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Abstract: Mungbean (Vigna radiata L. Wilczek) is an early maturing legume grown predominantly
in Asia for its protein-rich seeds. P deficiency can lead to several physiological disorders which
ultimately result in a low grain yield in mungbean. The genetic dissection of PUpE (P Uptake
efficiency) and PUtE (P utilization efficiency) traits are essential for breeding mungbean varieties
with a high P uptake and utilization efficiency. The study involves an association mapping panel
consisting of 120 mungbean genotypes which were phenotyped for total dry weight, P concentration,
total P uptake, and P utilization efficiency under low P (LP) and normal P (NP) conditions in a hy-
droponic system. A genotyping-by-sequencing (GBS) based genome-wide association study (GWAS)
approach was employed to dissect the complexity of PUpE and PUtE traits at the genetic level in
mungbean. This has identified 116 SNPs in 61 protein-coding genes and of these, 16 have been found
to enhance phosphorous uptake and utilization efficiency in mungbeans. We identified six genes
with a high expression (VRADI01G04370, VRADI05G20860, VRADI06G12490, VRADI08G20910,
VRADI08G00070 and VRADI09G09030) in root, shoot apical meristem and leaf, indicating their role
in the regulation of P uptake and utilization efficiency in mungbean. The SNPs present in three genes
have also been validated using a Sanger sequencing approach.

Keywords: mungbean; genotyping-by-sequencing; association mapping; phosphorus use efficiency;
candidate gene; single nucleotide polymorphism

1. Introduction

Mungbean (Vigna radiata L. Wilczek), a nutrient-dense grain legume is predominantly
cultivated in India, Myanmar, Pakistan, Bangladesh, Thailand, China, Indonesia, and
Vietnam. Globally in 2020, this crop was grown in 7.3 million hectares with a production
of 5.3 million tones [1]. Mungbean seeds are rich in protein, carbohydrates, minerals, and
vitamins. Mungbean grains are easy to cook and possess digestible protein [2]. The mung-
bean grains are consumed as split grains/dhal (with or without seed coat), whole grains,
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and sprouts [3] and are an important constituent of several traditional preparations [4].
This crop is grown as an intercrop with corn or millets in East Asia and between wheat
and rice in South and Southeast Asia [5]. Worldwide, mungbean is the preferred crop
for intercropping due to its nitrogen-fixing ability and short maturity duration. The crop
residue of mungbean improves soil fertility and can also be used as animal feed [6].

Phosphorus (P) is an important macronutrient essential for energy metabolism, nucleic
acid synthesis, membrane stability, photosynthesis, and disintegration of carbohydrates
and is involved in biological and key physiological processes of the plant [7]. P exhibits
slow diffusion in soil and a high fixation by soil minerals [8]. In most soil conditions,
P exhibits low mobility and poor availability to plants compared to other nutrients [9].
Nearly 70% of the global arable land is reported to be deficient in P [10,11]. The availability
of P in deficient soils is around 1.0 µmol/L and the optimum requirement of P for plants
is nearly 30 µmol/L [12]. The occurrence of P is in both organic and inorganic forms. In
acidic soil, P reacts with iron, aluminum, and manganese oxides, whereas in alkaline soils it
makes a complex with carbonate of calcium. Plants counter P scarcity by adaptive changes
in root morphology, distribution, and topology. P deficiency reduces the growth and yield
of plants. P-deficient plants exhibit increased root elongation, root hairs, root branching,
and root/shoot ratios [13]. P is a major yield-limiting factor in subtropical and tropical
environments [14].

To overcome P deficiency in the plant, phosphatic fertilizers are applied to the soil.
The raw material for phosphatic fertilizer is derived from rock phosphate, which is only
minable in a few countries of the world [15]. The single country, Morocco possesses nearly
85% of the remaining resources of rock phosphate [16]. Further, the demand for P is
expected to increase annually by 2.2% during 2015–2020 [17]. In addition, the uptake of
applied P is only about 15–30% [18]. However, the development of cultivars with improved
phosphorous use efficiency (PUE) is considered as the sustainable approach to address this
problem. PUE is defined as the total biomass production per unit of P uptake [19]. PUE is
reported as a quantitative trait that is governed by root and shoot architectural traits [20].
PUE can be differentiated into PUpE and PUtE [21]. The phosphorous uptake efficiency
(PUpE) refers to the amount of total P taken up by the plant and is expressed as mg P per
plant. The phosphorous utilization efficiency (PUtE) refers to the mobilization of P within
the plant for sustainable biomass production and is expressed as the ratio of plant biomass
produced per unit of P taken up [21]. Development of mungbean cultivars with high
phosphorus uptake and utilization efficiency is aimed to reduce the overall application of
phosphatic fertilizer in the soil and also to improve the utilization of soil P. Further, various
traits governing PUE are polygenic and are controlled by quantitative trait loci [22,23].

