Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Row-Crop Management and Grazing of Stover, Cover Crop
2.3. Perennial Grass Grazing Management
2.4. Baseline Soil Sampling
2.5. Soil Greenhouse Gas Emissions
2.6. Statistics
3. Results
3.1. Growing Season Soil CH4 Fluxes
3.1.1. Continuous Corn
3.1.2. Perennial Grass
3.2. Growing Season Soil N2O Emissions
3.2.1. Continuous Corn
3.2.2. Perennial Grass
3.3. Land-Use Effects on Growing Season Soil GHG Emissions
3.3.1. Soil CH4 Fluxes
3.3.2. Soil N2O Fluxes
4. Discussion
4.1. Management Effects on Total Growing Season CH4 Fluxes
4.2. Management Effects on Total Growing Season N2O Fluxes
4.2.1. Cover Crop Effects on Soil N2O
4.2.2. Effects of Stover Baling on Soil N2O
4.2.3. Effects of Stover Grazing on Soil N2O
4.2.4. Effects of Perennial Grass Type on Soil N2O
4.2.5. Effects of Perennial Grass Grazing Practices on Soil N2O
4.2.6. Land-Use Effects on Soil N2O
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tracy, B.F.; Zhang, Y. Soil compaction, corn yield response, and soil nutrient pool dynamics within an integrated crop-livestock system in Illinois. Crop Sci. 2008, 48, 1211–1218. [Google Scholar] [CrossRef]
- Sulc, R.M.; Franzluebbers, A.J. Exploring integrated croplivestock systems in different ecoregions of the United States. Eur. J. Agron. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Kumar, S.; Sieverding, H.; Lai, L.; Thandiwe, N.; Wienhold, B.; Redfearn, D.; Archer, D.; Ussiri, D.; Faust, D.; Landblom, D.; et al. Facilitating crop-livestock reintegration in the Northern Great Plains. Agron. J. 2019, 111, 2141–2156. [Google Scholar] [CrossRef] [Green Version]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering integrated crop-livestock systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Sulc, R.M.; Tracy, B.F. Integrated crop-livestock systems in the U.S. Corn Belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.B.; Schmer, M.R.; Anderson, W.F.; Jin, V.; Balkcom, K.S.; Kiniry, J.; Coffin, A.; White, P. Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res. 2016, 9, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. R. Soc. A 2020, 476, 20200351. [Google Scholar] [CrossRef]
- Seguin, B.; Arrouays, D.; Balesdent, J.; Soussana, J.F.; Bondeau, A.; Smith, P.; Zaehle, S.; de Noblet, N.; Viovy, N. Moderating the impact of agriculture on climate. Agric. For. Meteorol. 2007, 142, 278–287. [Google Scholar] [CrossRef]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, E.; et al. Land degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC Special Report; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; 92p. [Google Scholar]
- Gosling, P.; van der Gast, C.; Bending, G.D. Converting highly productive arable cropland in Europe to grassland: A poor candidate for carbon sequestration. Sci. Rep. 2017, 7, 10493. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Jin, H.; Kreuter, U.; Teague, R. Expanding grass-based agriculture on marginal land in the U.S. Great Plains: The role of management intensive grazing. Land Use Policy 2021, 104, 105155. [Google Scholar] [CrossRef]
- Smart, A.J.; Redfearn, D.; Mitchell, R.; Wang, T.; Zilverberg, C.; Bauman, P.J.; Derner, J.D.; Walker, J.; Wright, C. Forum: Integration of crop-livestock systems: An opportunity to protect grasslands from conversion to cropland in the US Great Plains. Rangel. Ecol. Manag. 2020, in press. [Google Scholar] [CrossRef]
