Water-Centric Nexus Approach for the Agriculture and Forest Sectors in Response to Climate Change in the Korean Peninsula
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Method
2.2.1. The Concept of Water-Centric Nexus and Spatiotemporal Setting
2.2.2. Model and Input Data Description for the Agriculture Sector
2.2.3. Model and Input Data Description for the Forest Sector
2.2.4. Validation
2.3. Land-Cover Data
3. Results and Discussion
3.1. Evaluation of Model Performance in the Baseline Period
3.2. Assessment of Climate Change Impact on Crop Productivity and Agricultural Water Demand
3.2.1. Assessment of Climate Change Impact on Crop Productivity
3.2.2. Assessment of Climate Change Impact on Agricultural Water Demand
3.3. Assessment of Climate Change Impact on Forest Water Supply
3.4. Assessment of Water Balance of Agricultural Water Demand and Forest Water Supply at the Watershed Level
3.5. Water-Centric Nexus Approach to Adaptation for Climate Change
3.6. Limitations and Uncertainties of the Nexus Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callendar, G.S. The artificial production of carbon dioxide and its influence on temperature. Q. J. Royal Meteorol. Soc. 1938, 64, 223–240. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Burroughs, W.J. Climate Change: A Multidisciplinary Approach; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Van Vuuren, D.P.; Bijl, D.L.; Bogaart, P.; Stehfest, E.; Biemans, H.; Dekker, S.C.; Doelman, J.C.; Gernaat, D.E.H.J.; Harmsen, M. Integrated scenarios to support analysis of the food-energy-water nexus. Nat. Sustain. 2019, 2, 1132–1141. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water-energy-food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Berardy, A.; Chester, M.V. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12, 035004. [Google Scholar] [CrossRef]
- Chiabai, A.; Quiroga, S.; Martinez-Juarez, P.; Higgins, S.; Taylor, T. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework. Sci. Total. Environ. 2018, 635, 1191–1204. [Google Scholar] [CrossRef]
- Pardoe, J.; Conway, D.; Namaganda, E.; Vincent, K.; Dougill, A.J.; Kashaigili, J.J. Climate change and the water-energy-food nexus: Insights from policy and practice in Tanzania. Clim. Policy 2018, 18, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, H.Y.; Deng, Z.D.; Ringler, C.; Gao, Y.; Hejazi, M.I.; Leung, L.R. Impacts of climate change, policy and water-energy-food nexus on hydropower development. Renew. Energy 2018, 116, 827–834. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.; Van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Ward, P.J. Global drivers of future river flood risk. Nat. Clim. Chan. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Choi, Y.; Lim, C.H.; Chung, H.I.; Ryu, J.; Jeon, S.W. Novel index for bioclimatic zone-based biodiversity conservation strategies under climate change in Northeast Asia. Environ. Res. Lett. 2019, 14, 124048. [Google Scholar] [CrossRef]
- Cha, S.; Lim, C.H.; Kim, J.; Kim, M.; Song, C.; Lee, W.K. Analysis of landslide hazard area due to heavy rainfall in the Seoul Metropolitan Area. J. Korean Soc. Geospat. Inform. Sci. 2018, 26, 3–11. [Google Scholar]
- Nam, W.H.; Hong, E.M.; Choi, J.Y.; Kim, T.; Hayes, M.J.; Svoboda, M.D. Assessment of the extreme 2014–2015 drought events in North Korea using weekly standardized precipitation evapotranspiration index (SPEI). J. Kor. Soc. Agric. Engin. 2017, 59, 65–74. [Google Scholar]
- Bang, N.K.; Nam, W.H.; Hong, E.M.; Michael, J.H.; Mark, D.S. Assessment of the meteorological characteristics and statistical drought frequency for the extreme 2017 spring drought event across South Korea. J. Korean Soc. Agric. Engin. 2018, 60, 37–48. [Google Scholar]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the impact of drought on agriculture using the US drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Li, W.; Wen, J.; Xu, B.; Li, X.; Du, S. Integrated assessment of economic losses in manufacturing industry in Shanghai metropolitan area under an extreme storm flood scenario. Sustainability 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Elliott, K.J.; Caldwell, P.V.; Brantley, S.T.; Miniat, C.F.; Vose, J.M.; Swank, W.T. Water yield following forest-grass-forest transitions. Hydrol. Earth Syst. Sci. 2017, 21, 981–997. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.-H.; Choi, Y.; Kim, M.; Lee, S.J.; Folberth, C.; Lee, W.-K. Spatially explicit assessment of agricultural water equilibrium in the Korean Peninsula. Sustainability 2018, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Brêda, J.P.L.F.; de Paiva, R.C.D.; Collischon, W.; Bravo, J.M.; Siqueira, V.A.; Steinke, E.B. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Chang. 2020, 159, 1–20. [Google Scholar] [CrossRef]