A combinatorial genomics-assisted breeding strategy is used in the application of
findings to improve varieties in a targeted and efficient manner in crop plants. For the iden-
tification of QTLs, biparental mapping (BPM) and association mapping (AM) are the two
most commonly used approaches that are being followed in several crop plants. The AM
provides a higher mapping resolution over the BPM approach due to the occurrence of more
recombination events over the generations in any given population [24]. In recent years,
the evolution of next-generation sequencing (NGS) technology using a high throughput
sequencing approach has drastically reduced the sequencing cost [25]. Single nucleotide
polymorphisms (SNPs) are bountiful in the plant genome and known to influence the
phenotype if located within the exon [26]. SNPs have the potential for exploitation in QTL
mapping, increasing marker density, and high throughput marker-assisted selection [27].

In mungbean, the publication of a reference genome sequence of the cultivar VC1973A
has provided a promising route for extensive genomic research in mungbean [28]. Also,
genotyping-by-sequencing (GBS) is considered as a NGS-based genotyping methodology
that has been used efficiently for discovering genome-wide SNPs [27,29]. The genome-wide
association study (GWAS) is an established tool to scan markers across the genome and to
identify the markers associated with the trait of interest [30]. GWAS combined with a high
throughput genotyping platform enables association mapping as an excellent approach
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for detecting significant SNPs and candidate genes associated with a particular trait [31].
By employing GWAS, SNPs have been associated with PUE regulating traits in different
grain legume crops like soybean [32], cowpea [33], and mungbean [20]. With this backdrop,
this study aimed to (i) identify the genome-wide SNPs; (ii) study the genetic diversity
and population structure; and (iii) GWAS for various PUpE and total PUtE-related traits
in mungbean.

2. Materials and Methods
2.1. Plant Materials and Experimental Conditions

The investigation was conducted using 120 diverse genotypes (Supplementary Table S1)
having various ABLs (advanced breeding lines), released varieties, and exotic germplasm
lines as obtained from World Vegetable Centre (Taiwan). The experiment was performed
under a hydroponic system to study the P uptake and P utilization efficiency in the selected
mungbean genotypes. The plants were grown in the controlled greenhouse at the Indian
Agricultural Research Institute, New Delhi having a day/night temperature of 30/18 ◦C,
90% RH (relative humidity), and a 12 h photoperiod. The seedlings were evaluated in a
completely randomized design with three replications. In each replication, eight plants per
genotype were evaluated. The seeds of all genotypes were first sterilized using HgCl2 (0.1%
w/v) and then kept for germination. On the fifth day, when cotyledonary leaves emerged,
the seedlings were moved to hydroponic trays with a modified Hoagland solution. The
nutrient solution was composed of K2SO4 (0.92 mM), MgSO4 (1.0 mM), Urea (5.0 mM),
Fe-EDTA (0.04 mM), ZnSO4 (0.6 µM), CaCl2.2H2O (0.75 mM), and micronutrients (CuSO4
(0.62 µM), H3BO3 (2.4 µM), MnSO4 (0.9 µM) and Na2MoO4 (0.6 µM)) [34]. The two levels
of P were maintained as control and treatment i.e., normal P (NP) (250 µM) and low P
(3.0 µM) using a KH2PO4 salt solution [35]. The freshly prepared nutrient solution was
used every alternate day and the pH was kept at 6.0 using 1.0 M HCL or 1.0 M KOH.

2.2. Trait Measurement

The 21-day old mungbean plants which were grown under NP and LP conditions
were removed and dried in the oven at 60 ◦C until constant biomass was obtained for the
measurement of various parameters. The total dry weight (TDW) was estimated as g/plant
using a precision balance and the dried samples were ground to obtain a fine powder.
The powder (0.1 g) was then digested using a diacid mixture (HNO3:HCLO4 in 9:4 ratio)
until a clear solution was obtained [36]. After filtering the solution, the P concentration
(PC) (mg P/g dry weight) was estimated using a colorimetric method [37] and the total P
uptake (TPU) (mg P/g dry weight) was calculated by multiplying the TDW and PC of the
sample [38]. The P utilization efficiency (PUtE) (g dry weight/mg P) was calculated using
the following formula under both NP and LP conditions [38].