- Davis, S.C.; Parton, W.J.; Del Grosso, S.J.; Keough, C.; Marx, E.; Adler, P.R.; Delucia, E.H. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front. Ecol. Environ. 2012, 10, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Abraha, M.; Gelfand, I.; Hamilton, S.K.; Chen, J.; Robertson, G.P. Legacy effects of land use on soil nitrous oxide emissions in annual crop and perennial grassland ecosystems. Ecol. Appl. 2018, 289, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Mitchell, R.B.; Williams, C.O.; Wienhold, B.J.; Varvel, G.E.; Follett, R.F.; Kimble, J.; Vogel, K.P. Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands. Sci. Adv. 2019, 5, eaav9318. [Google Scholar] [CrossRef] [Green Version]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Phillips, R.L.; Hanson, J.D. Grazing management contributions to net global warming potential: A long-term evaluation in the Northern Great Plains. J. Environ. Qual. 2010, 39, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Teague, W.R.; Park, S.C.; Bevers, S. GHG mitigation potential of different grazing strategies in the United States southern Great Plains. Sustainability 2015, 7, 13500–13521. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Cattle grazing effects on the environment: Greenhouse gas emissions and carbon footprint. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Rouquette, M., Aiken, G.E., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 11–34. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Sawchik, J.; Taboada, M.A. Agronomic and environmental impacts of pasture-crop rotations in temperate North and South America. Agric. Ecosys. Environ. 2014, 190, 18–26. [Google Scholar] [CrossRef]
- Liebig, M.A.; Faust, D.R.; Archer, D.W.; Kronberg, S.L.; Hendrickson, J.R.; Aukema, K.D. Grazing effects on nitrous oxide flux in an integrated crop-livestock system. Agric. Ecosys. Environ. 2020, 304, 107146. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Global Chang. Biol. 2013, 10, 2956–2964. [Google Scholar] [CrossRef]
- Jin, V.L.; Baker, J.M.; Johnson, J.M.J.; Karlen, D.L.; Lehman, R.M.; Osborne, S.L.; Sauer, T.J.; Stott, D.E.; Varvel, G.E.; Venterea, R.T.; et al. Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. Bioenergy Res. 2014, 7, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Rakkar, M.; Blanco-Canqui, H.; Rasby, R.J.; Ulmer, K.; Cox-O’Neill, J.; Drewnoski, M.E.; Drijber, R.A.; Jenkins, K.; MacDonald, J.C. Grazing crop residues has less impact in the short-term on soil properties than baling in the central Great Plains. Agron. J. 2018, 111, 109–121. [Google Scholar] [CrossRef]
- Vogel, K.P.; Mitchell, R.B.; Waldron, B.L.; Haferkamp, M.R.; Berdahl, J.D.; Baltensperger, D.D.; Erickson, G.; Klopfenstein, T.J. Registration of ‘Newell’ smooth bromegrass. J. Plant Regist. 2015, 9, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.P.; Mitchell, R.B.; Casler, M.D.; Sarath, G. Registration of ‘Liberty’ switchgrass. J. Plant Regist. 2014, 8, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.P.; Hopkins, A.A.; Moore, K.J.; Johnsond, K.D.; Carlson, I.T. Registration of ‘Shawnee’ switchgrass. Crop Sci. 1996, 36, 1713. [Google Scholar] [CrossRef] [Green Version]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 7 January 2017).
- National Oceanic and Atmospheric Administration/National Climatic Data Center (NOAA/NCDC). Daily/Monthly Normals (1981–2010). Station Mead 6S (ID USC00255362). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/normals (accessed on 1 December 2019).
- Mitchell, R.B.; Schmer, M.R. Switchgrass harvest and storage. In Switchgrass, a Valuable Biomass Crop for Energy; Monti, A., Ed.; Springer: London, UK, 2012; pp. 113–127. [Google Scholar] [CrossRef] [Green Version]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part I Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soluanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Hutchinson, G.L.; Mosier, A.R. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 1981, 45, 311–316. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T. Chamber-based trace gas flux measurements. In Sampling Protocols; Follett, R.F., Ed.; pp. 3-1–3-39. Available online: http://www.ars.usda.gov/research/GRACEnetChamberBasedTraceGasFluxMeasurements (accessed on 1 February 2011).
