
agronomy

Article

Two Distinct Soil Disinfestations Differently Modify the
Bacterial Communities in a Tomato Field

Masaru Nakayasu 1,† , Kyoko Ikeda 2,† , Shinichi Yamazaki 3, Yuichi Aoki 3 , Kazufumi Yazaki 1,
Haruhiko Washida 2 and Akifumi Sugiyama 1,*

����������
�������

Citation: Nakayasu, M.; Ikeda, K.;

Yamazaki, S.; Aoki, Y.; Yazaki, K.;

Washida, H.; Sugiyama, A. Two

Distinct Soil Disinfestations

Differently Modify the Bacterial

Communities in a Tomato Field.

Agronomy 2021, 11, 1375. https://

doi.org/10.3390/agronomy11071375

Academic Editors: José

María García-Mina, Jörg Gerke and

Salvatore Davino

Received: 14 May 2021

Accepted: 2 July 2021

Published: 7 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan;
masaru_nakayasu@rish.kyoto-u.ac.jp (M.N.); yazaki@rish.kyoto-u.ac.jp (K.Y.)

2 Organic Nico Co., Ltd., Oharanohaigata, Nishikyo-ku, Kyoto 610-1132, Japan;
ikeda.k@organic-nico.com (K.I.); washida.h@organic-nico.com (H.W.)

3 Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
yamazaki.shinichi@megabank.tohoku.ac.jp (S.Y.); aoki@megabank.tohoku.ac.jp (Y.A.)

* Correspondence: akifumi_sugiyama@rish.kyoto-u.ac.jp; Tel.: +81-774-38-3617
† These authors contributed equally to this study.

Abstract: Reductive soil disinfestation (RSD) and soil solarization (SS) were evaluated based on
environmental factors, microbiome, and suppression of Fusarium oxysporum in a tomato field soil. Soil
environmental factors (moisture content, electric conductivity, pH, and redox potential (RP)) were
measured during soil disinfestations. All factors were more strongly influenced by RSD than SS. 16S
rRNA amplicon sequencing of RSD- and SS-treated soils was performed. The bacterial communities
were taxonomically and functionally distinct depending on treatment methods and periods and
significantly correlated with pH and RP. Fifty-four pathways predicted by PICRUSt2 (third level in
MetaCyc hierarchy) were significantly different between RSD and SS. Quantitative polymerase chain
reaction demonstrated that both treatments equally suppressed F. oxysporum. The growth and yield
of tomato cultivated after treatments were similar between RSD and SS. RSD and SS shaped different
soil bacterial communities, although the effects on pathogen suppression and tomato plant growth
were comparable between treatments. The existence of pathogen-suppressive microbes, other than
Clostridia previously reported to have an effect, was suggested. Comparison between RSD and SS
provides new aspects of unknown disinfestation patterns and the usefulness of SS as an alternative
to RSD.

Keywords: bacterial communities; Fusarium oxysporum; reductive soil infestation; soil solariza-
tion; tomato

1. Introduction

Increasing food production is one of the most important challenges to meet the
global population growth of the 21st century. Chemical fertilizers and synthetic pesticides
have been used for stable crop growth, pest control, and yield increase worldwide [1].
In conventional agriculture, pest control depends on chemical pesticides; for example,
soil fumigants, such as chloropicrin, metam-sodium, and dazomet, are used for broad-
spectrum pest control [2–4]. However, conventional agricultural systems simultaneously
degrade the global environment (e.g., land, water, biodiversity, and climate) and consume
a tremendous amount of natural resources [5]. Organic farming, the management system
limiting chemical fertilizers and synthetic pesticides, is a promising solution for these
negative impacts. A meta-analysis to compare organic and conventional farming showed
that organic farming has positive environmental impacts per area unit, but not necessarily
per product unit [6]. Nevertheless, organic farming has been shown to improve soil fertility
and reduce global warming potential [7]. Although organic farming is considered more
environmentally friendly than conventional farming, it produces lower crop yields than
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conventional farming [8]. However, recent studies propose that organic farming can
provide adequate food to the world population in 2050 if consumption of food waste and
animal products is reduced [9,10] and that a complete shift to organic farming would be
difficult because of global nitrogen deficiency [11]. The latter study also suggests that
organic farming can serve to provide food for the world population more sustainably
and fairly. As soilborne diseases cause severe damage in crops, the appropriate disease
management is important, especially in organic farming in which the use of chemical
pesticides is restricted. To date, many studies compared crop diseases in organic and
conventional farming, indicating that root diseases are generally less serious but some
foliar diseases can be a problem in organic agriculture [12]. It is difficult to prevent plant
disease and insect damage in organic farming. Indeed, organically cultivated lands account
for only 1.4% of the global agricultural lands, although organic farming is practiced in 181
countries [13]. Therefore, the establishment of the organic farming method is required for
its prevalence.

