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Abstract: Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is
a key factor for sustainable agricultural production. In the present work, a trial for using remote
sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and
evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid
Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote
sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP
to develop six indices. They included geology index (GI), topographic quality index (TQI), physical
soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and
vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of
LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI
(0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate
degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The
consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the
high accuracy of the AHP. The results of the cross-validation demonstrated that the performance
of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for
predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would
provide an effective methodology for predicting LDV in desert oases, by which proper management
strategies could be adopted to achieve sustainable food security.

Keywords: GIS; AHP; land degradation; Farafra oases; hyper-arid; western

1. Introduction

The new atlas of desertification [1] defined dryland as regions where the aridity index
(the ratio between the total annual precipitation to the annual potential evapotranspiration)
is lower than 0.65, including hyper-arid, arid, semi-arid, and sub-humid regions. The
dryland occupy nearly 40% of the world’s land area and supports about two billion of the
human population, 90% of whom live in developing countries [2]. However, food security
in the dryland, especially in developing countries, is threatened by human pressure on
agricultural lands, climate change, and soil erosion [3]. In the drylands, a desert oasis is
a promising area for establishing new communities and economic development [4]. It is
an efficient eco-geographical landscape, which allows flourishing vegetation or human
settlement owing to a stable water supply [5,6].
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The Western Desert occupies nearly 68% of the total area of Egypt and includes
several oases, i.e., Dakhla, Kharga, Bahariya, Siwa, and Farafra [7,8]. Farafra Oasis was
included in the New Valley project in the 1960s aiming at exploiting the groundwater of
the Nubian Sandstone aquifer (NSA) [9]. This oasis is characterized by the presence of a
large quantity of groundwater with good quality, many of which appear on the surface
of the earth in the wintertime, and thus, resulted in many farmlands on flat areas [10].
However, the desert oases are a fragile ecosystem and are affected by degradation hazards
that threaten agricultural sustainability [4,11,12]. Salinization/alkalization, waterlogging
and wind erosion are the most effective drivers for land degradation in irrigated desert
oases [13–15]. Therefore, timely and early detection of land degradation vulnerability is
crucial for sustainable agricultural production in these areas [3].

Land degradation vulnerability (LDV) is the susceptibility of an area to loss of pro-
ductivity due to various factors responsible, including climatic dryness, poor soil, and
vegetation quality [16]. The assessment of LDV is the process of identification and quantifi-
cation of pressure on land resources owing to several factors influencing the land system
quality [17]. Therefore, diagnosis of LDV is a complex process since it requires analyzing
numerous measurements related to soil properties and soil-environmental covariates like
climate, topography, and vegetation [3,18]. At present, multifactor vulnerability models
have been developed to quantify the current situation of land degradation in many arid
and hyper-arid regions [17,19,20]. These models used equal levels and ranking regardless
the relative importance of each factor. This, in turn, makes the precise assessment of LDV
too difficult as each variable has a different degree of influence, thereby, affecting the level
of LDV [21]. Statistical-based methods, including principal component analysis/factor
analysis (PCA/FA) have been widely used to estimate the weights of parameters or in-
dicators when developing an index [22,23]. The PCA/FA assumes linear relationships
among the selected parameters [24]. However, non-linear relationships also occur among
them [25]. Furthermore, at least 150–300 cases are required to obtain satisfactory results
from PCA/FA [25]. Therefore, a multi-criteria decision method; Analytic Hierarchy Process
(AHP) developed by Saaty [26] represents an effective tool for solving such decision prob-
lems. The AHP is a theory of measurement through pairwise comparisons, depending on
the judgments of experts to derive a priority number within a 1–9 scale [27]. This method
also provides the possibility of selecting various quantitative and qualitative criteria in the
presentation of proposed alternatives [28].

Geospatial techniques, including remote sensing (RS) and geographic information
system (GIS) are modern tools, which have been commonly used for modelling and
assessment of LDV [3]. Remotely-sensed imageries provide a better representation of
various spatial data in a rapid, consistent, reliable, and cost-effective manner over wide
areas compared with traditional methods [29]. On the other hand, GIS can gather, update,
manipulate, store, and integrate spatially referenced datasets to be included in spatial
modeling [30,31]. The combined use of geospatial technologies and AHP in zoning LDV
areas enhances the decision-making process and provides better accuracy on a regional
to local scale [3,16]. Previous case studies demonstrated that the integration of geospatial
technologies and AHP proved successful in assessing LDV in many desert areas worldwide,
such as in China [12], Iraq [32], and the Aral Sea basin in Central Asia [33].

Under Egyptian local conditions, efforts have been conducted for modelling LDV
in newly-reclaimed desert areas. Most of them considered various factors affecting soil
productivity using standard and adjusted Mediterranean desertification and land use
(MEDALUS) approaches [34,35], and/or FAO/UNEP and UNESCO provisional methodol-
ogy [36]. However, these methods use equal weights for all parameters when mapping
LDV, while each criterion has a point value and depends on physical, geomorphological,
and environmental impact regarding land degradation [37]. Therefore, the current work is
a trial for using AHP to prioritize variables and indices affecting soil performance in Farafra
Oasis to be integrated under the GIS environment for allocating LDV zones. The proposed
model would broaden the insight into active degradation processes in the inland desert
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oases in order to adopt proper land management strategies, thereby achieving sustainable
agricultural production.