PUtE (g dry weight/mg P) = Total dry weight/total P uptake by plant

2.3. Large Scale Genotyping of Association Panel Genotypes

A very large number of chromosome-based SNPs (55,634) were identified by our
group in a previous study [20] using a GBS-based NGS assay. These chromosome-based
SNPs were used for genotyping the P uptake and utilization-specific association mapping
panel, which was constituted from 120 diverse mungbean genotypes. The structural and
functional annotation of the data has been used by Reddy and co-workers [20].

2.4. Depiction of Linkage Disequilibrium, Phylogenetic Details, and Population Structure

To find the genome-wide linkage disequilibrium (LD) patterns (r2) and LD decay,
the genotyping data of 120 genotypes were analyzed using PLINK and TASSELv5.0 soft-
ware [39]. For the preparation of an un-rooted neighbor-joining (NJ)-based phylogenetic
tree, SNP genotyping data were used and analyzed using MEGA v6.0 [40] and Power-
Marker v3.51 [41]. The principal component analysis (PCA) was performed using GAPIT,
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and population genetic structure was determined using STRUCTURE v2.3.4 following the
details of Upadhyaya and co-workers [42]. The population structure analysis was performed
and the population number or the K varied from 1 to 10, while the number of replications
was kept at 20. The population number was then determined using the delta K value which
is embedded in the second-order statistics of the STRUCTUREv2.3.4 software.

2.5. GWAS for P Use and P Utilization Efficiency-Associated Traits in Mungbean

GAPIT was used to integrate the phenotyping and genotyping (SNP) data, population
structure coefficient (Q), kinship matrix (K), and PCA (P) using a mixed model (P+K, K, and
Q+K) based MLM (mixed linear model) and CMLM (compressed mixed linear model) [42].
Afterward, p-value threshold corrections were performed using the false discovery rate
(FDR cutoff ≤ 0.05) to improve the overall marker–trait association accuracy.

2.6. Digital Gene Expression Analysis and Validation for the Candidate Gene

In order to identify putative candidate genes, the CDS sequences of 65 associated
protein coding genes were retrieved (https://legumeinfo.org/genomes/gbrowse/Vr1.0
(accessed on 12 March 2021)). A BLAST (nucleotide BLAST) search was performed against
the Arabidopsis genome database (with a default parameter p value ≤ 1.0) (https://blast.
ncbi.nlm.nih.gov/Blast.cgi (accessed on 12 March 2021)).To study the expression pattern
of the candidate genes, digital gene expression analysis was performed. For this, the
Arabidopsis orthologue of the identified candidate genes from the mungbean genome was
used for the analysis. An online search tool viz., Expression Angler was then used to decode
the expression pattern of the genes [43]. This platform identifies Arabidopsis genes with
similar expression patterns. It calculates the correlation coefficients for all gene expression
vectors as compared to an expression or to an expression pattern associated with an AGI ID
or gene name that is specified [43]. The experiments were performed using several tissues,
such as shoot apical meristem, shoot, root, xylem, etc. and at varying developmental stages.
The BLAST search of the candidate genes was also performed against the Phaseolus vulgaris
genome. The expression of orthologous genes were also checked using the Phaseolus
vulgaris Gene Expression Atlas (Pv GEA: http://plantgrn.noble.org/PvGEA/ (accessed on
16 June 2021)) which facilitates functional genomic studies in the common bean (Table S4).
The expression atlas has been developed using RNA-seq data [44].The SNPs present within
three genes (VRADI01G04370, VRADI05G20860, and VRADI08G00070) were also validated
using the Sanger sequencing approach (Table S3).

3. Results
3.1. Phenotypic Variation for P Uptake and P Utilization Efficiency-Related Traits

An association mapping panel consisting of 120 diverse mungbean genotypes was
evaluated for four traits viz., TDW, PC, TPU, and PUtE under both NP and LP conditions.
Through analysis of variance studies (Table 1), highly significant variations could be
identified among the studied genotypes for all four traits when studied under both P
levels. The mean values of traits such as TDW, PC, and TPU were found to be significantly
higher under NP when compared to LP conditions. However, a trait like PUtE showed
significantly higher values under the LP condition. The coefficient of variation was recorded
ranging from 9.73 to 18.50 and 13.10 to 36.47 under NP and LP conditions, respectively.
The highest broad-sense heritability was recorded for TDW under both NP (0.84) and LP
(0.80) conditions. The relative values (trait ratio between LP and NP conditions) of three
traits viz., TDW, PC, and TPU, were recorded as less than 1.00, whereas the relative value
for PUtE was recorded as more than 1.00. The frequency distribution pattern of these
four traits showed a normal distribution pattern which means that they are complex and
quantitative (Figure 1).

https://legumeinfo.org/genomes/gbrowse/Vr1.0
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://plantgrn.noble.org/PvGEA/
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Table 1. Descriptive statistics of total dry weight, P concentration, total P uptake, and P utilization efficiency of mungbean
under two P conditions.