- Lim, C.H.; Song, C.; Choi, Y.; Jeon, S.W.; Lee, W.K. Decoupling of forest water supply and agricultural water demand attributable to deforestation in North Korea. J. Environ. Manag. 2019, 248, 109256. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Im, E.S.; Bae, D.H. A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices. Clim. Dyn. 2019, 53, 389–404. [Google Scholar] [CrossRef]
- Lim, C.-H.; Kim, S.H.; Chun, J.A.; Kafatos, M.C.; Lee, W.-K. Assessment of agricultural drought considering the hydrological cycle and crop phenology in the Korean Peninsula. Water 2019, 11, 1105. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhang, L.; Zhang, B.; He, C.; Jin, X.; Bai, X. Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China. Agric. Water Manag. 2016, 177, 37–45. [Google Scholar] [CrossRef]
- Lim, C.-H.; Kim, S.H.; Choi, Y.; Kafatos, M.C.; Lee, W.-K. Estimation of the virtual water content of main crops on the Korean Peninsula using multiple regional climate models and evapotranspiration methods. Sustainability 2017, 9, 1172. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.R.; Choi, J.Y. Effects of shift in growing season due to climate change on rice yield and crop water requirements. Paddy Water Environ. 2019, 18, 1–17. [Google Scholar] [CrossRef]
- Kim, G.S.; Lim, C.-H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.K. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Almendinger, J.E.; Zhang, X.; Huang, M.; Chen, X.; Leng, G.; Li, X. Enhancing SWAT simulation of forest ecosystems for water resource assessment: A case study in the St. Croix River basin. Ecol. Engin. 2018, 120, 422–431. [Google Scholar] [CrossRef]
- Yu, Z.; Man, X.; Duan, L.; Cai, T. Assessments of impacts of climate and forest change on water resources using swat model in a subboreal watershed in Northern Da Hinggan Mountains. Water 2020, 12, 1565. [Google Scholar] [CrossRef]
- National Institute of Meteorological Science. Climate Change Projection Report of Korean Peninsula; National Institute of Meteorological Science: Jeju City, Korea, 2020.
- Lim, C.H.; Yoo, S.; Choi, Y.; Jeon, S.W.; Son, Y.; Lee, W.K. Assessing climate change impact on forest habitat suitability and diversity in the Korean Peninsula. Forests 2018, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lim, C.H.; Song, C.; Lee, W.K.; Piao, D.; Heo, S.; Jeon, S. Estimation of future carbon budget with climate change and reforestation scenario in North Korea. Adv. Space Res. 2016, 58, 1002–1016. [Google Scholar] [CrossRef]
- Lim, C.-H.; Choi, Y.; Kim, M.; Jeon, S.W.; Lee, W.-K. Impact of deforestation on agro-environmental variables in cropland, North Korea. Sustainability 2017, 9, 1354. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.W.; Lee, S.; Park, E.; Lim, C.H.; Song, C.; Lee, H.; Ko, Y.; Cha, S.; Yoon, H.; Lee, W.K. Deep learning applications on multitemporal SAR (Sentinel-1) image classification using confined labeled data: The case of detecting rice paddy in South Korea. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 7589–7601. [Google Scholar] [CrossRef]
- Leemhuis, C.; Thonfeld, F.; Näschen, K.; Steinbach, S.; Muro, J.; Strauch, A.; López, A.; Daconto, G.; Games, I.; Diekkrüger, B. Sustainability in the food-water-ecosystem nexus: The role of land use and land cover change for water resources and ecosystems in the Kilombero Wetland, Tanzania. Sustainability 2017, 9, 1513. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Jiang, C.; Dong, X.; Yang, Z.; Wen, M.; Yang, J. Understanding the complex environmental management through a len of food-water-ecosystem nexus: Insights from an ecosystem restoration hotspot in dryland. Sci. Total. Environ. 2021, 783, 147029. [Google Scholar] [CrossRef]
- Food Agriculture Organization (FAO). FAOSTAT Land Use Domain; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 15 September 2019).