2. Materials and Methods
2.1. Area of Study

Farafra Oasis is located in the central part of the Egyptian Western Desert. The studied
area (1445.66 km2, i.e., 144,566 ha) is located in UTM zone 35 between latitudes 26◦43′19′′

to 27◦16′23′′ N and longitudes 27◦41′14′′ to 28◦01′8′′ E (Figure 1).
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2.1.1. Climate

The climatic data (average of 15 years from 2005 to 2020) collected from El-Farafra
station (latitude: 27◦03′30′′ N: longitude: 27◦59′21′′ E, elevation: 28.3 m) indicate that the
minimum temperate is 4.9 ◦C and occurs during January, while the highest one is 38.5 ◦C
and occurs during July. The mean annual temperature is 22.6 ◦C and the total annual rainfall
is 21.4 mm. According to Soil Survey Staff [38], the soil temperature regime is Thermic and
the soil moisture regime is Torric. The mean annual potential evapotranspiration (PET) is
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3.5 mm day−1. The area is a hyper-arid zone with an aridity index <0.01. The mean annual
relative humidity averages 39.8%, while the mean annual wind speed is 10.4 km/h−1.

2.1.2. Land Use/Land Cover

The area is dominated by three land use/land cover classes: bare land, vegetation
(natural and cropland), and bare wet sabkha (Figure 2). These classes occupied 1223.30,
220.84, and 1.52 km2, which represented 84.62%, 15.28%, and 0.10% of the total area,
respectively. The natural vegetation occurred in scattered areas covered with halophytic
species (Chenopodiaceae) around the sabkha. The croplands include field crops, orchards,
and vegetable crops.
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2.1.3. Geology

The geological map [39] shown in Figure 3 illustrates that the area is dominated by
sedimentary sequences of Palaeocene, Eocene and Quaternary eras. The western parts
of the area are dominated by Farafralimestones (lower Eocene), and chalky limestone
of Paleocene (Tarawan Formation). The remaining parts are covered with Quaternary
Formations (Sabkha), chalk of Upper Cretaceous (Dakhla and Khoman Formations).

2.2. Data Used

It is well known that LDV is affected by a wide range of factors [16,17,19], and thus,
a range of evaluation criteria have been identified based on literature (Table 1). Data were
collected from RS imageries, field observations, laboratory analyses, and climatic conditions.
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Table 1. Data characterizing land degradation vulnerability.

Index Parameter Class Description Score Reference

Geology Parent material

1 Shale, schist, basic, ultra-basic,
Conglomerates, unconsolidate 0.1

[40]
2

Limestone, marble, granite,
Rhyolite, Ignibrite, gneiss,

siltstone, sandstone
0.5

3 Marl, Pyroclastics 1.0

Topography

Slope, %

1 Gently sloping: <5 0.1

[41]

2 Sloping: 5–10 0.3
3 Strongly sloping: 10–15 0.5
4 Moderately steep: 15–30 0.6
5 Steep: 30–60 0.8
6 Very steep: >60 1.0

Aspect

1 North 0.1

[42]

2 South 0.3
3 Flat 0.6
4 East 0.8
5 West 1.0

Topographic
wetness index

(TWI)

1 Very high: >5 0.1
2 High: 5–4 0.3
3 Moderate: 4–3 0.6
4 Low: 3–2 0.8
5 Very low: <2 1.0

Curvature
1 Liner: −0.1 to 0.1 0.2
2 Convex: >0.1 0.5
3 Concave: <−0.1 1.0
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Table 1. Cont.

Index Parameter Class Description Score Reference

Physical soil
quality

Depth, cm

1 Very deep: >150 0.1

[43]
2 Deep: 150–100 0.3
3 Moderately deep: 100–50 0.6
4 Shallow: 50–30 0.8
5 Very shallow: <30 1.0

Gravel, %

1 Few: <5 0.1

[41]
2 Common: 5–15 0.3
3 Many: 15–40 0.6
4 Abundant: 40–80 0.8
5 Dominant: >80 1.0

Texture

1 Clay 0.1

[30]
2 Sandy clay, silty clay 0.3

3 Sandy clay loam, silty clay loam,
clay loam 0.6

4 Sandy loam, loam, silt loam, silt 0.8
5 Sand, loamy sand 1.0

Bulk density (BD),
Mg m−3

1 None: <1.2 0.1

[43]
2 Slight: 1.2–1.4 0.3
3 Moderate: 1.4–1.6 0.6
4 Strong:1.6–1.8 0.8
5 Extreme: >1.8 1.0

Chemical soil
quality

pH

1 Neutral: 6.6–7.3 0.1

[44]
2 Slightly alkaline: 7.4–7.8 0.3
3 Moderately alkaline: 7.9–8.4 0.6
4 Strongly alkaline: 8.5–9.0 0.8
5 Very strongly alkaline: >9.0 1.0

Electrical
conductivity (EC),

dS m−1

1 None: <4 0.1

[43]
2 Slight: 4–8 0.3
3 Moderate: 8–16 0.6
4 Strong: 16–32 0.8
5 Extreme: >32 1.0

Exchangeable
sodium percentage

(ESP)