Traits P Level Mean ± SD Range CV (%) Heritability Relative Value

Combined ANOVA
(Mean Sum of Squares)

G P G × P

TDW
NP 0.225 ± 0.071 0.093–0.547 13.32 0.84

0.730 0.017 *** 0.779 *** 0.003 ***
LP 0.159 ± 0.041 0.077–0.297 13.10 0.80

PC
NP 7.240 ± 1.176 3.660–10.380 9.73 0.71

0.290 3.786 *** 4763.627 *** 1.581 ***
LP 2.095 ± 0.638 0.600–4.605 17.56 0.73

TPU
NP 1.630 ± 0.624 0.678–4.793 17.73 0.81

0.210 0.759 *** 305.401 *** 0.453 ***
LP 0.328 ± 0.124 0.100–0.822 23.66 0.69

PUtE
NP 0.143 ± 0.026 0.097–0.274 18.50 0.62

3.875 0.109 *** 31.179 *** 0.088 ***
LP 0.559 ± 0.255 0.218–1.830 36.47 0.55

*** p < 0.01, level of significance.
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3.2. Linkage Disequilibrium, Phylogenetic Tree and Population Structure of AM Panel Genotypes

A total of 55,634 genome-wide and chromosome-based SNPs were used to construct
the un-rooted NJ phylogenetic tree; to find the LD estimates (r2), and also to study the decay
among the genotypes of the association panel. The LD decay was estimated by pooling
the r2 value across the eleven mungbean chromosomes. Subsequently, the average r2 was
plotted against equal physical intervals (50 kb). The analysis showed a higher LD estimate
(r2:0.72) and a comparatively less extensive decay (r2 decreased to half of its maximum
value: 0.31) at around a 70–100 kb distance in mungbean chromosomes (Figure 2). The LD
pattern recorded an increase and then an LD decay (r2 ≥ 0.3) which followed a consistent
pattern with increasing physical distance (Kb) of the SNPs [20,45].
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physical intervals from 0 to 1000 kb.

The un-rooted phylogenetic tree constructed using the NJ method depicted a clear
grouping among the mungbean genotypes of the AM panel (Figure 3). The genotypes
were grouped into five major clusters. Furthermore, the population genetic structure of the
mungbean genotypes was depicted by employing STRUCTUREv2.3.4 software. The delta
K value showed its peak at five (Figure 4A), confirming the grouping of 120 genotypes
into five genetically distinct population groups (POP I–V) (Figure 4B). This grouping was
further confirmed by PCA, along with population structure analysis and construction of a
phylogenetic tree (Figure 4C).
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3.3. Candidate Gene Identification for PUse and PUtilization Traits in Mungbean Using
Genome-Wide GBS