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Song, Y.; Lim, C.H.; Lee, W.K.; Eom, K.C.; Choi, S.E.; Lee, E.J.; Kim, E. Applicability analysis of major crop models on Korea for the adaptation to climate change. J. Clim. Chang. Res. 2014, 5, 109–125. [Google Scholar] [CrossRef]
- Folberth, C.; Skalský, R.; Moltchanova, E.; Balkovič, J.; Azevedo, L.B.; Obersteiner, M.; Van Der Velde, M. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 2016, 7, 11872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Xiong, W. Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation. Agric. Syst. 2013, 120, 61–75. [Google Scholar] [CrossRef]
- Xiong, W.; Balkovič, J.; van der Velde, M.; Zhang, X.; Izaurralde, R.C.; Skalský, R.; Lin, E.; Mueller, N.; Obersteiner, M. A calibration procedure to improve global rice yield simulations with EPIC. Ecol. Model. 2014, 273, 128–139. [Google Scholar] [CrossRef]
- Lim, C.-H.; Lee, W.K.; Song, Y.; Eom, K.C. Assessing the EPIC model for estimation of future crops yield in South Korea. J. Clim. Chang. Res. 2015, 6, 21–31. [Google Scholar] [CrossRef]
- Kafatos, M.C.; Kim, S.H.; Lim, C.-H.; Kim, J.; Lee, W.-K. Responses of agroecosystems to climate change: Specifics of resilience in the mid-latitude region. Sustainability 2017, 9, 1361. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Williams, J.R.; Gassman, P.W.; Baffaut, C.; Izaurralde, R.C.; Jeong, J.; Kiniry, J.R. EPIC and APEX: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1447–1462. [Google Scholar] [CrossRef]
- Lim, C.-H.; Kim, Y.S.; Won, M.; Kim, S.J.; Lee, W.K. Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea. Geomat. Nat. Haz. Risk 2019, 10, 719–739. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lim, C.H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.K. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables. Remote. Sens. 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Blackland Research Center. Potential Heat Unit Program. 2010. Available online: http://swatmodel.tamu.edu/software/potential-heat-unit-program (accessed on 14 July 2014).
- Folberth, C.; Yang, H.; Gaiser, T.; Abbaspour, K.C.; Schulin, R. Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa. Agric. Syst. 2013, 119, 22–34. [Google Scholar] [CrossRef]
- Food Agriculture Organization (FAO). FAO Digital Soil Map of the World; FAO: Rome, Italy, 1995. [Google Scholar]
- Food Agriculture Organization (FAO). FertiSTAT—Fertilizer Use Statistics; FAO: Rome, Italy, 2007; Available online: http://www.fao.org/ag/agl/fertistat/index_en.htm (accessed on 11 December 2014).
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2015. [Google Scholar]
- Lee, S.J.; Yoo, S.; Ham, B.; Lim, C.H.; Song, C.; Kim, M.; Kim, S.J.; Lee, W.K. Ecosystem service assessment of urban forest for water supply and climate mitigation of Seoul Metropolitan Area. Korean. J. Remote Sens. 2017, 33, 1119–1137. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear Basin, North Carolina. Hydrol. Earth. Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Forest Science (NIFoS). Development of Management Technology and Long-Term Monitoring of Forest Water Resources; NIFoS: Seoul, Korea, 2010.
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Engin. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Jeon, S.W.; Kim, J.; Jung, H. A study on the forest classification for ecosystem services valuation focused on forest type map and land cover map. J. Korea Soc. Environ. Restor. Tech. 2013, 16, 31–39. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Agricultural Science. Soil Environmental Maps User Manual; Rural Development Administration: Jeonju, Korea, 2018.
