Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Treatments
2.3. Soil CO2 Efflux Measurement
2.4. Soil Temperature and Water Content
2.5. Soil Sampling and Analysis
2.6. Penetration Resistance
2.7. Dry Maize Biomass
2.8. Data Analysis
3. Results
3.1. Precipitation and Air Temperature
3.2. Temporal and Special Variations in Soil CO2 Efflux
3.3. Effects of Management Practices on Soil Properties and Aboveground Biomass
3.4. The Main Controls of Soil CO2 Efflux
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; 32p. [Google Scholar]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.; Sitch, S.; Tans, P.P.; Arneth, A.; et al. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, K.; Mutema, M.; Hill, T. Soil and organic carbon losses from varying land uses: A global meta-analysis. Geogr. Res. 2020, 58, 167–185. [Google Scholar] [CrossRef]
- An, S.; Zheng, F.; Zhang, F.; Van Pelt, S.; Hamer, U.; Makeschin, F. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 2008, 75, 248–256. [Google Scholar] [CrossRef]
- Guillaume, T.; Damris, M.; Kuzyakov, Y. Losses of soil carbon by converting tropical forest to plantations: Erosion and decomposition estimated by δ 13 C. Glob. Chang. Biol. 2015, 21, 3548–3560. [Google Scholar] [CrossRef]
- Martin, M.P.; Dimassi, B.; Dobarco, M.R.; Guenet, B.; Arrouays, D.; Angers, D.A.; Blache, F.; Huard, F.; Soussana, J.; Pellerin, S. Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Glob. Chang. Biol. 2021, 27, 2458–2477. [Google Scholar] [CrossRef]
- Jacobs, A.; Poeplau, C.; Weiser, C.; Fahrion-Nitschke, A.; Don, A. Exports and inputs of organic carbon on agricultural soils in Germany. Nutr. Cycl. Agroecosyst. 2020, 118, 249–271. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Riggers, C.; Poeplau, C.; Don, A.; Frühauf, C.; Dechow, R. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant Soil 2021, 460, 417–433. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al. Soil Degradation in India: Challenges and Potential Solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE 2018, 13, e0196703. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Cover cropping and the “4 per Thousand” proposal. J. Soil Water Conserv. 2015, 70, 141A. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Li, P.; Sakagami, N.; Komatsuzaki, M. No-tillage with rye cover crop can reduce net global warming potential and yield-scaled global warming potential in the long-term organic soybean field. Soil Tillage Res. 2021, 205, 104747. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Liao, Y. Conservation tillage increases carbon sequestration of winter wheat-summer maize farmland on Loess Plateau in China. PLoS ONE 2018, 13, e0199846. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Ochsner, T.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Dimassi, B.; Cohan, J.-P.; Labreuche, J.; Mary, B. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agric. Ecosyst. Environ. 2013, 169, 12–20. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Évid. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Aslam, T.; Choudhary, M.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Li, C.-F.; Kou, Z.-K.; Yang, J.-H.; Cai, M.-L.; Wang, J.-P.; Cao, C.-G. Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central China. Atmos. Environ. 2010, 44, 2696–2704. [Google Scholar] [CrossRef]
- Barreto, R.C.; Madari, B.E.; Maddock, J.E.; Machado, P.L.O.D.A.; Torres, E.; Franchini, J.; Costa, A.R. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agric. Ecosyst. Environ. 2009, 132, 243–251. [Google Scholar] [CrossRef]