1 None: <10 0.1

[43]
2 Slight: 10–15 0.3
3 Moderate: 15–30 0.6
4 Strong: 30–50 0.8
5 Extreme: >50 1.0

Organic matter
(OM), g kg−1

1 Very high: >50 0.1

[30]
2 High: 50–30 0.3
3 Moderate: 30–17 0.6
4 Low: 17–10 0.8
5 Very low: <10 1.0

CaCO3, g kg−1

1 Non-calcareous: 0 g 0.1

[41]
2 Slightly calcareous: 0–20 0.3
3 Moderately calcareous: 20–100 0.6
4 Strongly calcareous: 100–250 0.8
5 Extremely calcareous: >250 1.0

Gypsum, g kg−1

1 Non-gepsiric: 0 0.1

[41]
2 Slightly gypsiric: 0–50 0.3
3 Moderately gypsiric: 50–150 0.6
4 Strongly gypsiric: 150–600 0.8
5 Extremely gypsiric: >600 1.0
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Table 1. Cont.

Index Parameter Class Description Score Reference

Wind erosion

Climate erosivity
factor (CE)

1 Very low: <20 0.1

[45]
2 Low: 20–50 0.3
3 Moderate: 50–70 0.6
4 Severe: 70–100 0.8
5 Extreme: >100 1.0

Soil erodible
fraction (EF), %

1 Very slight: <0.2 0.1

[46]
2 Slight: 0.2–0.3 0.3
3 Moderate: 0.3–0.4 0.6
4 High: 0.4–0.5 0.8
5 Very high: >0.5 1.0

Surface crust factor
(SCF)

(dimensionless)

1 Very high: <0.1 0.1

[46]
2 High: 0.1–0.3 0.3
3 Moderate: 0.3–0.5 0.6
4 Low: 0.5–0.7 0.8
5 Very low: >0.7 1.0

Surface roughness
factor (SRF)

(dimensionless)

1 Very high: <0.15 0.1

[47]
2 High: 0.15–0.3 0.3
3 Moderate: 0.3–0.5 0.6
4 Low: 0.5–0.7 0.8
5 Very low: >0.7 1.0

Fractional
vegetation cover

(FVC)
(dimensionless)

1 Very high density >0.8 0.1

[48]
2 High density: 0.8–0.6 0.3
3 Moderate density: 0.6–0.4 0.6
4 Low density: 0.4–0.2 0.8
5 Very low density: <0.2 1.0

Vegetation NDVI

1 Very high: >0.6 0.1

[16]
2 High: 0.6–0.5 0.3
3 Moderate: 0.5–0.40 0.6
4 Low: 0.4–0.3 0.8
5 Very low: <0.3 1.0

Remote Sensing Data

One scene (path 178/row 41) of Landsat 8, Operational Land Imager (OLI) was
acquired from the USGS Earth Explorer gateway (http://earthexplorer.usgs.gov/) on
10 January 2021. A Digital Elevation Model (DEM) with a 12.5 m pixel size of Advanced
Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR) was also
downloaded from the Alaska Satellite Facility (ASF) (https://www.asf.alaska.edu/sar-
data/palsar/). Digital processing of satellite imageries was performed using ENVI 5.1
software, including atmospheric correction (FLASH module), stretching, band stacking,
mosaicking, and spatial and spectral subsets. Thereafter, an unsupervised classification
(ISO DATA classifier) followed by a supervised classification (maximum likelihood) was
executed. The normalized difference vegetation index (NDVI) was calculated as follows:

NDVI =
NIR (band 8) − RED (band 4)
NIR (band 8) + RED(band 4)

.

Within ArcGIS 10.8 (ESRI Co, Redlands, CA, USA), slope classes, aspect, topographic
wetness index (TWI), and curvature were extracted from the DEM. The TWI was calculated
according to Haghighi, Darabi [49] as follows:

TWI = Ln
(

As

tanβ

)

http://earthexplorer.usgs.gov/
https://www.asf.alaska.edu/sar-data/palsar/
https://www.asf.alaska.edu/sar-data/palsar/
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where As is the local upslope contributing area derived from flow accumulation raster and
β is slope raster.

2.3. Field Work and Laboratory Analyses

Twenty-six geo-referenced soil profiles (Figure 2) were due to a 150 cm depth or lithic
contact. General features of each profile were extensively observed according to FAO [41].
Ninety-three soil samples were collected from the subsequent horizons. Another set of
undisturbed soil cores (100 cm3 volume) were collected from each depth to determine
the soil bulk density (BD). At each depth, three replicates of 1 kg each were compiled
in one composite sample, kept in polyethylene bags, and transported to the laboratory.
Soil samples were air-dried, ground, passed through a 2-mm mesh, and kept for analyses.
Soil analyses were performed according to the Soil Survey Staff [50]. The particle size
distribution was carried out using the standard pipette method. The pH and EC were
measured in the 1:2.5 soil-water suspension for the former and in the soil paste extract for
the latter. Soil Organic matter (OM) was determined using the Walkley–Black procedure.
The cation exchange capacity (CEC) and exchangeable sodium were determined using the
ammonium acetate at pH = 7.0. Calcium carbonate was determined using the calcimeter,
while gypsum content was determined using the acetone precipitation method.

