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Abstract: The accurate and timely assessment of pasture quantity and quality (i.e., nutritive character-
istics) is vital for effective pasture management. Remotely sensed data can be used to predict pasture
quantity and quality. This study investigated the ability of Sentinel-2 multispectral bands, convolved
from proximal hyperspectral data, in predicting various pasture quality and quantity parameters.
Field data (quantitative and spectral) were gathered for experimental plots representing four pasture
types—perennial ryegrass monoculture and three mixtures of swards representing increasing species
diversity. Spectral reflectance data at the canopy level were used to generate Sentinel-2 bands and
calculate normalised difference indices with each possible band pair. The suitability of these indices
for prediction of pasture parameters was assessed. Pasture quantity parameters (biomass and Leaf
Area Index) had a stronger influence on overall reflectance than the quality parameters. Indices
involving the 1610 nm band were optimal for acid detergent fibre, crude protein, organic matter and
water-soluble carbohydrate concentration, while being less affected by biomass or LAI. The study
emphasises the importance of accounting for the quantity parameters in the spectral data-based
models for pasture quality predictions. These explorative findings inform the development of future
pasture quantity and quality models, particularly focusing on diverse swards.

Keywords: pasture quality; pasture quantity; remote sensing; Sentinel-2; spectral indices; multi-species
swards

1. Introduction

Pastures are one of the most important terrestrial ecosystems on earth with currently
26% of the world’s land area and 70% of the world’s agricultural area covered by grasslands
(http://www.fao.org; accessed on 19 August 2020). Pastures are not only a major and
relatively inexpensive livestock feed source, but also support ecosystem services, such as
biodiversity conservation and soil carbon sequestration [1]. In 2018, permanent grassland
(i.e., land used as grassland for five years or more) constituted nearly 57% of the total
agricultural area in the UK [2].

Efficient pasture management is one of the key factors governing economic viability
of the dairy and ruminant meat industry by ensuring accurate and well-planned pasture
allocation for optimal grazing and conservation [3–5]. More than ever before, there is a
need for an accurate near real-time methods for estimating and predicting pasture quantity
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and quality, especially in the context of grass-based dairy production systems such as the
UK, one of the largest milk producers in Europe [6].

Current methods that farmers use for pasture monitoring include visual observations
through field walking, rising plate meters (RPMs) for pasture biomass [7,8] and handheld
Near-InfraRed Spectroscopy (NIRS) device surveys and/or laboratory chemical or NIRS
analysis for pasture chemical composition that determines its nutritive value and digestibil-
ity [9–11]. While informative on a local scale, these methods are time, labour and cost
intensive [7,11,12].

Pasture management using information from remote sensing (RS) offers advantages
over traditional methods, such as provision of near real-time information, coverage of
large areas, frequent repeated measurements and a choice of different spectral bands, i.e.,
visible, near infrared (NIR) and short wave infrared (SWIR) to monitor different pasture
parameters [13]. The application of pasture monitoring using remote sensing data has
already been demonstrated in various studies [13–16]. In spite of these advantages, wide
implementation of these methods to operationally monitor pastures still remains limited
due to factors such as unsuitability of spatial and temporal resolutions of the datasets
(for example, MODerate resolution Imaging Spectroradiometer [MODIS] data have a
minimum resolution of 250 m, and LANDSAT data are only available every 16 days).
Most importantly, high resolution RS datasets (such as Satellite Pour l’Observation de la
Terre (SPOT), WorldView and Indian Remote Sensing (IRS) data) are generally not freely
available. Frequent cloud cover, especially in temperate climate regions such as the UK,
also reduces the temporal frequency of usable images.

The release of the pair of Sentinel-2 multispectral imager satellites has potentially
eliminated some of these limitations [17,18]. Specifications of Sentinel-2 include 13 multi-
spectral bands including three novel red-edge bands for vegetation monitoring, high spatial
resolution (10, 20 and 60 m), short revisit time (~5 days using two satellites), large swath
width, higher signal to noise ratio, as well as the data being freely available. Sentinel-2
data have already been assessed for irrigation performance for dairy pastures [19], shown
promise in quantifying biomass response to different fertilizer treatments [17] and have
been found effective for retrieval of pasture structural parameters such as Leaf Area Index
(LAI), which provides information about pasture canopy growth and density [18]. On the
other hand, the potential of Sentinel-2 bands for monitoring pasture quality parameters
relating to nutritional content has not been tested widely.

The potential of Sentinel-2 bands in retrieving vegetation nitrogen concentration using
field spectroscopy data has been discussed by [20]. Sentinel-2 images have also been
used to map plant chlorophyll content [21]. Recently, Lugassi et al. [22] also explored
the potential of Sentinel-2 images for mapping crude protein and fibre content. Further
research is needed to explore the usability of Sentinel-2 data for a wide range of pasture
composition predictions that relate to nutritive quality parameters.