- Smith, D.R.; Ramirez, G.H.; Armstrong, S.D.; Bucholtz, D.L.; Stott, D. Fertilizer and Tillage Management Impacts on Non-Carbon-Dioxide Greenhouse Gas Emissions. Soil Sci. Soc. Am. J. 2011, 75, 1070–1082. [Google Scholar] [CrossRef] [Green Version]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How climate-smart is conservation agriculture (CA)—Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Secur. 2017, 9, 537–560. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Mchunu, C.; Manson, A.; Lorentz, S.; Jewitt, G. Water erosion-induced CO2 emissions from tilled and no-tilled soils and sediments. Agric. Ecosyst. Environ. 2012, 159, 62–69. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Rodrigues, L.A.T.; Giacomini, S.J.; Aita, C.; Lourenzi, C.R.; Brunetto, G.; Bacca, A.; Ceretta, C.A. Short- and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma 2021, 386, 114913. [Google Scholar] [CrossRef]
- Schuster, M.Z.; Harrison, S.K.; de Moraes, A.; Sulc, R.M.; Carvalho, P.C.F.; Lang, C.R.; Anghinoni, I.; Lustosa, S.B.C.; Gastal, F. Effects of crop rotation and sheep grazing management on the seedbank and emerged weed flora under a no-tillage integrated crop-livestock system. J. Agric. Sci. 2018, 156, 810–820. [Google Scholar] [CrossRef]
- Hellin, J.; Erenstein, O.; Beuchelt, T.D.; Camacho, C.; Flores, D. Maize stover use and sustainable crop production in mixed crop–livestock systems in Mexico. Field Crops Res. 2013, 153, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Zorita, M.; Duarte, G.A.; Grove, J.H. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Tillage Res. 2002, 65, 1–18. [Google Scholar] [CrossRef]
- Sanjari, G.; Ghadiri, H.; Ciesiolka, C.A.A.; Yu, B. Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Soil Res. 2008, 46, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Dlamini, P.; Chivenge, P. Potential of grassland rehabilitation through high density-short duration grazing to sequester atmospheric carbon. Geoderma 2016, 271, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar]
- Chaplot, V.; Abdalla, K.; Alexis, M.; Bourennane, H.; Darboux, F.; Dlamini, P.; Everson, C.; Mchunu, C.; Muller-Nedebock, D.; Mutema, M.; et al. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. 2015, 203, 110–118. [Google Scholar] [CrossRef]
- WRB Soil Classification. ISBN 978-92-5-108369-7 (Print). E-ISBN 978-92-5-108370-3 (PDF). Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 November 2020).
- Mchunu, C.N.; Lorentz, S.; Jewitt, G.; Manson, A.; Chaplot, V. No-Till Impact on Soil and Soil Organic Carbon Erosion under Crop Residue Scarcity in Africa. Soil Sci. Soc. Am. J. 2011, 75, 1503–1512. [Google Scholar] [CrossRef]
- Healy, R.W.; Striegl, R.G.; Russell, T.F.; Hutchinson, G.L.; Livingston, G.P. Numerical Evaluation of Static-Chamber Measurements of Soil-Atmosphere Gas Exchange: Identification of Physical Processes. Soil Sci. Soc. Am. J. 1996, 60, 740–747. [Google Scholar] [CrossRef]
- Mielnick, P.; Dugas, W.A. Soil CO2 flux in a tallgrass prairie. Soil Biol. Biochem. 2000, 32, 221–228. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. Bulk Density and Linear Extensibility. In Methods of Soil Analysis: Part 4. Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 2002; pp. 201–225. [Google Scholar]
- Herrick, J.E.; Jones, T.L. A dynamic cone penetrometer for measuring soil penetration resistance. Soil Sci. Soc. Am. J. 2002, 66, 1320–1324. [Google Scholar] [CrossRef]
- Davies, G.; A Bodart, J. Changes in vegetation diversity and composition following livestock removal along an upland elevational gradient. iForest Biogeosci. For. 2015, 8, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Liebig, M.; Kronberg, S.; Hendrickson, J.; Dong, X.; Gross, J. Carbon dioxide efflux from long-term grazing management systems in a semiarid region. Agric. Ecosyst. Environ. 2013, 164, 137–144. [Google Scholar] [CrossRef]