The environmentally friendly managements are practiced, for example, by soil disin-
festation, resistant cultivars and grafting, biopesticides, and disease-suppressive soils [14].
Reductive soil disinfestation (RSD) was developed to control pathogens without synthetic
pesticides [15,16]. This method causes reductive soil conditions by adding easily decompos-
able organic matter for microbial activation, irrigating the expulsion of soil air, and covering
the soil surface with plastic film to block the inflow of oxygen from the atmosphere for
several weeks. A meta-analysis based on many RSD studies showed that it effectively
suppresses pathogens, nematodes, and weeds and tends to promote crop productivity [17].
Reductive conditions, high temperature, release of metal ions, and generation of organic
acids, toxic compounds, and antipathogenic enzymes are thought to cause pathogen sup-
pression by RSD [18,19]. In addition, indigenous soil microorganisms are essential for
pathogen suppression [20]. Both biotic and abiotic factors appear to contribute to this
suppression in a complicated manner, although it is not completely understood.

In organic farming with and without RSD treatment, the application of organic matter
increases microbial abundance and activity and distinctively affects microbial communities
compared to those of mineral fertilization [21–23]. Because plant growth and defense
depend on microbial communities in rhizosphere soils [24], the characterization of their
influence in organic farming is important for establishing sustainable agriculture. Many
previous studies have shown that RSD modulates bacterial community and increases the
bacterial phylum Firmicutes in treated soils, especially Bacilli and an obligate anaerobe
Clostridia, and that the latter can produce β-1,3-glucanase and chitosanase to kill the
Fusarium pathogens [25–31]. Lee et al. [32] reported that some operational taxonomic
units of Clostridia and Bacilli, but not the whole microbial communities, were negatively
correlated with the density of a tomato pathogen Fusarium oxysporum f. sp. lycopersici
(FOL). Thus, specific microbes are potentially responsible for pathogen suppression. Still,
it remains unknown how these microbes are enriched in microbial communities and how
abiotic factors are correlated with the communities during RSD treatment.

Soil solarization (SS) is another soil disinfestation technique without synthetic pesti-
cides under the heat generated by covering wet soil with plastic film and exposing it to
sunlight. SS affects the physical, chemical, and biological soil environment and then causes
the elimination of pathogens and weeds and improvement to plant growth [33]. Recently,
Ichihashi et al. [34] reported that SS modulated distinct bacterial communities in the rhizo-
sphere soil and that SS-induced organic nitrogen increased crop yield. Disease-suppressive
soil allows the plant to protect from pathogens as a result of antagonistic and competitive
activities of the microbiota, and its effect is enhanced by treatment with organic matter,
compost, and agronomic practices [35–37]. Therefore, it is important to assess the effects
of RSD and SS on soil microbiota which affects plant growth and health. RSD and SS
are similar soil disinfestation methods without chemical pesticides, but the differential
effects on soil microbiota remain unknown. This study compared the RSD and SS soil
disinfestation methods based on soil environmental factors and tomato plants cultivated
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after treatments and yield. Both practices had similar effects on the disinfestation of F.
oxysporum, although they shaped different soil bacterial communities.