2.4. Wind Erosion Calculation

The index of land susceptibility to wind erosion (ILSWE) developed by Fenta et al. [45]
was used for estimating wind erosion severity as follows:

ILSWE = CE× EF× SCF×VC× SR

where CE is the climatic erosive factor, EF is the wind-erodible fraction factor, SCF is the
soil crust factor, VC is the vegetation cover factor and SR is the surface roughness factor.

Climatic Erosive Factor (CE)

The CE was calculated as follows:

E =
1

100

i=12

∑
i=1

W3
i

[
PETi − Pi

PETi

]
× di

where: Wi is the mean monthly wind speed (m s−1) at 2 m height in month i, PETi is the
potential evapotranspiration (mm) in month i, Pi is the precipitation (mm) in a month i,
and di is the total number of days in the month i.

Wind-Erodible Fraction Factor (EF)

The EF was calculated as follows:

EF =
29.09 + 0.31SA + 0.17SI + 0.33 SA

CL − 2.59SOM− 0.95CaCO3

100

where EF is expressed in percent, SA is the sand content, SI is the silt content, CL is the clay
content, OM is the organic matter content.

Soil Crust Factor (SCF)

The SC factor was calculated as follows:

SCF =
1

1 + 0 : 0066(CL)2 + 0.21(OM)2



Agronomy 2021, 11, 1426 9 of 23

Vegetation Cover Factor (VCF)

The VCF was expressed by the fractional vegetation cover (FVC) derived from the
satellite image. The FVC was computed based on values of NDVI of highly dense vegeta-
tion (NDVIv) and bare soil (NDVIs) as follows:

FVC =
NDVI−NDVIs

NDVIv −NDVIs

Surface Roughness Factor (SRF)

The SR was calculated based on the ratio of ridge height to ridge spacing, expressed
as an index normally ranging from 0 (high ridges and furrows) to 1 (flat, bare, and smooth
field) [51]. The SRF was calculated using the focal statics tools within ArcGIS 10.8 [45]
as flows:

SRF =
DEMMean −DEMMin

DEMMax −DEMMin

2.5. Modelling Land Degradation Vulnerability

This procedure implied five steps; (1) selecting the criteria, (2) assigning a rating
for each criterion, (3) calculating a weight for each criterion, (4) developing five indices
(topography, physical soil, chemical soil, wind erosion, and vegetation), and (5) generating
the final LDV map.

Selecting and Generating Thematic Layers of LDV Criteria

A thematic map layer of each criterion has been generated using GIS tools. Thereafter,
each layer was given a score ranging from 0.1 to 1.0 (Table 1), where 0.1 was assigned to
the lowest class pertaining to the specific LDV index, while 1.0 was assigned to the highest
triggering class.

2.5.1. Generating LDV Indices

Six indices characterizing LDV have been developed; Geology index (GI), topographic
quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI)
wind erosion quality index (WEQI), and vegetation quality index (VQI). For TQI, PSQI,
CSQI, and WEQI, a pairwise comparison matrix was established, and then a comparison of
each criterion to one another was done with a rating scale (1 ÷ 9) developed by Saaty [27].
Prioritizing the selected criteria according to their importance depended on literature,
consulting local experts and stockholders (n = 10) throughquestionnaires, in addition to
authors’ experiences. Hence, a weight value for each criterion was developed. In order
to check the reality of the weights, the consistency ratio (CR) was considered, where CR
values <0.10 indicate a real estimation, while CR values >0.10 require a revised judgment.
After obtaining the weights, a thematic map for each index was generated using the
weighted sum algorithm as follows:

Indexx =
n

∑
i=1

Si ×Wi

where Si is the score value, Wi is the weight of the criteria and n is the number of criteria.

2.5.2. Geostatistical Analysis

The geostatistical analyst within ArcGIS tools was applied to predict and map soil
attributes in unsampled areas using the ordinary kriging (OK) method. The OK is the
most robust and common interpolation method [52,53]. The unsampled value Z (S0) is
calculated by taking it as a linear combination of the neighboring observations as follows:

Z(S0) =
N

∑
i=1

λi × Z(Si)
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where λi is the unknown weight for the measured value at the ith location, Z(Si) is the
measured value at the ith location, and N is the number of measured values. Within the
OK method, various prediction models are used. However, spherical, exponential, and
Gaussian are the most widely accepted used [53,54].

2.5.3. Generating the Final LDV Map

LDVI = [(GI×Wi) + (TQI×Wi) + (PSQI×Wi) + (CSQI×Wi) + (WEQI×Wi) + (VQI×Wi)]

The LDVI was finally classified into five classes: very low (<0.2), low (0.2–0.4), moder-
ate (0.4–0.6), high (0.6–0.8) and very high (>0.8). A flowchart of the methodology used in
the current work is shown in Figure 4.
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2.6. Model Validation

The model performance was checked considering two types of accuracies; the first one
for the AHP based on CR, while the second step for data provided for generating LDV map.
In the first step, the AHP was applied two times, considering the average and geometric
mean algorithm of the expert opinions. The method with low CR was taken to the next step.
In the second step, data were collected from satellite imageries, which were verified by field
surveys. The cross-validation technique was performed to test geostatistical models used
for predicting soil properties. Such a verification considered prediction errors, including
mean error (ME), root means square error (RMSE), mean standardized error (MSE), root
mean square standardized error (RMSSE), and average standardized error (ASE).