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote. Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Lee, E.J.; Im, E.S.; Jung, I.W. Spatially distinct response of rice yield to autonomous adaptation under the CMIP5 multi-model projections. Asia Pac. J. Atmos. Sci. 2017, 53, 21–30. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, J.M.; Lee, D.R.; Kim, Y.; Lee, D. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J. Hydrol. 2007, 345, 199–211. [Google Scholar] [CrossRef]
- Huang, B.; Polanski, S.; Cubasch, U. Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Clim. Res. 2015, 64, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Min, S.K.; Lee, D.; Cha, D.H.; Suh, M.S.; Kang, H.S.; Kwon, W.T. Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dyn. 2016, 46, 2469–2486. [Google Scholar] [CrossRef]
- Yoon, E.J.; Thorne, J.H.; Park, C.; Lee, D.K.; Kim, K.S.; Yoon, H.; Seo, C.; Lim, C.H.; Kim, H.; Song, Y.I. Modeling spatial climate change landuse adaptation with multi-objective genetic algorithms to improve resilience for rice yield and species richness and to mitigate disaster risk. Environ. Res. Lett. 2019, 14, 024001. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoo, S.H.; Choi, J.Y.; Engel, B.A. Effects of climate change on paddy water use efficiency with temporal change in the transplanting and growing season in South Korea. Irrig. Sci. 2016, 34, 443–463. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Chen, C.; Liu, A.; Wei, H.; Zhang, H.; Huang, G.; Wu, Y. Planning a sustainable regional irrigated production and forest protection under land and water stresses with multiple uncertainties. J. Clean. Prod. 2018, 188, 751–762. [Google Scholar] [CrossRef]
Sector | Variables | Source |
---|---|---|
Agriculture sector (EPIC model) | Daily maximum temperature | Historical: KMA Climate Change Scenario: CORDEX-East Asia (GCM: HadGEM2-AO) |
Daily minimum temperature | ||
Daily precipitation | ||
Daily solar radiation | ||
Daily wind speed | ||
Daily relative humidity | ||
Potential heat unit | Blackland Research Center [48] | |
Soil pH | Digital Soil Map of the World [50] | |
bulk density | ||
Cation exchange capacity | ||
Electrical conductivity | ||
Sand | ||
Silt | ||
Forest sector (InVEST model) | Potential evapotranspiration | CHELSA [57] (GCM: HadGEM2-AO) |
Annual precipitation | ||
Plant available water content | RDA [61] | |
Depth-to-root restricting layer | Canadell et al. [59] | |
Land use | GLC30 [62] |
Rain-Fed Rice Yield (Average) | Irrigated Rice Yield (Average) | |||||
---|---|---|---|---|---|---|
South Korea (t ha−1) | North Korea (t ha−1) | Korean Peninsula (t ha−1) | South Korea (t ha−1) | North Korea (t ha−1) | Korean Peninsula (t ha−1) | |
Baseline | 2.53 | 2.80 | 2.67 | 4.56 | 4.24 | 4.39 |
RCP4.5 2050s | 1.94 | 1.99 | 1.96 | 4.66 | 4.29 | 4.44 |
RCP4.5 2070s | 1.77 | 2.24 | 2.02 | 4.60 | 4.73 | 4.66 |