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Sindelar, A.J.; Varvel, G.E.; Wienhold, B.J. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Global Chang. Biol. 2017, 23, 2848–2862. [Google Scholar] [CrossRef] [Green Version]
- Reicosky, D.C.; Lindstrom, M.J.; Schumacher, T.E.; Lobb, D.E.; Malo, D.D. Tillage-induced CO2 loss across an eroded landscape. Soil Till. Res. 2005, 81, 183–194. [Google Scholar] [CrossRef]
- Wagner, S.W.; Reicosky, D.C.; Alessi, S.R. Regression models for calculating gas fluxes measured with a closed chamber. Agronomy 1997, 89, 279–284. [Google Scholar] [CrossRef]
- Venterea, R.T.; Maharjan, B.; Dolan, M.S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Venterea, R.T. Simplified method for quantifying theoretical underestimation of chamber-based trace gas fluxes. J. Environ. Qual. 2010, 39, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Parkin, T.; Venterea, R.T.; Hargreaves, S.K. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. The SAS System for Windows; Version 9.3; SAS Institute: Cary, NC, USA, 2014. [Google Scholar]
- Cavigelli, M.A.; Parkin, T. Cropland management contributions to greenhouse gas flux. In Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address Our Changing Climate; Liebig, M., Franzluebbers, A., Follett, R.F., Eds.; Academic Press: Waltham, MA, USA, 2012; pp. 129–165. [Google Scholar] [CrossRef]
- Parkin, T.B. Effect of sampling frequency on estimates of cumulative nitrous oxide emissions. J. Environ. Qual. 2008, 37, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
- Charteris, A.F.; Chadwick, D.R.; Thorman, R.E.; Vallejo, A.; de Klein, C.A.M.; Rochette, P.; Cardenas, L.M. Global Research Alliance N2O chamber methodology guidelines: Recommendations for deployment and accounting for sources of variability. J. Environ. Qual. 2020, 49, 1092–1109. [Google Scholar] [CrossRef]
- Bronson, K.F.; Mosier, A.R. Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol. Fertil. Soils 1994, 17, 263–268. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Gamble, A.V.; Howe, J.A.; Balkcom, K.B.; Wood, C.W.; DiLorenzo, N.; Watts, D.B.; van Santen, E. Soil organic carbon storage and greenhouse gas emissions in a grazed perennial forage-crop rotation system. Agrosyst. Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Allard, V.; Soussana, J.-F.; Falcimagne, R.; Berbiger, P.; Bonnefond, J.M.; Ceschia, E.; D’hour, P.; Hénault, C.; Laville, P.; Martin, C.; et al. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric. Ecosyst. Environ. 2007, 121, 47–58. [Google Scholar] [CrossRef]
- Wang, X.; Huang, D.; Zhang, Y.; Chen, W.; Wang, C.; Yang, X.; Luo, W. Dynamic changes of CH4 and CO2 emission from grazing sheep urine and dung patches in typical steppe. Atmos. Environ. 2013, 79, 576–581. [Google Scholar] [CrossRef]
- Singh, N.; Abagandura, G.O.; Kumar, S. Short-term grazing of cover crops and maize residue impacts on soil greenhouse gas fluxes in two Mollisols. J. Environ. Qual. 2019, 49, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Asrar, G.R.; West, T.O. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock. Carbon Balance Manag. 2017, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.M.; Osborne, S.L. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system. Bioenergy Res. 2016, 9, 1101–1108. [Google Scholar] [CrossRef]
- Wegner, B.R.; Chalise, K.P.; Singh, S.; Lai, L.; Abagandura, G.O.; Kumar, S.; Osborne, S.L.; Lehman, R.M.; Jagadamma, S. Response of soil surface greenhouse gas fluxes to crop residue removal and cover crops under a corn-soybean rotation. J. Environ. Qual. 2018, 47, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Abagandura, G.O.; Şentürklü, S.; Singh, N.; Kumar, S.; Landblom, D.G.; Ringwall, K. Impacts of crop rotational diversity and grazing under integrated crop-livestock system on soil surface greenhouse gas fluxes. PLoS ONE 2019, 14, e0217069. [Google Scholar] [CrossRef] [Green Version]
- Dowhower, S.L.; Teague, W.R.; Casey, K.D.; Daniel, R. Soil greenhouse gas emissions as impacted by soil moisture and temperature under continuous and holistic planned grazing in native tallgrass prairie. Agric. Ecosyst. Environ. 2020, 287, 106647. [Google Scholar] [CrossRef]