2. Materials and Methods
2.1. Soil Disinfestations and Sampling

Field experiments were performed in a plastic multispan greenhouse (4 m × 24 m × 6 m)
located in Kyoto Prefecture, Japan (35.0◦ N, 135.4◦ E), where the type of soil was clay
accumulation red yellow. Three plots were designed for RSD (Plots 1–3) and SS (Plots 4–6)
treatments (a total of six plots; size, 1.2 m × 20 m per plot). Both treatments were started
on 6 August 2019. Wheat bran (2% N and 40% C, estimated available nitrogen and carbon
supply; Tamagoya-Shoten, Ibaraki, Japan) was applied at 1.2 kg m−2 to RSD, and BLOF
compost (0.9% N and 20.7% C, estimated available nitrogen and carbon supply; Japan
Bio Farm Ltd., Nagano, Japan) was applied at 2.5 kg m−2 to SS. The initial (estimated)
volumetric moisture content (MC) was adjusted to about 40% for RSD and about 30% for
SS by irrigation, and the soil surface was covered with plastic films. The temperature in
the greenhouse was controlled not to exceed 50 ◦C in the daytime by the environmental
controller and the other temperature was entrusted. Changes in air temperatures were
shown in Supplemental Figure S1 and the mean temperature during this period was
29.8 ◦C. The films were removed on 27 August 2019, and the temperature was changed to
ambient temperature (mean of 30 ◦C). Soils were sampled on 6 August 2019 before the start,
13, 16, 20, 24, 27, and 30 August and 3, 6, 10, and 13 September 2019, during the treatment
period, and 13 November 2019 and 22 January 2020, during the tomato cultivation period.
Soils were collected from three different points with a core size of 17 mm in diameter at a
depth of 0–15 cm from the surface in each plot for one sample. These soils were used for
the measurement of environmental factors and DNA extraction.

2.2. Environmental Factor Measurement

The soils sampled during the treatment period were dried at 60 ◦C for 48 h. MC,
electric conductivity (EC), and pH were measured. MC was calculated by subtracting
the weight of the dry soil from the weight of the moist soil divided by the weight of the
dry soil. A 1:5 (w/v) ratio of dried soil and water was used for measuring EC and pH by
LAQUAtwin EC-11 conductivity meter and LAQUAtwin pH-11 pH meter, respectively
(HORIBA Ltd., Kyoto, Japan). Besides, redox potential (RP) was continuously monitored
by an FV-702 RP sensor (Fujiwara Seisakusho Ltd., Tokyo, Japan).

2.3. DNA Extraction and 16S rRNA Amplicon Sequencing

DNA was extracted from the soils sampled on 6, 13, 20, and 27 August, 3 and 10
September, and 13 November 2019 and 22 January 2020, using the DNeasy PowerSoil Kit
(QIAGEN K.K., Tokyo, Japan). The DNA concentration was measured by a Qubit dsDNA
HS Assay Kit and Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
Polymerase chain reaction (PCR) amplification of the V4 region of bacterial 16S rRNA was
performed using KOD FX Neo (TOYOBO, Osaka, Japan) with the following primer set: 515F
(5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACHVGGGTW
TCTAAT-3′) in technical triplicate. PCR was conducted according to the following program:
94 ◦C for 2 min and 20 cycles of 98 ◦C for 10 s, 50 ◦C for 30 s, and 68 ◦C for 30 s. Purification
of the PCR products was carried out using AMPure XP (Beckman Coulter, Danvers, MA,
USA), and the purified DNA was used as a template for PCR amplification for MiSeq
(Illumina, San Diego, CA, USA) adapter attachment. PCR amplification was performed
using KOD FX Neo with primers provided by FASMAC Co., Ltd. (Kanagawa, Japan) in
technical duplicate. PCR was conducted according to the following program: 94 ◦C for
2 min and 10 cycles of 98 ◦C for 10 s, 59 ◦C for 30 s, and 68 ◦C for 30 s. The PCR products
were purified as described above. Equal amounts of DNA were mixed and applied for
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2 × 250 bp paired-end sequencing using MiSeq in FASMAC. The acquired sequence data
has been registered in the DNA Data Bank of Japan Sequence Read Archive (DRA012344).

2.4. Microbiome Data Analysis

16S rRNA amplicon sequence data were analyzed using the QIIME2 environment
version 2019.7 [38]. The raw sequences were processed using the q2-dada2 plugin in
QIIME2 to trim the bases other than the 21st to 200th of all paired reads and construct
error-corrected amplicon sequence variants (ASVs) from the trimmed reads [39]. The
taxonomic assignment of ASVs was performed using the naïve Bayes classifier pretrained
on the Silva 16S rRNA database release 132 [40,41]. The obtained ASV sequences were
aligned using MAFFT [42]. Phylogenetic trees were constructed using FastTree2 [43].
The core-metrics-phylogenetic pipeline in the q2-diversity plugin within QIIME2 was
used to calculate the α- and β-diversity indices of the sampled soils with a subsampled
ASV dataset with 19,000 sequences per sample. Bacterial metagenome functional profiles
were predicted from the obtained ASV sequences and ASV profiles using the q2-picrust2
plugin [44] with the MetaCyc database of metabolic pathways and enzymes [45]. The
predicted pathways by PICRUSt2 were grouped into parent classes based on the MetaCyc
pathway hierarchy version 23.5 (released on December 18, 2019; Supplemental Table S1)
and used for subsequent analysis.