3. Results
3.1. Geology Index (GI)

As shown in Figure 2, the shale formations cover 731.11 km2, representing 50.57% of
the total area. Chalk carbonate rocks cover 674.16 km2 and account for 46.64% of the total
area. The sabkha formations were the least abundant and cover 40.39 km2 that represent
only 2.79% of the total area. Accordingly, nearly half of the total area was dominated
by high-quality parent material (shale), 47% was dominated by moderate quality (chalk),
while 3% was dominated by low quality (sabkha formations).

3.2. Topographic Quality Index (TQI)

The spatial distribution of topographic criteria (slope, aspect, TWI, curvature, and
TQI) is presented in Figure 5. The DEM analysis indicates the slope gradient varied from 0
to 81%, indicating a flat to very steep slope gradient [41]. The aspect map demonstrates
that slopes facing south (south, southeast, and southwest) and slope facing north (north,
northeast, and northwest) dominated the studied area. Values of the TWI varied from 3.70
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to 16.90, indicating a moderate to very high wetness degree [42]. The topographic curvature
map ranged from −7.19 to 10.67. Areas of convex and concave surface dominated the
studied area, while flat surface areas covered small parts. The results of the AHP (Table 2)
indicate that slope was the most influence topographic feature (0.54) followed by aspect
(0.31) and TWI (0.10), while curvature was the least effective (0.06). When combining the
scores of the four variables with their weights, it is clear that the TQI varied from 0.1 to
0.88, indicating very high to very low-quality classes. The spatial distribution of quality
grades (Table 3) shows that areas of high quality covered 46.54% of the total area, while the
remaining area was dominated by very high (35.54%), moderate (16.82%), low (0.98%), and
very low (0.26%) quality classes.
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Table 2. Pairwise comparison matrix for prioritize factor used.

Indices and Criteria within
Each Index

Pair-Wise Comparison Matrix
Weight

(1) (2) (3) (4) (5) (6)

Index
(1) Geology 1 1/3 1/4 1/3 2 1/3 0.07

(2) Topography 3 1 1/3 1/3 3 1/2 0.12
(3) Physical soil quality 4 3 1 1 4 2 0.29
(4) Chemical soil quality 3 3 1 1 4 3 0.30
(5) Wind erosion quality 1/2 1/3 1/4 1/4 1 1/3 0.05

(6) Vegetation quality 3 2 1/2 1/3 3 1 0.17
Consistency ratio (CR) 0.04 Sum 1.00
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Table 2. Cont.

Indices and Criteria within
Each Index

Pair-Wise Comparison Matrix
Weight

(1) (2) (3) (4) (5) (6)

Topographic quality criteria
(1) Slope 1 2 5 9 0.54

(2) Aspect 1/2 1 4 5 0.31
(3) TWI 1/5 1/4 1 2 0.10

(4) Curvature 1/9 1/5 1/2 1 0.06
Consistency ratio (CR) 0.011 Sum 1.00

Physical soil quality criteria
(1) Depth 1 2 4 8 0.52
(2) Gravel 1/2 1 3 5 0.30
(3) Texture 1/4 1/3 1 2 0.12

(4) Bulk density 1/8 1/5 1/2 1 0.06
Consistency ratio (CR) 0.006 Sum 1.00

Chemical soil quality criteria
(1) pH 1 1/4 1/3 1/2 1/3 2 0.07
(2) EC 4 1 2 5 4 6 0.40
(3) ESP 3 1/2 1 3 3 5 0.25
(4) OM 2 1/5 1/3 1 2 4 0.13

(5) CaCO3 3 1/4 1/3 1/2 1 3 0.11
(6) Gypsum 1/2 1/6 1/5 1/4 1/3 1 0.04

Consistency ratio (CR) 0.048 Sum 1.00

Wind erosion quality criteria
(1) Climate 1 4 5 9 2 0.46

(2) Soil erodibility 1/4 1 3 3 1/3 0.14
(3) Surface crust 1/5 1/3 1 2 1/4 0.07

(4) Surface roughness 1/9 1/3 1/2 1 1/4 0.05
(5) Vegetation cover 1/2 3 4 4 1 0.28

Consistency ratio (CR) 0.032 Sum 1.00

Table 3. Spatial distribution of quality grades in the studied area.

Quality Index Class Quality Area, km2 Area, %

Topography

1 Very high 511.89 35.41
2 High 672.87 46.54
3 Moderate 243.10 16.82
4 Low 14.11 0.98
5 Very low 3.69 0.26

Physical soil

1 Very high 0.00 0.00
2 High 352.23 24.36
3 Moderate 1053.04 72.84
4 Low 0.00 0.00
5 Very low 0.00 0.00

Chemical soil

1 Very high 0.00 0.00
2 High 126.20 8.73
3 Moderate 855.05 59.15
4 Low 416.79 28.83
5 Very low 7.23 0.50

Wind erosion

1 Very high 0.00 0.00
2 High 0.00 0.00
3 Moderate 132.07 9.14
4 Low 1273.20 88.07
5 Very low 0.00 0.00

Vegetation

1 Very high 0.97 0.07
2 High 6.78 0.47
3 Moderate 37.34 2.58
4 Low 59.90 4.14
5 Very low 1340.68 92.74

Reference term (Sabkha) 40.65 2.81
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3.3. Physical Soil Quality Index (PSQI)