RCP8.5 2050s | 1.91 | 1.69 | 1.79 | 4.57 | 4.25 | 4.38 |
RCP8.5 2070s | 1.26 | 1.68 | 1.48 | 4.29 | 4.33 | 4.30 |
Forest Water Supply | Agricultural Water Demand | |||||||
---|---|---|---|---|---|---|---|---|
Mean (mm y−1) | South Korea (million m3 y−1) | North Korea (million m3 y−1) | Korean Peninsula (million m3 y−1) | Mean (mm y−1) | South Korea (million m3 y−1) | North Korea (million m3 y−1) | Korean Peninsula (million m3 y−1) | |
Baseline | 495.65 | 33,269 | 30,189 | 63,458 | 136.75 | 4198 | 4745 | 8943 |
RCP4.5 2050s | 594.57 | 37,990 | 38,620 | 76,610 | 174.90 | 5477 | 5985 | 11,462 |
RCP4.5 2070s | 513.70 | 38,724 | 27,874 | 66,598 | 175.22 | 5543 | 5939 | 11,482 |
RCP8.5 2050s | 573.64 | 40,774 | 33,367 | 74,141 | 179.80 | 5322 | 6491 | 11,813 |
RCP8.5 2070s | 629.59 | 42,096 | 39,112 | 81,208 | 183.93 | 5766 | 6277 | 12,043 |
Main Watershed | Forest Water Supply | Agricultural Water Demand | ||||
---|---|---|---|---|---|---|
Baseline (million m3 y−1) | RCP8.5 2070s (million m3 y−1) | Change Rate (%) | Baseline (million m3 y−1) | RCP8.5 2070s (million m3 y−1) | Change Rate (%) | |
Tumen River | 1969.6 | 2559.4 | +29.9 | 390.0 | 469.2 | +20.3 |
Yalu River | 8779.1 | 11,918.7 | +35.8 | 813.9 | 898.9 | +10.4 |
Northeastern Basin | 3454.5 | 4168.7 | +20.7 | 324.9 | 369.5 | +13.7 |
Chongchon River | 4118.7 | 5426.8 | +31.8 | 694.9 | 978.9 | +40.9 |
Taedong River | 4677.8 | 6039.4 | +29.1 | 1401.7 | 2048.5 | +46.1 |
Eastern Basin | 3032.4 | 3809.8 | +25.6 | 271.2 | 326.6 | +20.4 |
Ryesong River | 1116.9 | 1436.6 | +28.6 | 474.5 | 682.7 | +43.9 |
Han River | 17,150.9 | 21,943.0 | +27.9 | 1104.4 | 1541.3 | +39.6 |
Han River: east sea | 1860.2 | 2462.3 | +32.4 | 42.8 | 47.9 | +11.9 |
Han River: west sea | 266.0 | 326.5 | +22.7 | 69.4 | 110.8 | +59.7 |
Anseong River | 251.3 | 318.4 | +26.7 | 126.3 | 194.3 | +53.8 |
Sapgyo River | 288.8 | 353.2 | +22.3 | 115.5 | 180.8 | +56.5 |
Geum River | 2785.3 | 3484.1 | +25.1 | 489.5 | 720.2 | +47.1 |
Geum River: west sea | 452.3 | 541.3 | +19.7 | 144.8 | 224.7 | +55.2 |
Nakdong River | 7029.4 | 9141.8 | +30.0 | 1016.8 | 1374.6 | +35.2 |
Nakdong River: east sea | 866.3 | 1177.4 | +35.9 | 54.6 | 74.8 | +37.0 |
Nakdong River: south sea | 885.0 | 1031.8 | +16.6 | 67.8 | 82.1 | +21.1 |
Mankyung–Dongjin Rivers | 529.6 | 635.5 | +20.0 | 216.9 | 318.4 | +46.8 |
Hyungsan River | 281.0 | 389.1 | +38.5 | 59.4 | 73.7 | +24.1 |
Sumjin River | 2055.3 | 2395.7 | +16.6 | 243.4 | 298.4 | +22.6 |
Sumjin River: south sea | 1089.7 | 1212.1 | +11.2 | 125.0 | 157.0 | +25.6 |
Taehwa River | 198.6 | 266.9 | +34.4 | 28.7 | 33.6 | +17.1 |
Yeongsan River | 745.6 | 881.3 | +18.2 | 246.5 | 324.7 | +31.7 |
Yeongsan River: west sea | 289.7 | 337.0 | +16.4 | 98.0 | 138.1 | +40.9 |
Yeongsan River: south sea | 319.9 | 369.1 | +15.4 | 62.2 | 84.6 | +36.0 |
Huiya–Sooyoung | 260.9 | 337.7 | +29.5 | 25.7 | 31.1 | +21.0 |