2.5. Quantification of F. oxysporum in Soils

DNA from the soils sampled on 6, 13, 20, and 27 August and 3 and 10 Septem-
ber 2019, were used for real-time PCR to quantify F. oxysporum in soils as templates.
PCR was performed using KOD FX Neo with the following primer set: CLOX1 (5′-
CAGCAAAGCATCAGACCACTATAACTC-3′) and CLOX2 (5′-CTTGTCAGTAACTGGAC
GTTGGTACT-3′) [46]. The PCR program was conducted as follows: 98 ◦C for 2 min and
50 cycles of 98 ◦C for 10 s, 60 ◦C for 10 s, and 68 ◦C for 30 s, followed by ramping up from
65 ◦C to 95 ◦C at 0.1 ◦C s−1. The absolute abundance of F. oxysporum was estimated using a
calibration curve constructed using a dilution series of plasmids with cloned fragments of
the specific gene.

2.6. Tomato Cultivation and Evaluation of the Growth and Yield

Cherry tomato (Solanum lycopersicum cv. Benisuzume; Institute for Horticultural Plant
Breeding, Chiba, Japan) was cultivated after soil disinfestations. The seeds were sown in
pots, and the seedlings were grown at the greenhouse for about 50 days. They were planted
into the field on 23 September 2019, after disinfestations and grown with two leaders in
1.7 plants m−2. Plant growth was measured on 16 and 30 October and 13 and 27 November
2019. The length of the main stem was defined as its distance from the shoot apex to the
soil surface position. The perimeter of the main stem was measured at 15 to 20 cm from the
shoot apex. The leaf area was defined as the average of the products of width and length
of the first upper and lower expanded leaves at 50 cm from the shoot apex of the main
stem. The length of the internode was defined as the average of internode lengths from
the first upper inflorescence with flowers of the main stem to the first upper and lower
inflorescences. All items were measured in five plants per plot. Ripe fruits from more than
100 plants for each treatment were harvested and weighed to determine the fruit yield per
unit area.

2.7. Statistical Analysis

The Welch’s t-test was carried out using the t.test function of R package “stats.” Tukey’s
test was performed using TukeyHSD function of R package “multcomp.” Hierarchical
clustering was performed using the complete linkage method with the hclust function in
the R package “stats.” Permutational multivariate analysis of variance (PERMANOVA) was
performed with the adonis function in the R package “vegan” [47]. Correlation analysis
between soil bacterial communities and soil properties was performed by the Mantel test
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using the weighted UniFrac (WUF) distance matrix and the Euclidian distance matrix of
environmental factors in Plots 2 and 5. The R software package “vegan” was used with
10,000 permutations (* p < 0.05; ** p < 0.01). ANOVA-like differential expression (ALDEx2)
analysis [48,49] was performed to detect differentially abundant taxa at the class level
and pathways predicted by PICRUSt2 between RSD and SS with the R software package
“ALDEx2” [false discovery rate (FDR) < 0.01, Welch’s t-test corrected by the Benjamini–
Hochberg method]. Low abundant taxa (mean relative abundance of < 0.1%) were filtered
out for ALDEx2 analysis.