Maps of the physical soil attributes (effective depth, gravel content, texture, BD, and
PSQI) are shown in Figure 6. The results illustrate that soil depth ranged from 110 to 150 cm,
while the gravel content ranged from 1.8% to 29.0%. These results indicate a deep soil
profile and a few to many gravel content [41]. The percentage ranges of sand, silt, and clay
were 55.4% to 89.8%, 4.9% to 31.9%, and 4.4% to 22.9%, respectively. The sand dominated
the soil particle size distribution averaging about 79% of the fine earth followed by silt
(12%) and clay (9%). The soil BD varied from 1.4 to 1.8 Mg m−3, indicating moderate to
strong compaction hazards [43]. The results of the AHP (Table 2) show that the maximum
weight was assigned to effective soil depth (0.52) followed by gravel content (0.30), texture
(0.12), and BD (0.06). The PSQI varied from 0.32 to 0.51, indicating high to moderate quality
classes. The spatial analysis (Table 3) shows that the soils with a moderate physical quality
degree covered 72.84% of the total area, while high physical quality soils occupied 24.36%.
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3.4. Chemical Soil Quality Index (CSQI)

The spatial distributions of chemical soil quality attributes (pH, EC, ESP, OM, CaCO3,
and gypsum) as presented in Figure 7. The soil pH ranged from 7.5 to 8.9, while the EC
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varied from 2.7 to 42.1 dS m−1. These ranges indicate that the soils were slightly to strongly
alkaline and non-saline to strongly saline [44]. The ESP varied from 7.7 to 31.3, indicating
none to strong sodicity (alkalinity) hazards [43]. The soils had a very low OM content with
a range of 1.3 to 7.8 g kg−1. Calcium carbonate and gypsum contents varied from 9.1 to
790.9 g kg−1 for the former and from 1.2 to 34.2 g kg−1 for the latter. This indicates that
the soils were moderate to extremely calcareous and slightly gypsiric [41]. The results of
the AHP (Table 2) illustrate that EC had the highest weight (0.40) followed by ESP (0.25),
OM (0.13), CaCO3 (0.11), pH (0.07), and gypsum (0.04). The CSQI ranged from 0.32 to
0.84, which indicates a high to very low quality. The spatial analysis (Table 3) illustrates
that moderate-quality soils occupied 59.15% of the total area, while high, low, and very
low-quality soils covered 8.73%, 28.83%, and 0.50%, respectively.
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3.5. Wind Erosion Quality Index (WEQI)

The spatial distribution of the four input parameters determining wind erosion haz-
ards is presented in Figure 8. The studied area is characterized by a moderate climate
hazard with a CE value of 69.80, and thus the score value of CE was considered as 0.6 [45].
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The EF values ranged from 0.34 to 0.57, indicating a moderate to very high soil erodibil-
ity [46]. The SCF varied from 0.15 to 0.89, which demonstrates a high to very low surface
crust [46]. The SRF varied from 0.11 to 0.86, indicating a very high to very low surface
roughness degree [47]. The FVC varied from 0 to 1.0, indicating a very low to very high
vegetation density [48]. Results of the AHP show that CE was the most effective driver for
wind erosion with a weight value of 0.46 followed by VCF (0.28), EF (0.14), SCF (0.07), and
SRF (0.05). The WEQI varied from 0.46 to 0.79, indicating a moderate to low quality. The
spatial distribution (Table 3) shows that 88.07% of the total area was under high erosion
risks, while 9.14% was prone to moderate risks.
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3.6. Vegetation Quality Index (VQI)

The VQI derived from the NDVI varied from 0.1 to 1.0, indicating a very high to very
low quality [16]. The results in Figure 9 shows that the very low vegetation cover was the
predominant class in the studied area and represented 92.74%. On the other hand, areas
characterized by low, moderate, and high vegetation quality occupied 4.14%, 2.58%, and
0.47% of the total area, respectively. The very high vegetation cover was the least abundant
class and represented only 0.07% of the total area.
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3.7. The Overall LDV Map

The AHP (Table 2) illustrates that CSQI had the greatest priority in LDV with a weight
value of 0.30 followed by PSQI (0.29), VQI (0.17), TQI (0.12), GI (0.07), while WEQI had
the lowest effect with a weight value of 0.05. The LDVI map (Figure 10) demonstrates
that values of LDVI varied from 0.32 to 0.72, indicating moderate to high degradation
hazards. The spatial distribution (Table 4) illustrates that the studied area was vulnerable to
low, moderate, and high degradation hazards. Moderate degradation hazards threatened
1232.98 km2 that represents 85.29% of the total area. High degradation hazards affected
164.80 km2, i.e., 11.40% of the total area. Areas were prone to low degradation hazards
affected a small area (7.24 km2) that represented only 0.50% of the total area.

Table 4. Spatial distribution of land degradation vulnerability classes in the studied area.