The genome-wide genotyping and phenotyping data of the AM panel consisting of
120 mungbean genotypes were integrated for the identification of a population structure
ancestry coefficient (Q) and kinship matrix using MLM and CMLM models. The threshold
Bonferroni correction value of −log (p) = 3.5 was used as a cutoff to identify the significant
SNPs associated with four traits viz., TDW, PC, TPU, and PUtE under NP, LP, and LP/NP
conditions. The association study could identify a nearly similar number of SNPs by both
MLM (125) and CMLM (123) models (Table 2, Figure 5A,B). Further, 116 common SNPs
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were found in both MLM and CMLM models (Supplementary Table S2). TPU showed
a maximum number of associated SNPs under the NP condition (10) followed by LP (7)
and LP/NP (5) conditions. For PUtE, maximum SNPs (23) were observed under the LP
condition followed by the NP (10) and LP/NP (9) conditions. Similarly, for TDW and PC,
maximum SNPs were found associated under LP (12) and NP (18) conditions, respectively.
The identified SNPs by MLM and CMLM revealed phenotypic variation to the tune of
14.89%, 19.31%, and 13.26% with a range of 13.76–16.85%, 17.00–20.84%, and 12.21–14.41%
for TPU under NP, LP, and LP/NP conditions, respectively. For PUtE, the associated
SNPs revealed phenotypic variation to the tune of 14.34%, 17.28% and 15.0% with a range
of 13.21–17.81%, 14.94–21.02% and 13.40–17.21% under NP, LP and LP/NP conditions,
respectively. In total, 116 SNPs could be identified by both the MLM and CMLM models,
which were present in 61 genes (Supplementary Table S2). Among these, 62 are in the
intergenic region, 23 are in the coding region, 24 are in the upstream region and 7 are found
in the downstream region. These genes play diverse roles which include ion transport,
metabolism, stress, and development. Interestingly, a large number of genes were also
found to have a role in nutrient transport activity.
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14.89%, 19.31%, and 13.26% with a range of 13.76–16.85%, 17.00–20.84%, and 12.21–14.41%
for TPU under NP, LP, and LP/NP conditions, respectively. For PUtE, the associated
SNPs revealed phenotypic variation to the tune of 14.34%, 17.28% and 15.0% with a range
of 13.21–17.81%, 14.94–21.02% and 13.40–17.21% under NP, LP and LP/NP conditions,
respectively. In total, 116 SNPs could be identified by both the MLM and CMLM models,
which were present in 61 genes (Supplementary Table S2). Among these, 62 are in the
intergenic region, 23 are in the coding region, 24 are in the upstream region and 7 are found
in the downstream region. These genes play diverse roles which include ion transport,
metabolism, stress, and development. Interestingly, a large number of genes were also
found to have a role in nutrient transport activity.
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Table 2. Genome-wide association study for total dry weight (TDW), P concentration (PC), total P uptake (TPU), and P
utilization efficiency (PUtE) studied using a mixed linear model (MLM) and compressed mixed linear model (CMLM).

Trait a Condition b

MLM CMLM R2 d

No. of SNPs
Shared e

Sig c
Average Range

Sig c
Average Range Average

(%)
Range

(%)log10(p) log10(p)

TDW
NP 2 3.78 3.74–3.82 2 3.78 3.74–3.82 17.19 17.03–17.36 2
LP 12 4.03 3.50–4.91 12 4.03 3.50–4.91 15.75 13.62–19.43 12

LP/NP 6 3.83 3.55–4.18 6 3.83 3.55–4.18 12.18 11.01–13.65 6

PC
NP 18 3.80 3.51–4.20 18 3.80 3.51–4.20 15.32 14.17–16.95 18
LP 12 3.87 3.53–4.82 12 3.87 3.53–4.82 16.05 14.69–19.93 12

LP/NP 2 3.70 3.59–3.81 2 3.70 3.59–3.81 13.72 13.26–14.18 2

TPU
NP 11 3.78 3.56–4.28 17 3.85 3.53–4.30 14.89 13.76–16.85 10
LP 7 4.17 3.58–4.56 7 4.17 3.58–4.56 19.31 17.00–20.84 7

LP/NP 5 3.79 3.54–4.07 5 3.79 3.54–4.07 13.26 12.21–14.41 5

PUtE
NP 10 3.79 3.51–4.63 10 3.79 3.51–4.63 14.34 13.21–17.81 10
LP 23 4.11 3.53–5.02 23 4.11 3.53–5.02 17.28 14.94–21.02 23

LP/NP 17 3.81 3.53–4.28 9 3.77 3.56–4.10 15.00 13.40–17.21 9

125 123 116
a Traits investigated in the study; b Traits recorded at normal P (NP), low P (LP), and LP/NP conditions; c The total number of significant
SNPs detected at the threshold of −log(p) > 3.5; d The phenotypic variation revealed by ANOVA with total significant SNPs detected using
the two models; e The number of significant SNPs detected by both MLM and CMLM models.
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3.4. Delineation of Putative Candidate Genes for P Uptake and P Utilization Efficiency Traits
in Mungbean