- Piva, J.T.; Dieckow, J.; Bayer, C.; Zanatta, J.A.; de Moraes, A.; Tomazi, M.; Pauletti, V.; Barth, G.; de Cassia Piccolo, M. Soil gaseous N2O and CH4 emissions and carbon pool due to integrated crop-livestock in a subtropical Ferralsol. Agric. Ecosys. Environ. 2014, 190, 87–93. [Google Scholar] [CrossRef]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.C.; Castellano, M.J.; Sawner, J.E.; Pantoja, J. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci. Soc. Am. J. 2013, 77, 1765–1773. [Google Scholar] [CrossRef] [Green Version]
- Beare, M.H.; Gregorich, E.G.; St-Georges, P. Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem. 2009, 41, 611–621. [Google Scholar] [CrossRef]
- Harrison-Kirk, T.; Thomas, S.M.; Clough, T.J.; Beare, M.H.; vander Weerden, T.J.; Meenken, E.D. Compaction influences N2O and N2 emissions from 15N-labeled synthetic urine in wet soils during successive saturation/drainage cycles. Soil Biol. Biochem. 2015, 88, 178–188. [Google Scholar] [CrossRef]
- Cai, Y.; Chang, S.X.; Cheng, Y. Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies. Earth Sci. Rev. 2017, 171, 44–57. [Google Scholar] [CrossRef]
- Snell, L.K.; Guretzky, J.A.; Jin, V.L.; Drijber, R.A.; Mamo, M. Nitrous oxide emissions and herbage accumulation in smooth bromegrass pastures with nitrogen fertilizer and ruminant urine application. Nutr. Cycl. Agroecosyst. 2014, 98, 223–234. [Google Scholar] [CrossRef]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Hanson, J.D.; Frank, A.B.; Phillips, R.L. Soil response to long-term grazing in the Northern Great Plains of North America. Agric. Ecosys. Environ. 2006, 115, 270–276. [Google Scholar] [CrossRef]
- Bavin, T.K.; Griffis, T.J.; Baker, J.M.; Venterea, R.T. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agric. Ecosyst. Environ. 2009, 134, 234–242. [Google Scholar] [CrossRef]
- Wang, T.; Luri, M.; Janssen, L.; Hennessy, D.; Feng, H.; Wimberly, M.C.; Arora, G. Determinants of motives for land use decisions at the margins of the Corn Belt. Ecol. Econ. 2017, 134, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Liebig, M.; Tanaka, D.; Kronberg, S.; Scholljegerdes, E.; Karn, J. Integrated crops and livestock in central North Dakota, USA: Agroecosystem management to buffer soil change. Renew. Agric. Food Syst. 2012, 27, 115–124. [Google Scholar] [CrossRef]
- Drewnoski, M.E.; MacDonald, J.C.; Erickson, G.E.; Hanford, K.J.; Klopfenstein, T.J. Long-term corn residue grazing improves subsequent soybean yields in a corn-soybean rotation. Crop Forage Turfgrass Manage. 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Schmer, M.R.; Brown, R.M.; Jin, V.L.; Mitchell, R.B.; Redfearn, D.D. Corn residue use by livestock in the United States. Agric. Environ. Lett. 2017, 2, 160043. [Google Scholar] [CrossRef]
- Redfearn, D.; Parsons, J.; Drewnoski, M.; Schmer, M.; Mitchell, R.; MacDonald, J.; Farney, J.; Smart, A. Assessing the value of grazed corn residue for crop and cattle producers. Agric. Environ. Lett. 2019, 4, 180066. [Google Scholar] [CrossRef]
- Nocentini, A.; Monti, A. Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations. Agric. Syst. 2019, 173, 209–217. [Google Scholar] [CrossRef]
Perennial Grass | Row-Crop | ||||
---|---|---|---|---|---|
Soil Property | Units | Newell | Liberty | Shawnee | Corn |
Bulk density | Mg m−3 | 1.34 | 1.31 | 1.21 | 1.34 |
Electrical conductivity | dS m−1 | 0.51 | 0.51 | 0.51 | 0.54 |
Soil pH (1:1 in water) | - | 5.36 | 5.20 | 5.42 | 5.27 |
Total soil organic C | g kg−1 | 15.90 | 16.13 | 16.47 | 17.25 |
Total nitrogen | g kg−1 | 1.47 | 1.47 | 1.43 | 1.57 |
Total base cations | cmolc kg−1 | 14.70 | 15.76 | 16.3 | 14.97 |
Ca | cmolc kg−1 | 10.43 | 11.27 | 11.81 | 10.90 |
Mg | cmolc kg−1 | 3.46 | 3.58 | 3.68 | 3.09 |
K | cmolc kg−1 | 0.74 | 0.80 | 0.71 | 0.89 |
Na | cmolc kg−1 | 0.09 | 0.11 | 1.10 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christenson, E.; Jin, V.L.; Schmer, M.R.; Mitchell, R.B.; Redfearn, D.D. Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System. Agronomy 2021, 11, 1416. https://doi.org/10.3390/agronomy11071416
Christenson E, Jin VL, Schmer MR, Mitchell RB, Redfearn DD. Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System. Agronomy. 2021; 11(7):1416. https://doi.org/10.3390/agronomy11071416
Chicago/Turabian StyleChristenson, Elizabeth, Virginia L. Jin, Marty R. Schmer, Robert B. Mitchell, and Daren D. Redfearn. 2021. "Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System" Agronomy 11, no. 7: 1416. https://doi.org/10.3390/agronomy11071416
APA StyleChristenson, E., Jin, V. L., Schmer, M. R., Mitchell, R. B., & Redfearn, D. D. (2021). Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System. Agronomy, 11(7), 1416. https://doi.org/10.3390/agronomy11071416