Class Hazard Degree Index Value Area, km2 Area, %

1 Very low <0.2 0.00 0.00
2 Low 0.2–0.4 7.24 0.50
3 Moderate 0.4–0.6 1232.98 85.29
4 High 0.6–0.8 164.80 11.40
5 Very high >0.8 0.00 0.00

Reference term (Sabkha) 40.65 2.81
Total 1445.66 100.00
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3.8. Validation

The results of the AHP (Table 2) show that values of the CR of all studied parameters
and indices were less than 0.1. Cross-validation results (Table 5) indicate that values of ME
and MSE were close to 0, while values of RMSSE were close to 1.0. Moreover, the values of
RMSE and ASE were rather similar. However, they showed higher values for most of the
studied properties. The results also showed that the exponential model was suitable for
six soil properties (gravel content, BD, gypsum content, EF, sand, and OM), followed by
the spherical model that was proper to five properties (EC, SCF, silt, clay, and pH), and the
Gaussian model that was suitable for only three properties (depth, ESP, and CaCO3).

Table 5. Cross-validation of prediction errors for ordinary kriging models.

Soil Property Model ME RMSE MSE RMSSE ASE

Depth Gaussian −0.014 12.390 0.002 1.038 12.072
Gravel Exponential 0.091 5.466 −0.040 0.976 6.895

BD Exponential −0.002 0.096 −0.021 1.052 0.093
EC Spherical −0.073 11.929 −0.005 0.982 12.234
ESP Gaussian 0.073 5.548 0.017 1.068 5.203

CaCO3 Gaussian 0.080 14.600 −0.030 1.160 15.640
Gypsum Exponential 0.039 9.194 −0.021 1.080 8.339

EF Exponential 0.004 0.073 0.039 0.930 0.078
SCF Spherical −0.005 0.021 −0.080 0.940 0.250
Sand Exponential −0.012 10.202 −0.008 0.948 10.818
Silt Spherical 0.025 6.859 −0.035 1.028 6.649

Clay Spherical 0.051 5.444 −0.070 1.094 5.540
pH Spherical −0.003 0.326 −0.019 1.067 0.306
OM Exponential −0.007 1.875 −0.009 1.018 1.818
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4. Discussion
4.1. Geology

Parent materials or local geology is an effective soil forming-factor, which plays an
obvious role in soil development, especially under aridity conditions. The physicochemical
properties of soil bedrock and the rates at which they are uplifted and weathered strongly
affect soil properties [55]. Soils derived from different geological formations react differently
to soil fertility, erosion, and vegetation [56]. In the studied area, nearly 50% of the soils
are covered with shale, which is considered good parent materials [40]. Sedimentary
rocks like shale contain sufficient basic cations like Ca2+, Na+, and K+ that provide a high
capacity to supply mineral cations to plants [57]. On the other hand, about 47% of the soils
are underlain by chalk limestone, which in turn is classified as moderate quality parent
material [40]. Limestone usually produces shallow soils with relatively low moisture
content and nutrient availability [56].

4.2. Topography

Topographic factors, including slope, aspect, curvature, and TWI play a great role in
soil development, productivity, and resistance to various degradation processes [58,59]. In
the studied area the slope and aspect were the most effective factor affecting topographic
quality and comprised together 0.85 of the total weights. This result is in line with those
obtained in previous works [42,58,59]. The slope and aspect showed a wide range, and
hence the area showed a wide variation in TQI ranging from very high to very low.
However, the topographic analysis indicated that the area would support sustainable
agricultural production, where nearly 82% of the total area belonged to very high and
high-quality classes.

4.3. Physical Soil Quality

The soils showed physical properties (depth, texture, gravel, and BD) typical for hyper-
arid desert conditions, which have been reported in previous studies [7,60]. Under very
dry conditions, physical weathering of bedrocks occurs well, while chemical weathering is
negligible. Therefore, the resultant soil is usually covered with sand and coarse fragments
that increase bulk density [61]. From the four physical properties, effective soil depth
and gravel content had the greatest effect on physical quality with weight values of
0.52 and 0.30, respectively. Soil depth is a major constrain in hyper-arid environments
due to the presence of highly-weathering resistant bedrock and high carbonate content
that prevent complete eluviation, and thus delay the development of soil depth [56,61].
This results in waterlogging problems, especially with inadequate drainage systems [31].
Moreover, high gravel content has a negative effect on biomass production and soil moisture
conservation [40]. Both depth and gravel content showed little variations, and thus the
PSQI arranged in two quality classes; moderate (73%) and high (24%). Therefore, modern
irrigation systems (sprinkler and drip) and establishing effective drainage networks are
recommended for sufficient water supply and preventing potential waterlogging.

4.4. Chemical Soil Quality

The soil showed chemical properties (pH, EC, ESP, OM, CaCO3, and gypsum) typical
for the dryland ecosystems, where soil bedrocks and aridity play great effects on soil
properties [62]. Sedimentary rocks (shale and limestone) underlain the studied are rich
in basic cations (Ca2+, Mg2+, Na+, and K+), and thus, the soils tended to have high pH
values [57]. Due to the low rainfall, the deep leaching of soluble salts, lime, and gypsum is
limited, and thus, they accumulate in soils [56,61]. The soil also showed a very low OM
content is due to low vegetation cover and biomass production [62]. Among six chemical
soil properties, EC and ESP had the greatest contribution to chemical quality with weight
values of 0.40, and 0.25, respectively. These results are in line with previous studies [4,12],
which indicate that salinity and/or sodicity are the main chemical degradation process in
the hyper-arid oases. Both EC and ESP showed wide ranges of salinity, and sodicity hazards,
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respectively. This made the CSQI varying from high to very low quality. The moderate
and low-quality soils dominated nearly 60% and 29% of the total area, respectively. This
requires an effective management strategy to mitigate potential risks. In this context,
selecting salt-tolerant crops, establishing adequate drainage systems, and integrated soil
and water management practices should be considered.