3. Results
3.1. Fluctuation of Environmental Factors during Soil Disinfestations

To assess the soil disinfestation methods without chemical fertilizers and pesticides,
the effects of RSD and SS in a cherry tomato greenhouse were compared. Both treatments
were initiated by adding organic substrates and water and covering them with plastic films.
Four parameters (i.e., MC, EC, pH, and RP) were monitored for 6 weeks. MC reached
about 40% and 30% after the addition of water in RSD and SS, respectively, which were
then decreased after 4 weeks in both conditions. MC in RSD remained continuously higher
than that in SS during the test period (Figure 1A). In both conditions, EC decreased to
0.2 mS cm−1 for 1 week after initiation and returned to the initial levels (0.5–0.6 mS cm−1)
after 5 weeks. EC in RSD was generally lower than that in SS (Figure 1B). pH increased
from 6.4 to 7.4 in 3 weeks and then decreased to 6.6 in RSD; in SS, it increased from
6.4 to 7.2 in 1 week, maintained for 18 days, and then decreased to 6.9 (Figure 1C). Soil
anaerobicity is described as follows: aerobic (RP> +300 mV) and anaerobic [moderately
reductive (+300 to 0 mV), reductive (0 to−200 mV), and highly reductive (<−200 mV)] [50].
RP decreased to −200 mV after 10 days in RSD, maintained for 3 weeks, and then rapidly
returned to the levels at the start (about +600 mV); in SS, it decreased to +250 mV for
1 week, maintained for 2 weeks, and then returned to the levels at the start 3 weeks later
(Figure 1D). Based on this observation, RSD and SS formed highly and moderately reduced
conditions, respectively. The measurement of soil parameters revealed that RSD and SS
caused different influences on the soil environmental factors.

3.2. Changes in Bacterial Communities by Soil Disinfestations

To evaluate the influence of RSD and SS on bacterial communities, a 16S rRNA ampli-
con sequence of soils during treatments was conducted. Both weighted and unweighted
UniFrac (WUF and UUF)-based principal coordinate analysis (PCoA) showed a variation
of the bacterial communities depending on the treatment methods and periods (PER-
MANOVA, p = 0.001; Figure 2).

The differentially abundant test was performed using ALDEx2 analysis, and nine
bacterial taxa at the class level were significantly different between RSD and SS (FDR < 0.01;
Supplemental Table S2). Three classes, such as Bacilli and Clostridia of Firmicutes and
Deltaproteobacteria of Proteobacteria, were more abundant in RSD than in SS, and six
classes, such as Acidimicrobiia of Actinobacteria, Chloroflexia and Gitt-GS-136 of Chlo-
roflexi, Gemmatimonadetes and S0134 terrestrial group of Gemmatimonadetes, and Verru-
comicrobiae of Verrucomicrobia, were more abundant in SS than in RSD (Supplemental
Figure S2 and Table S2). The Mantel test was used to assess the relationships between soil
bacterial communities and environmental factors. It showed that soil RP and pH were
significantly correlated with the bacterial communities (p < 0.05; Figure 3). These results
suggested that the difference of changes in bacterial communities depends on the soil dis-
infestation methods and that fluctuation of environmental factors affects the communities.
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3.3. Changes in Bacterial Pathway Composition by Soil Disinfestations

The predicted pathway composition of the bacterial metagenomes in the disinfested
soils was inferred with a 16S rRNA gene sequence using the PICRUSt2 pipeline developed
from PICRUSt1 to predict the functional potential of a bacterial community [44,51]. By
PICRUSt2, 445 metabolic pathways were predicted for the data, and for understanding
with simplicity, these pathways were grouped into parent classes based on the MetaCyc
pathway hierarchy (Supplemental Table S1). Top-level (eight categories) and third level (176
categories) in the class hierarchy were used for subsequent analysis. Principal component
analysis (PCA) of the functional profiles at third and eighth levels (most divided) showed
a difference in the pathway compositions depending on the methods and periods of disin-
festations by the first and second axes, respectively (Figure 4; Supplemental Figure S3).
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Based on functional categories at level 1 of the MetaCyc pathway, the function “Biosyn-
thesis” accounted for about 70%, and “Degradation/Utilization/Assimilation” and “Gener-
ation of Precursor Metabolite and Energy” accounted for about 15% (Figure 5A). ALDEx2
analysis showed that 54 categories at level 3 of the MetaCyc pathway were significantly
different between RSD and SS (FDR < 0.01; Supplemental Table S3). Focusing on periods
when environmental factors were especially different between RSD and SS (Figure 1), three
categories belonging to “Degradation/Utilization/Assimilation” peaked at 2 weeks later
in RSD, whereas the other eight categories peaked at 1 to 3 weeks later in SS (Figure 5B).
Intriguingly, the category “Siderophore Biosynthesis” belonging to “Biosynthesis” was
enriched in SS, particularly in soils 2 weeks later (Figure 5B). These results implied that the
potential of siderophore production is higher in SS than in RSD.
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Figure 4. Principal component analysis (PCA) of the pathway composition (third level in MetaCyc
hierarchy) predicted by PICRUSt2 in the soil bacterial metagenomes under (#) reductive soil disin-
festation (RSD) and (4) soil solarization (SS). Red, blue, green, purple, yellow, and brown denotes
0–5 w: treatment period for 0 to 5 weeks.

