 50% IMC, 35 mm | Pine Bark 67% IMC, 35 mm | |||||||||||||||
Total | Single | Number of Pulses | Total | Single | Number of Pulses | Total | Single | Number of Pulses | |||||||||
Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 | Minutes | Pulse | 2 | 3 | 4 | 6 |
5 | 27 c | x | x | x | x | 5 | 37 ab | x | x | x | x | 5 | 30 b | x | x | x | x |
10 | 33 b | 36 a | x | x | x | 10 | 36 b | 38 a | x | x | x | 10 | 30 b | 30 b | x | x | x |
20 | 34 b | 36 a | x | 32 b | x | 20 | 36 b | 36 b | x | 39 a | x | 20 | 30 b | 31 ab | x | 31 ab | x |
30 | 33 b | x | 37 a | x | 33 b | 30 | 36 b | x | 36 b | x | 39 a | 30 | 32 a | x | 31 ab | x | 31 ab |
60 | 33 b | x | x | x | x | 60 | 39 a | x | x | x | x | 60 | 32 a | x | x | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulker, B.A.; Jackson, B.E.; Fonteno, W.C.; Heitman, J.L.; Albano, J.P. Exploring Substrate Water Capture in Common Greenhouse Substrates through Preconditioning and Irrigation Pulsing Techniques. Agronomy 2021, 11, 1355. https://doi.org/10.3390/agronomy11071355
Schulker BA, Jackson BE, Fonteno WC, Heitman JL, Albano JP. Exploring Substrate Water Capture in Common Greenhouse Substrates through Preconditioning and Irrigation Pulsing Techniques. Agronomy. 2021; 11(7):1355. https://doi.org/10.3390/agronomy11071355
Chicago/Turabian StyleSchulker, Brian A., Brian E. Jackson, William C. Fonteno, Joshua L. Heitman, and Joseph P. Albano. 2021. "Exploring Substrate Water Capture in Common Greenhouse Substrates through Preconditioning and Irrigation Pulsing Techniques" Agronomy 11, no. 7: 1355. https://doi.org/10.3390/agronomy11071355
APA StyleSchulker, B. A., Jackson, B. E., Fonteno, W. C., Heitman, J. L., & Albano, J. P. (2021). Exploring Substrate Water Capture in Common Greenhouse Substrates through Preconditioning and Irrigation Pulsing Techniques. Agronomy, 11(7), 1355. https://doi.org/10.3390/agronomy11071355