- Beare, M.; Hendrix, P.F.; Cabrera, M.L.; Coleman, D. Aggregate-Protected and Unprotected Organic Matter Pools in Conventional- and No-Tillage Soils. Soil Sci. Soc. Am. J. 1994, 58, 787–795. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- La Scala, N.; Bolonhezi, D.; Pereira, G.T. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Tillage Res. 2006, 91, 244–248. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-Tonthat, T.; Jabro, J.D. Land Use and Management Practices Impact on Plant Biomass Carbon and Soil Carbon Dioxide Emission. Soil Sci. Soc. Am. J. 2010, 74, 1613–1622. [Google Scholar] [CrossRef]
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X.; Yang, B. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Davin, E.L.; Seneviratne, S.; Ciais, P.; Olioso, A.; Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 2014, 111, 9757–9761. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Yin, X. Tillage and Crop Residue Effects on Soil Carbon and Carbon Dioxide Emission in Corn-Soybean Rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.-C.; Rochette, P.; Pattey, E. Soil Carbon Dioxide Fluxes from Conventional and No-Tillage Small-Grain Cropping Systems. Soil Sci. Soc. Am. J. 1996, 60, 1541–1547. [Google Scholar] [CrossRef]
- Mathiba, M.; Awuah-Offei, K.; Baldassare, F.J. Influence of elevation, soil temperature and soil moisture content on reclaimed mine land soil CO2 fluxes. Environ. Earth Sci. 2015, 73, 6131–6143. [Google Scholar] [CrossRef]
- Ussiri, D.A.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Duiker, S.W.; Lal, R. Carbon Budget Study Using CO2 Flux Measurements from a No till System in Central Ohio. Soil Tillage Res. 2000, 54, 21–30. [Google Scholar] [CrossRef]
- Silva, S.R.; da Silva, I.R.; de Barros, N.F.; de Sá Mendonça, E. Effect of Compaction on Microbial Activity and Carbon and Nitrogen Transformations in Two Oxisols with Different Mineralogy. Rev. Bras. Ciênc. Solo 2011, 35, 1141–1149. [Google Scholar] [CrossRef]
- Agostini, M.D.L.A.; Studdert, G.; Martino, S.S.; Costa, J.; Balbuena, R.; Ressia, J.; Mendivil, G.; Lazaro, L. Crop residue grazing and tillage systems effects on soil physical properties and corn (Zea mays L.) performance. J. Soil Sci. Plant Nutr. 2012, 12, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Adekalu, K.; Okunade, D.; Osunbitan, J. Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils. Geoderma 2006, 137, 226–230. [Google Scholar] [CrossRef]
- Torbert, H.; Wood, C. Effects of soil compaction and water-filled pore space on soil microbial activity and N losses. Commun. Soil Sci. Plant Anal. 1992, 23, 1321–1331. [Google Scholar] [CrossRef]
- Greenwood, K.L.; McKenzie, B.M. Grazing effects on soil physical properties and the consequences for pastures: A review. Aust. J. Exp. Agric. 2001, 41, 1231. [Google Scholar] [CrossRef]
- Hamza, M.; Anderson, W. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Piva, J.T.; Dieckow, J.; Bayer, C.; Zanatta, J.A.; de Moraes, A.; Tomazi, M.; Pauletti, V.; Barth, G.; Piccolo, M.D.C. Soil gaseous N2O and CH4 emissions and carbon pool due to integrated crop-livestock in a subtropical Ferralsol. Agric. Ecosyst. Environ. 2014, 190, 87–93. [Google Scholar] [CrossRef]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Densidade do solo, atributos químicos e sistema radicular do milho afetados pelo pastejo e manejo do solo. Rev. Bras. Ciênc. Solo 2000, 24, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Zorita, M.; Grove, J.H. Crop Sequence Effects on the Properties of a Hapludoll under Continuous No-Tillage Management. In Proceedings of the Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Tifton, GA, USA, 6–8 July 1999. [Google Scholar]