Pasture quality parameters such as contents of fibre (cellulose, hemicellulose and other
structural carbohydrates), crude protein (typically estimated from nitrogen concentration)
and water soluble carbohydrates (sugars) have very subtle spectral characteristics and
generally are studied using hyperspectral data [11,23–25]. However, hyperspectral data are
generally gathered on the smaller scale (i.e., field to multi-field using drones or portable
instruments). There are no operational satellites providing these datasets at high spatial
resolution and regional coverage. However, field hyperspectral data provide a very good
opportunity to simulate broader multispectral bands with the same spectral characteristics
as those of operational satellites, and hence can be utilised to understand the potential
of those broad bands in studying biophysical characteristics such as pasture nutritive
characteristics and species composition. The proximity of the field hyperspectral sensor to
the target canopy also eliminates various factors such as atmospheric interference and view
geometry that can affect relationships between dependent variables (pasture quality) and
independent variables (spectral reflectance). Thus, in order to establish actual Sentinel-2
based models for pasture quality, it is important to understand in the first instance whether
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the reflectance in wavebands chosen for the Sentinel-2 satellites are in principle sensitive to
the quality parameters of interest.

Therefore, the main aim of this paper is to test whether Sentinel-2 multispectral bands
can be used to determine pasture quality parameters with suitable accuracy. We also
include pasture quantity (biomass, LAI) parameters in our analysis to understand the
influence of these parameters on pasture quality estimation.

2. Materials and Methods
2.1. Study Area

Data collected from experimental pasture plots established at a temperate research
farm in southern England (UK) were used in this study. Sonning farm (51.4729◦ N,
0.9037◦ W), the site of the University of Reading’s Crops Research Unit, is located in
the River Thames catchment, 5.5 km northeast of Reading. The farm’s soil mainly com-
prises free-draining alluvial material, with a sandy loam texture. At this site, during the
2017 growing season, four different pasture types were grown (Perennial Ryegrass only
(PRG; 5 varieties), a 6 species mixture (Mix−6), a 12 species mixture (Mix−12); and a
17 species mixture (Mix−17)) in 4 m × 5 m plots with four replicates of each pasture type,
i.e., a total of 16 plots. All mixtures contained a proportion of PRG combined with increas-
ing numbers of other grasses, legumes and herbs (Table 1). The plots were configured in a
4 × 4 Latin square layout where no treatment was repeated in any row or column of the
plot design. Establishment took place in Autumn 2016 on land that was under permanent
pasture prior to the experiment. Soil surveys were conducted at the time of sowing to
ensure soil mineral indices were at appropriate levels to support plant growth. In 2017,
the PRG plots received inorganic Nitrogen (N) fertilizer at a rate of 250 kg N ha−1 yr−1

(ammonium nitrate) over five separate applications (each 50 kg N ha−1), two occurring
prior to the first harvest and then one after each of the first three harvests. Plots containing
plant mixtures were not fertilised to promote N fixation by legumes in the mixtures.

Table 1. A summary of the four pasture types (mixtures of perennial ryegrass, grasses, legumes and forbs), including
species type and sampling dates in 2017. Each pasture species mix contains at least one variety of perennial ryegrass and
then up to 16 other species, with the grasses, legumes and forbs in each mix listed in column 2. Grasses have been separated
from legumes and forbs by semi-colon. Non-destructive sampling included measurements of Leaf Area Index (LAI) and
spectral measurements.

Pasture Type Species Dates of Simultaneous Non-Destructive and
Destructive Pasture Sampling

Perennial Ryegrass
(PRG, 4 samples)

Perennial Ryegrass
(5 varieties) 24 April

Mix-6 (12 samples)
Perennial Ryegrass

(3 varieties); timothy, red clover, white clover
(2 varieties), chicory, ribgrass

2 May 14 June 25 August

Mix-12 (12 samples)

Perennial Ryegrass, Festulolium, timothy,
cocksfoot, meadow fescue; red clover, alsike
clover, white clover, Lucerne, yellow trefoil,

chicory, ribgrass

Mix-17 (11 samples)

Perennial Ryegrass, Festulolium, timothy,
cocksfoot, meadow fescue, tall fescue; red

clover, white clover
(2 varieties), alsike clover, sweet clover,

birdsfoot trefoil, sainfoin, chicory, ribgrass,
burnet, yarrow, sheep’s parsley
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2.2. Data Collection

All four pasture types were harvested multiple times during the 2017 growing season.
The date of harvest was chosen when biomass estimates by RPM reached a minimum
target quantity of 2500 kg DM ha−1. Harvest occurred as soon as possible after this target
was reached, as weather and labour availability would allow. Such constraints caused
variation in actual harvest biomass, particularly where the growth rate in particular plots
was high. As different pasture types grew at different rates through the season, the harvest
timings of each pasture type were allowed to vary so as not to disadvantage any of the
pastures through wrongly timed harvesting. In total, the PRG plots were cut five times in
the 2017 season, and the three different mixed plot types were cut four times each as their
total biomass yield was lower.