Tamjin River | 187.7 | 213.5 | +13.7 | 21.4 | 27.3 | +27.6 |
Jeju Island | 537.9 | 631.2 | +17.4 | 187.8 | 188.0 | +0.1 |
Main Watershed | Baseline (1981–2010) | RCP8.5 (2070s) | Change Rate (%) | ||
---|---|---|---|---|---|
million m3 y−1 | million m3 km2 y−1 | million m3 y−1 | million m3 km2 y−1 | ||
Tumen River | 1579.6 | 0.151 | 2090.2 | 0.200 | +32.3 |
Yalu River | 7965.2 | 0.251 | 11,019.8 | 0.347 | +38.3 |
Northeastern Basin | 3129.6 | 0.147 | 3799.1 | 0.179 | +21.4 |
Chongchon River | 3423.7 | 0.270 | 4447.9 | 0.351 | +29.9 |
Taedong River | 3276.1 | 0.153 | 3990.9 | 0.186 | +21.8 |
Eastern Basin | 2761.2 | 0.428 | 3483.1 | 0.539 | +26.1 |
Ryesong River | 642.4 | 0.092 | 753.9 | 0.108 | +17.4 |
Han River | 16,046.5 | 0.466 | 20,401.7 | 0.593 | +27.1 |
Han River: east sea | 1817.4 | 0.467 | 2414.4 | 0.621 | +32.9 |
Han River: west sea | 196.6 | 0.100 | 215.6 | 0.109 | +9.7 |
Anseong River | 125.1 | 0.075 | 124.1 | 0.075 | −0.7 |
Sapgyo River | 173.3 | 0.104 | 172.4 | 0.103 | −0.5 |
Geum River | 2295.8 | 0.232 | 2763.9 | 0.279 | +20.4 |
Geum River: west sea | 307.5 | 0.103 | 316.6 | 0.106 | +3.0 |
Nakdong River | 6012.7 | 0.254 | 7767.2 | 0.328 | +29.2 |
Nakdong River: east sea | 811.7 | 0.274 | 1102.7 | 0.372 | +35.8 |
Nakdong River: south sea | 817.2 | 0.332 | 949.7 | 0.386 | +16.2 |
Mankyung–Dongjin Rivers | 312.6 | 0.093 | 317.1 | 0.094 | +1.4 |
Hyungsan River | 221.5 | 0.194 | 315.4 | 0.277 | +42.4 |
Sumjin River | 1811.9 | 0.369 | 2097.3 | 0.427 | +15.8 |
Sumjin River: south sea | 964.7 | 0.285 | 1055.1 | 0.312 | +9.4 |
Taehwa River | 169.8 | 0.257 | 233.3 | 0.353 | +37.4 |
Yeongsan River | 499.1 | 0.144 | 556.6 | 0.160 | +11.5 |
Yeongsan River: west sea | 191.7 | 0.090 | 199.0 | 0.094 | +3.8 |
Yeongsan River: south sea | 254.7 | 0.169 | 284.5 | 0.189 | +11.7 |
Huiya–Sooyoung | 235.1 | 0.272 | 306.6 | 0.354 | +30.4 |
Tamjin River | 166.3 | 0.329 | 186.2 | 0.369 | +12.0 |
Jeju Island | 350.1 | 0.189 | 443.2 | 0.239 | +26.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.-H. Water-Centric Nexus Approach for the Agriculture and Forest Sectors in Response to Climate Change in the Korean Peninsula. Agronomy 2021, 11, 1657. https://doi.org/10.3390/agronomy11081657
Lim C-H. Water-Centric Nexus Approach for the Agriculture and Forest Sectors in Response to Climate Change in the Korean Peninsula. Agronomy. 2021; 11(8):1657. https://doi.org/10.3390/agronomy11081657
Chicago/Turabian StyleLim, Chul-Hee. 2021. "Water-Centric Nexus Approach for the Agriculture and Forest Sectors in Response to Climate Change in the Korean Peninsula" Agronomy 11, no. 8: 1657. https://doi.org/10.3390/agronomy11081657
APA StyleLim, C. -H. (2021). Water-Centric Nexus Approach for the Agriculture and Forest Sectors in Response to Climate Change in the Korean Peninsula. Agronomy, 11(8), 1657. https://doi.org/10.3390/agronomy11081657