- Lemke, R.; VandenBygaart, A.; Campbell, C.; Lafond, G.; Grant, B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric. Ecosyst. Environ. 2010, 135, 42–51. [Google Scholar] [CrossRef]
- Singh, P.; Heikkinen, J.; Ketoja, E.; Nuutinen, V.; Palojärvi, A.; Sheehy, J.; Esala, M.; Mitra, S.; Alakukku, L.; Regina, K. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment. Sci. Total Environ. 2015, 518–519, 337–344. [Google Scholar] [CrossRef]
- West, T.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Ogle, S.M.; Jay Breidt, F.; Conant, R.T.; Mosier, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Bayer, C.; Martin-Neto, L.; Mielniczuk, J.; Pavinato, A.; Dieckow, J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res. 2006, 86, 237–245. [Google Scholar] [CrossRef]
- West, T.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
Soil CO2-C | ST | SWC | |||||
---|---|---|---|---|---|---|---|
(g m−2 d−1) | (°C) | (%) | |||||
Source of Variations | DF | MS | F pr. | MS | F pr. | MS | F pr. |
Treatment | 4 | 82.0 | <0.001 | 45.3 | <0.001 | 130.6 | <0.001 |
Date | 40 | 70.0 | <0.001 | 356.9 | <0.001 | 870.5 | <0.001 |
Treatment × date | 160 | 8.7 | <0.001 | 6.0 | <0.001 | 8.5 | <0.001 |
No-Till | Till | |||||
---|---|---|---|---|---|---|
Variable | Time | NTCG | NTFG | NTNG | NTNR | CTFG |
Soil CO2-C (g m−2 d−1) | Overall | 3.2 ± 0.4 d | 3.1 ± 0.3 d | 3.4 ± 0.3 c | 4.2 ± 0.5 b | 5.1 ± 0.6 a |
Wet season | 3.9 ± 0.5 cd | 3.6 ± 0.3 d | 4.1 ± 0.4 c | 5.1 ± 0.5 b | 6.0 ± 0.6 a | |
Dry season | 1.3 ± 0.2 a | 1.2 ± 0.1 a | 1.2 ± 0.2 a | 1.4 ± 0.2 a | 1.6 ± 0.2 a |
SOCc (g kg−1) | SOCs (Mg C ha−1) | Nc (g kg−1) | Ns (Mg N ha−1) | Sequestration Rate/Year | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | 2012 | 2015 | 2012 | 2015 | 2012 | 2015 | 2012 | 2015 | Rank | SOCs (Mg C ha−1) | Rank | Ns (Mg N ha−1) |
NTCG | 18.3 ± 0.5 | 30.2 ± 1.0 a | 12.2 ± 0.7 | 18.8 ± 0.4 a | 1.5 ± 0.1 | 1.9 ± 0.1 ab | 10.1 ± 0.3 | 11.2 ± 0.4 | 1 | 1.4 a | 1 | 0.3 a |
NTFG | 18. 3 ± 0.3 | 21.6 ± 0.4 b | 11.0 ± 1.0 | 12.5 ± 0.1 b | 1.5 ± 0.1 | 1.8 ± 0.1 ab | 10.0 ± 0.4 | 10.4 ± 0.6 | 2 | 0.4 b | 3 | 0.1 b |
NTNG | 19. 2 ± 0.5 | 19.7 ± 0.3 c | 11.9 ± 0.4 | 11.1 ± 0.2 c | 1.6 ± 0.1 | 1.9 ± 0.1 a | 10.0 ± 0.5 | 10.9 ± 0.2 | 4 | −0.2 c | 2 | 0.2 a |
NTNR | 18.8 ± 0.6 | 18.8 ± 0.5 c | 12.2 ± 1.1 | 10.7 ± 0.1 c | 1.6 ± 0.1 | 1.7 ± 0.1 ab | 10.2 ± 0.4 | 9.8 ± 0.4 | 5 | −0.4 c | 5 | −0.1 b |
CTFG | 19.9 ± 0.9 | 19.9 ± 0.3 c | 12.5 ± 0.7 | 12.0 ± 0.1 c | 1.6 ± 0.1 | 1.6 ± 0.04 b | 10.4 ± 0.5 | 9.4 ± 0.2 | 3 | −0.1 c | 4 | −0.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, K.; Mutema, M.; Chivenge, P.; Chaplot, V. Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa. Agronomy 2021, 11, 1421. https://doi.org/10.3390/agronomy11071421
Abdalla K, Mutema M, Chivenge P, Chaplot V. Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa. Agronomy. 2021; 11(7):1421. https://doi.org/10.3390/agronomy11071421
Chicago/Turabian StyleAbdalla, Khatab, Macdex Mutema, Pauline Chivenge, and Vincent Chaplot. 2021. "Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa" Agronomy 11, no. 7: 1421. https://doi.org/10.3390/agronomy11071421
APA StyleAbdalla, K., Mutema, M., Chivenge, P., & Chaplot, V. (2021). Controlled Grazing of Maize Residues Increased Carbon Sequestration in No-Tillage System: A Case of a Smallholder Farm in South Africa. Agronomy, 11(7), 1421. https://doi.org/10.3390/agronomy11071421