The BLAST search resulted in the identification of 16 genes with more than an 80%
identity index to the Arabidopsis genes, having varied roles in nutrient uptake and stress-
related pathways (Table 3). These genes were concluded to be putative candidate genes
regulating the P uptake and P utilization efficiency in mungbean crops. The digital ex-
pression pattern of 16 genes revealed that six genes, namely VRADI01G04370 (AT3G18480),
VRADI05G20860 (AT1G51700), VRADI06G12490 (AT3G13560), VRADI08G20910 (AT1G49975),
VRADI08G00070 (AT4G02650) and VRADI09G09030 (AT3G44700) have high expression in dif-
ferent plant parts including root, shoot apical meristem, leaf, etc. The gene VRADI08G20910
is a ubiquitin-conjugating enzyme E3 NLA gene and is involved in PHT1 (P transporter)
ubiquitination. The gene VRADI06G12490 has been reported to be from the SPX gene fam-
ily and is involved in P signaling and homeostasis by negatively regulating the activity of
PHR (Phosphate starvation response regulator). The gene VRADI09G09030 is a kinase gene that
is underlying in the PUP1(Phosphorus uptake 1) QTL (Phosphorus-starvation tolerance 1
(PSTOL1)) region and is involved in promoting P uptake by enhancing early root growth in
rice. The VRADI08G00070 gene is a phosphatidylinositol binding clathrin assembly protein
with overlapping functions in recycling ANX (ANXUR receptor-like kinases) proteins to
the pollen tube membrane. Therefore, we conclude that these genes may play a crucial
role as potential candidate genes in regulating the P uptake and P utilization efficiency in
mungbean crops.
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Table 3. Protein description of the identified genes related to P deficiency responses.

Vigna radiata Gene ID Arabidopsis Gene
Orthologue ID SNP ID Protein Description Arabidopsis Function References

VRADI07G06240 AT4G14410

S7_13842360,
S7_13842388,
S7_13842524,
S7_13842567

Zinc finger CCCH
domain-containing protein

48 like

Differentially expressed under
short-term P-deprivation conditions

in soybean leaves.

Zeng et al. 2018
[46]

VRADI08G11310 AT5G01305 S8_30169847 bHLHdomain-containing
proteins

Root hair formation and thereby
increases P uptake under P starvation.

Giehl and Wiren,
2014 [47]

VRADI05G06040 AT4G24730

S5_11740295,
S5_11740306,
S5_11740502,
S5_11740255,
S5_11740269

Metallophos
domain-containing proteins

Acid phosphatases play a role in P
uptake and utilization by releasing

inorganic P.

Bhadouria et al.
2017 [48]

VRADI08G10870 AT4G01995 S8_29032405 β-carotene isomerase
proteins D27

Strigolactones play a vital role in the
development of roots and shoots

under low P conditions.

Alder et al. 2012
[49]

VRADI08G20910 AT1G49975 S8_43013582 The ubiquitin-conjugating
enzyme, E3

Ubiquitin-conjugating enzyme E3
gene, NLA was involved in PHT1

(P transporter) ubiquitination.

Hsieh et al. 2009
[50]

VRADI06G12490 AT3G13560 S6_30133081 SPX domain-containing
protein

SPX gene family is involved in P
signaling and homeostasis by

negatively regulating the activity of
PHR(Phosphate starvation

response regulator).

Liu et al. 2017 [51]

VRADI09G09030 AT3G44700 S9_17743262
LRR receptor-like

serine/threonine-protein
kinase

Kinase gene present in PUP1 QTL
(PSTOL1) region involved in

promoting P uptake by enhancing
early root growth in rice.

Gamuyao et al.
2012 [52]

VRADI07G24790 AT3G16940 S7_48141848 Calmodulin binding
transcription activator 5

Involved in Ca+2 signaling and
differentially expressed in roots of
soybean under P stress conditions.

Zeng et al. 2015
[53]

VRADI06G14930 AT1G47128

S6_34944346,
S6_34944402,
S6_34944356,
S6_34944400,
S6_34944407,

Low temperature induced
cysteine proteinase

Cysteine proteinase inhibitor activity
results in the reduction of protein

catabolism under
P-deficient conditions.

Hammond et al.
2011 [54]

VRADI03G02620 AT1G04120

S3_3624245,
S3_3624308,
S3_3624244,
S3_3624311

ABC transporters
Involved in P deficiency-induced root

architecture remodeling by
modulating iron homeostasis.

Dong et al. 2016
[55]

VRADI06G03940 AT3G27720

S6_4461309,
S6_4461289,
S6_4461200,
S6_4461398,
S6_4461191,
S6_4461373,

Heavy metal-associated
isoprenylated plant protein

41-like

Involved in the transport of heavy
metals and detoxification in

plant cells.
Li et al. 2020 [56]

VRADI06G13450 AT1G17680 S6_32286556,
S6_32286560

Histone-lysine
N-methyltransferase

Involved in DNA methylation and
chromatin modification under

P deficiency.