3.4. Difference of F. oxysporum Density between Two Soil Disinfestations

To compare the effects of disinfestation methods on plant pathogens, a tomato
pathogen F. oxysporum was quantified with PCR during RSD and SS treatments. F. oxyspo-
rum decreased over time in both RSD and SS. It was reduced to 6.8% of the initial amount
in RSD and was below the limit of quantification in SS 5 weeks later (Figure 6). There is no
significant difference between RSD and SS on the abundance of F. oxysporum, although these
practices differentially affect the soil environmental factors and soil bacterial communities.
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3.5. Effects of Soil Disinfestation on Soil Bacterial Communities and Tomato Growth during
Cultivation

It is unclear how long the effects of disinfestations last. To analyze whether the
difference of bacterial communities between RSD and SS was maintained during the
cherry tomato cultivation period, bacterial communities in soils sampled during the tomato
cultivation period after these treatments were analyzed. WUF- and UUF-PCoA showed
a clear distinction of the bacterial communities between RSD and SS (PERMANOVA,
p = 0.019 for WUF and p = 0.003 for UUF; Figure 7). In contrast, the bacterial communities
of both soils were not altered between 14 and 24 weeks later (PERMANOVA, p = 0.058 for
WUF and p = 0.237 for UUF; Figure 7). These data indicated that the effects of RSD and SS
continue even after 6 months.
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Figure 7. Weighted and Unweighted UniFrac-based principal coordinate analysis (PCoA) of the soil
bacterial communities during the tomato cultivation period after (#) reductive soil disinfestation
(RSD) and (4) soil solarization (SS). Green and purple denote 15 and 25 w: treatment period for 15
and 25 weeks.

Differences in bacterial communities between RSD and SS during the tomato cultiva-
tion period were confirmed. The effects of RSD and SS on the growth of cherry tomatoes
during cultivation were also investigated. The length and perimeter of the main stem and
length of internode on October 30 and the length of the main stem on November 27 were
significantly different between RSD and SS (Table 1). Fruit yield showed a slight increase
in SS (5.64 kg m−2) than in RSD (5.23 kg m−2) but not statistically tested due to singlicate.
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Table 1. Evaluation of the cultivated tomato plant growth after reductive soil disinfestation (RSD) and
soil solarization (SS). Values are the average and standard deviation. Asterisks indicate statistically
significant differences (p < 0.05) by Welch’s t-test.

Main Stem (cm) Internode (cm) Leaf Area (cm2) Perimeter of
Stem (cm)

October 16
RSD 94.4 ± 7.42 24.7 ± 1.89 1.41×103 ± 12.7 3.3 ± 0.053
SS 95.4 ± 4.21 24.1 ± 1.10 1.45×103 ± 229 3.4 ± 0.081

October 30
RSD 151 ± 7.18 * 26.7 ± 0.700 * 1.90×103 ± 41.8 2.9 ± 0.11
SS 139 ± 9.64 22.7 ± 1.94 1.79×103 ± 313 3.3 ± 0.22 *

November 13
RSD 188 ± 7.51 18.8 ± 2.79 1.99×103 ± 89.2 3.8 ± 0.061
SS 178 ± 14.7 19.5 ± 3.31 2.04×103 ± 431 4.0 ± 0.42

November 27
RSD 226 ± 2.60 * 18.0 ± 1.37 1.63×103 ± 56.0 3.1 ± 0.14
SS 209 ± 20.8 15.6 ± 0.133 1.80×103 ± 497 3.2 ± 0.16