4.5. Wind Erosion Quality

The analysis of wind erosion factors (CE, EF, SCF, SR, and VCF) showed that the area
is highly susceptible to wind erosion risks. This is a common phenomenon in dryland
soils [62], especially under hyper-arid climates [4,12]. This is a result of high climate
erosivity coupled with low vegetation cover and highly erodible soil fraction [45,46].
Scarce rainfall, high evapotranspiration rate, and high wind velocity aggravate climate
erosivity [62]. Low clay and organic matter content in soils promote the detachment of soil
particles due to wind action [63]. The absence of dense vegetation cover accelerates soil
mass transport [42]. The CE, VCF, and EF were the most effective drivers for wind erosion
in the studied area and comprised 0.88 of the total weights. Accordingly, high erosion risks
threatened 88% of the total area, while 9% was prone to moderate risks. These findings
are in agreement with those reported in the Egyptian National Action Program to Combat
Desertification [64], where wind erosion hazards in the western desert oases vary between
moderate and severe with an average soil loss rate varying from 4.5 to 66.9 Mg ha−1 year−1.
Increasing the vegetation cover seems to be the most effective strategy for controlling wind
erosion in the studied area.

4.6. Vegetation Quality

The NDVI has been known as an effective tool for identifying the greenness of the
vegetation and patterns of green biomass [16]. The vegetation status in the studied area
would be a major driver for land degradation, since low and very low vegetation quality
classes occupied nearly 97% of the total area. On one hand, the bare land occupied nearly
85% of the total coverage. On the other hand (according to official statics), field crops
dominated 69% of the total cultivated area of which a perennial crop (alfalfa) covers 15%,
while annual crops (wheat, barely clover, broad bean, maize, sorghum, and groundnuts)
cover 54%. The remaining cultivated area was occupied by orchards (19%); mango, date
palm, guava, and vegetable crops (13%); potato, tomato, onion, and arugula. The annual
field crops provide low plant cover that in turn accelerate soil erosion as the soils remain
bare during the growing periods [40].

4.7. The Final LDV Map

The AHP shows that the soil chemical and physical qualities were the most effective
drivers for LDV in the studied area, and represented together 0.59 of the total weights. As
a result, the final LDVI showed a trend rather similar to that of the CSQI and PSQI, where
areas prone to moderate degradation hazards occupied the majority of the total area (85%),
while that prone to high risks occupied nearly 11%. This is logic because scarce rainfall
under a hyper-arid climate makes the modifications of major soil limitation (depth, salinity,
and alkalinity) more difficult [61,62].

4.8. Validation

When testing the model performance, it is clear that all values of CR (Table 2) were
within the acceptable limit of lesser than 0.1 [27]. This, in turn, indicates that the pairwise
comparison matrices of LDV indices had good stability and the calculated weights of all
parameters and indices were consistent. The results of the cross-validation (Table 5) show
that the OK method was suitable and reliable for predicting the spatial distribution of the
studied soil properties. These findings were rather similar to those obtained by Aldabaa
and Yousif [53], who reported that OK models (spherical, exponential, and Gaussian) were
suitable for mapping soil properties of some desert soils near Toshka Lakes. Values of
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ME and MSE close to 0 illustrate that the predicted values are unbiased [53]. Moreover,
values of RMSE close to 1.0 demonstrate that the standard error is accurate [52]. On the
other hand, high values of RMSE and ASE suggest that the number of samples should be
increased in further studies.

5. Conclusions

In the current work, a novel trial for modelling LDV in hyper-desert oases was
conducted and applied within 144,566 ha in Farafra, an inland Western Desert Oases in
Egypt. The model based on the integration of data collected from climate conditions,
geological maps, remote sensing imageries, field observations and laboratory analyses with
AHP is to be used under GIS environment. Six indices determining LDV were generated.
Weights derived from the AHP showed that the most effective drivers for land degradation
in the studied area were CSQI (0.30) followed by PSQI (0.29), VQI (0.17), TQI (0.12), GI
(0.07), while WEQI were the least (0.05). The studied area belonged to three degradation
vulnerability classes; low, moderate, and high. The areas susceptible to moderate risks
occupied the majority of the total area (85%), while those prone to high and low risks
occupied 11% and less than 1%, respectively. The CR for the studied parameters and
indices were within the acceptable limit (<0.1), indicating the high accuracy of the pairwise
comparisons. Moreover, prediction errors demonstrated that the performance of the
geostatistical models was proper and reliable for predicting and mapping soil properties.
The combined use of geospatial techniques and AHP would provide better estimation of
the current degradation status in the desert oases. The proposed model is a starting point
for sustainable agricultural planning in the newly-reclaimed desert oases, particularly in
hyper-arid regions.
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