Sirohi et al. 2016
[57]

VRADI05G21880 AT1G62700 S5_33286862 NAC domain-containing
protein 7

Regulator of various processes and
overexpression improves the stress

tolerance under the P deficiency
condition.

Nuruzzaman et al.
2013 [58]

VRADI08G00070 AT4G02650 S8_133068 protein SIEVE ELEMENT
OCCLUSION B

Phosphatidyl inositol binding clathrin
assembly protein 5A/B are recent

paralogs with overlapping functions
in recycling ANXUR proteins to the

pollen tube membrane.

Muro et al. 2018
[59]

VRADI05G20860 AT1G51700 S5_32030786 dof zinc finger
protein DOF1.7

ADOF1, DOF ZINC FINGER
PROTEIN 1, DOF1

Huang et al. 2016
[60]

VRADI01G04370 AT3G18480 S1_ 6743310 Uncharacterized
Response to abscisic acid, response to

singlet oxygen,
photochemical quenching.

Renna et al. 2005
[61]

4. Discussion

To improve the PUE, both TPU and PUtE are required to be exploited in crop plants [16,62].
The significant contribution of total biomass, P concentration, and total P uptake towards
PUE was reported in rice [63] and wheat [64]. The mean values of TDW, PC, and TPU were
found to be lower under LP conditions, whereas the mean value of PUtE was found to be
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higher under LP conditions, which is attributed to the higher TPU of the genotypes. The
results are in good agreement with the earlier reports forrice [65] and wheat [66]. The highly
significant interaction between genotype and P treatment indicated the significant effect of
two P regimes on the studied genotypes for the tested traits. The studied genotypes showed
the presence of a significant amount of variability for the investigated traits. Silva et al. [67]
in common bean and Wang et al. [68] in maize, reported the presence of significantly higher
genetic variability with high heritability as reliable selection criteria for PUE improvement
in crop plants.

It is imperative to decode the LD pattern in order to dissect the genomic landscape of
a crop species. In mungbean, limited effort has been made to decipher the high-resolution
LD pattern [20,45]. In a previous study, the LD decay pattern was found to be between
50–100 kb in mungbean [20]. In this study of 120 mungbean accessions, a less extensive
LD decay was observed which was around 80 kb (r2:0.31) for mungbean. In soybean, the
extent of LD decay was found to be at a physical distance of around 27 kb, 83 kb, and
133 kb for wild soybean, landraces, and improved cultivars, respectively [69]. In chickpea,
a larger decay was reported which was nearly 150–200 kb [39,70–73]; whereas, in common
bean and pigeonpea, the LD decay extent was reported as 50–70 kb [74] and 70 kb [75],
respectively, which is comparable to mungbean [20]. In rice, the extent of LD decay was
found to be nearly 75–150 kb, which is slightly higher than that of mungbean [76]. However,
in wheat, the extent of LD was 2.1 Mb for subgenome A, 4.2 Mb for subgenome D, and
5.9 Mb for subgenome B, which is very much higher when compared to mungbean [77].
Population structure analysis revealed the presence of five subpopulations, which were
further confirmed by PCA and un-rooted phylogenetic tree formation.

The GWAS revealed 116 novel SNPs that were shared by both MLM and CMLM
models and are found to be associated with four traits viz., TDW, PC, TPU, and PUtE.
Further, 61 associated protein-coding genes were also found to have diverse roles in stress
and other metabolic pathways. This study could identify genes containing zinc finger
domain, bHLH domain, metallophos domain, and SPX domains as also identified in our
previous study [20]. These domain-containing genes have been reported to play a diverse
role in controlling the root architecture as well as adaptation to P starvation stress [72–76].
Of these 61 genes, 16 were found to have a crucial role in the imposition of phosphorous
stress tolerance in plants. Thus, it may be concluded that these genes might be the putative
candidate genes having their role in the imposition of P stress tolerance in plants.

The VRADI07G06240 is a zinc finger CCCH domain-containing protein that is found
to be expressed under short-term P-deprivation conditions in soybean leaves [77]. Whereas
the VRADI08G11310 gene encodes a bHLH domain-containing protein, that may be in-
volved in root hair formation and thereby increasing the P uptake under P starvation
conditions [78]. Also, VRADI05G06040 is a metallophos domain-containing protein that
seems to play a role in P uptake and utilization by releasing inorganic P [79]. Furthermore,
VRADI08G10870, VRADI07G24790, and VRADI03G02620 are found to be associated with
the root development [80,81]. The VRADI08G20910 is a ubiquitin-conjugating enzyme cod-
ing gene that is known to cause degradation of PHT1 gene function. PHT1 is a membrane
protein that helps in the translocation of P in and out of the cell under both P-deficient and
sufficient conditions. It is speculated that when PHT1 gets mutated, the normal process
of transport or degradation of P gets hampered and ultimately the process of influx and
efflux of P gets interrupted (Figure 6).