4. Discussion

To improve the profitability of organic farming, it is required to effectively control
pathogens without using pesticides to grow plants healthily. Fusarium wilt is a major
soil-borne tomato disease caused by FOL [52] and is difficult to prevent without pesticides.
Both RSD and SS strongly suppressed the abundance of F. oxysporum. The suppressive
effect by RSD was previously reported for several pathogens, including Agrobacterium
tumefaciens, F. oxysporum, Ralstonia solanacearum, Rhizoctonia solani, Pythium spp., and
Verticillium dahliae [53–58]. Pathogen suppression mediated by RSD is supposed to involve
various chemical and biological mechanisms in a complicated manner [18,19]. The decrease
in RP coincided with pathogen suppression [15], but the reductive condition alone was
not lethal for F. oxysporum [18]. The results of the study suggested that even a moderately
reduced condition is enough to suppress F. oxysporum and that the sequential chemical and
biological modulations are essential. Another possible mechanism for pathogen control
is the accumulation of toxic organic acids mediated by the anaerobic decomposition of
organic substrates added at the start of disinfestation, accompanied by the pH decrease
during RSD [59]. However, this study, including some previous works, indicated pH
increase and pathogen suppression during RSD [60–62]. Nevertheless, the fluctuation of
pH during RSD had different results depending on added organic substrates and initial
pH at the start and the geographic locations, although the treatments showed pathogen
suppression [63,64]. Thus, it remains unclear why the pH fluctuations during RSD differ
among several studies and which pathogens are suppressed by organic acids. However,
under the conditions set in this study, the observed suppression of F. oxysporum would be
caused by factors other than organic acid generation with pH decrease.

The quantity, diversity, and community of soil-borne microbes are important indicators
of soil quality and play key roles in plant growth and defense [24,65]. RSD treatment formed
different bacterial and fungal communities from untreated soil by culture-dependent and
culture-independent investigation [66]. At the phylum level of bacteria, members of Firmi-
cutes (from both classes Clostridia and Bacilli) increased in the RSD-treated soil [25–27,67].
Because RSD makes soil reducing/anaerobic, it is reasonable to increase anaerobic mi-
crobes, such as Clostridia. In accordance with these findings, the relative abundance of
class Clostridia tended to be inversely proportional to soil RP (Supplemental Figure S2B).
Regarding the involvement of microbes in pathogen suppression during RSD treatment,
specific strains of Clostridia and Bacilli from treated soils could have a disease control
effect [30,32]. The families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae be-
longing to Clostridia increased during RSD and produced toxic compounds against plant
pathogens [68–70]. Time-series analysis of soil microbiome and metabolome during RSD
demonstrated that composition of Firmicutes abundance continuously changes throughout
the treatment period and that population dynamics of Clostridium spp. were correlated
with temporal changes in abundances of organic acids, p-cresol, and methyl sulfides with
antimicrobial activities [71]. These previous studies argue that Clostridia is responsible for
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suppressing pathogens. In this study, the suppression effects of F. oxysporum between RSD
and SS treatments were similar, although Clostridia was not increased in SS as much as
RSD (Supplemental Figure S2B), suggesting that microbes other than Clostridia may also be
involved in the suppression. Indeed, the relative abundances of some groups belonging to
the bacterial order Sphingobacteriales and fungal order Sordariales also increased by RSD,
which were negatively correlated with disease incidence [60]. In addition to the pathogenic
control effect, the abundances of the nitrogenase and ammonia monooxygenase genes
related to nitrification increased in RSD-treated soil [68,72], suggesting the improvement of
nutritional availability by RSD. Recently, SS was reported to induce organic nitrogen to
increase plant growth [34]. The comparison between RSD and SS revealed that SS might
be involved in siderophore production. This result gave a possibility of plant growth
promotion by SS, although there was no significant difference in the effects of RSD and SS
on cherry tomato plant growth. Furthermore, the legacy effect on the bacterial community
was confirmed 3 months after treatment [73], in accordance with the observation of distinct
bacterial communities between RSD and SS even during the tomato cultivation period.
Thus, this study suggests that the effects of soil disinfestation on soil microbiota last during
the cultivation period in organic farming.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11071375/s1, Figure S1: Air temperature observed outside the green house,
Figure S2: Relative abundances of bacterial taxa in the soil samples under reductive soil disin-
festation (RSD) and soil solarization (SS), Figure S3: Principal component analysis (PCA) of the
pathway composition (eighth level in MetaCyc hierarchy) predicted by PICRUSt2 in the soil bacterial
metagenomes under (#) reductive soil disinfestation (RSD) and (4) soil solarization (SS), Table S1:
MetaCyc_pathway_hierarchy_(version 23.5), Table S2. Relative abundances of bacterial classes (mean
relative abundance > 0.1%) in the soil samples under reductive soil disinfestation (RSD) and soil
solarization (SS), Table S3. Relative abundances of the predicted pathways in the soil samples under
reductive soil disinfestation (RSD) and soil solarization (SS).
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