VRADI06G12490 is an SPX domain-containing gene family that is involved in the
negative regulation of the PHR (Phosphate starvation response regulator) gene by regulat-
ing the expression of the PSI (Phosphate starvation-induced) gene [53]. When this gene
gets mutated, then its binding to the SPX domain gets hampered, which in turn causes
interrupted expression of the PSI gene and ultimately disruption of P uptake (Figure 7).
VRADI06G14930 gene is involved in the reduction of protein catabolism under P-deficient
conditions; while the VRADI06G03940 gene is involved in the transport of heavy metals and
detoxification in plant cells. Two more genes viz., VRADI05G21880 and VRADI06G13450
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are known to function under P-deficient conditions. Besides, the gene VRADI08G00070 is
known to recycle ANXUR proteins to the pollen tube membrane and is expressed under
nutrient-deficient conditions. VRADI01G04370 and VRADI05G20860 genes are involved in
the abscisic acid-deficient stress response [54–57].
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Furthermore, digital expression analysis using 16 genes revealed significantly higher
expression of six genes namely, VRADI01G04370, VRADI05G20860, VRADI06G12490,
VRADI08G20910, VRADI08G00070 and VRADI09G09030 in the root, shoot apical meristem,
and leaf tissues (Figures S1–S12). The digital gene expression analysis was also carried out



Agronomy 2021, 11, 1401 13 of 17

for the orthologous gene of Phaseolus vulgaris. The result showed that most of the gene was
highly expressed in leaf, pod and root (Table S3). Therefore, it can be concluded that these
genes might act as potential candidate genes in regulating the P uptake and P utilization
efficiency in mungbean plants. We found a smaller degree of expression in the pollen
tube as well as different kinds of tissues in different developmental stages, viz. ovary
and hypocotyls. Phosphorous is an important component of biological macromolecules
and after uptake, it is sequestered in different components of plant tissues throughout the
plant body. Therefore, it may be possible these genes also play an important role in its
sequestration in those tissues. In our previous study [20] we have reported 13 candidate
genes regulating PUE traits in mungbean, whereas this study identified 16 novel genes
controlling P uptake and P utilization efficiency traits in mungbean. Chromosome- based
analysis revealed that out of 29 genes, 7 (~25%) were found located on chromosome 6,
while there were 4 genes on chromosome 8 and 3 genes on chromosome 7 (Figure 8). This
result suggests that chromosome six may be the hotspot region harboring several major
QTLs/genes regulating P uptake and P utilization efficiency traits in mungbean. However,
further in-depth studies are required to reconfirm and strengthen our results.

1 
 

 
Figure 8. Chromosomal location of identified gene.

5. Conclusions

This study employs a genome-wide GBS approach to identify the significant SNPs and
candidate genes associated with P uptake and P utilization efficiency traits in mungbean.
It resulted in the identification of 116 SNPs associated with the 61 protein-coding genes,
of which 16 genes were found to play a crucial role in enhancing the P uptake and P
utilization efficiency in several crop plants, including Arabidopsis. A total of seven genes
out of twenty-nine(including our previous study) were found to be located on chromosome
six. This result suggests that chromosome six may be the hotspot region harboring several
major QTLs/genes regulating P uptake and P utilization efficiency traits in the mungbean.
Therefore, chromosome six can be enriched and targeted for genomics assisted breeding to
improve the phosphorous deficiency response in mungbean. The LD analysis revealed a
comparatively short LD decay in mungbean. This study leads towards deciphering the
genetic complexity for PUpE and PUtE in mungbean. The genetic and genomic resources
generated in this study can be exploited to develop phosphorous stress responsive cultivars
which can overcome P deficiency in mungbean.
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10.3390/agronomy11071401/s1, Table S1, List of 120 diverse mungbean genotypes along with their
accession IDs submitted to NCBI-sequence read archive (SRA) database; Table S2, Details of 116 SNPs
and their corresponding genes associated with four traits under NP and LP conditions; Table S3,
The Phaseolous vulgaris orthologous gene and their expression pattern; Table S4, Validation of SNP,
merged Hapmap; Supplementary Figures S1–S12, Digital expression of candidate genes.
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