Two types of data were collected: those based on destructive sampling (physical
removal of biomass) and those based on non-destructive sampling (just before each har-
vest). Destructive pasture data collection comprised sampling for, and determination of,
biophysical variables (biomass) and biochemical variables (crude protein (CP), acid deter-
gent fibre (ADF), neutral detergent fibre (NDF), water soluble carbohydrate (WSC) and
organic matter (OM)); see Sections 2.2.1 and 2.2.2. Non-destructive pasture data collection
included measurements of Leaf Area Index (LAI; Section 2.2.3) and of spectral reflectance
data (Section 2.2.4). Destructive sampling occurred at every harvest for use in a concurrent
study; however, due to weather conditions, non-destructive sampling for the present study
only occurred on a subset of four harvest dates (Table 1) which limited the number of
samples that could be used in the present work. On the first of these four harvest dates,
the sampling of PRG plots took place, while during the three subsequent harvest dates,
all three of the mixed pasture types were harvested. This resulted in a greater number of
mixed pasture samples than PRG samples represented in the resulting sample set.

2.2.1. Sampling and Preparation for Biomass and Pasture Quality Analysis

Three 50 × 50 cm quadrats were cut for each plot from randomly chosen locations
on each of the sampling dates (Table 1). The cut sample contained the vegetative material
growing above 7 cm, as measured from the soil surface, to replicate the available biomass
eaten by livestock using conventional grazing pressure (i.e., stocking to achieve a 7 cm
residual for optimal regrowth), and to prevent damage to forage species that grow from a
raised crown. Available biomass from the three quadrats was bulked together, then stored
in a cool box and subsequently a refrigerator until ready for weighing and drying. Samples
were dried in a forced air oven set at 60 ◦C for 72 h so that a constant weight was achieved,
then reweighed to determine dry matter percentage and saved for subsequent chemical
composition analyses. Drying at 60 ◦C for an extended period is recommended practice for
samples that are intended for chemical analysis so that the nutritive content of the sample
is preserved [26]. In total, forty bulked samples were analysed for the purpose of this
study (one cut × four replicates for PRG; three cuts × four replicates for each of the three
mixed pasture types; Table 1). However, one sample from Mix-17 spoiled, leaving a total of
39 samples used for analysis.

2.2.2. Pasture Quality Analysis

Laboratory pasture composition analysis of the dried pasture samples was performed
for CP, NDF (an estimate of total hemicellulose, cellulose and lignin), ADF (an estimate of
total cellulose and lignin), WSC and OM using standard laboratory analysis methods as
follows: nitrogen concentration was measured using the macro-Kjeldahl method and mul-
tiplied by 6.25 to give CP (AOAC method 954.01) [27]; ADF and NDF were assayed using a
filter bag technique with heat-stable amylase and inclusive of residual ash according to the
ANKOM methods 12 and 13, respectively [28]; ash content was measured by combustion
of a subsample at 500 ◦C for 16 h; OM was calculated by deducting ash content from the
dry matter content (AOAC method 942.05) [27]; and WSC was obtained using procedures
described by Fuller et al. [29].
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2.2.3. LAI Measurement

LAI was measured using a ceptometer (AccuPAR LP−80, Decagon Devices, Pullman,
WA, USA). For each plot, ten measurements were taken facing the sun, first above canopy
level and subsequently below the canopy (i.e., just above the soil) to calculate the difference
in photosynthetically active radiation (PAR). LAI was then derived from the measured
PAR according to classic light extinction theory and retrieved from the instrument’s built-
in datalogger. All measurements were taken under stable cloud conditions. The leaf
inclination factor of the ceptometer was set to 1, assuming a spherical leaf angle distribution.

2.2.4. Canopy Spectral Reflectance Data

Canopy hyperspectral reflectance data were collected using two SVC HR−1024i
spectroradiometers (Spectra Vista Corporation, Poughkeepsie, NY, USA) in dual field of
view mode. The instrument measures reflectance between 350 and 2500 nm. The standard
set-up, as described by MacLellan and Gray [30], was followed for both the dual field of
view and post-processing protocol (http://fsf.nerc.ac.uk/; accessed on 1 August 2018). The
dual field of view set-up involves two spectroradiometers (one looking at the canopy and
another at the standard spectralon reflectance panel). This approach ensures minimisation
of the effect of variable incoming radiation on the measurements, and hence this method
yields reliable and comparable measurements of reflectance. Spectral reflectance was
measured using a 25 angle field-of-view fibre optics cable connected to the SVC at 1 m
above the ground in nadir with an integration time of 3 s for each measurement. Twelve
measurements were taken uniformly over each plot, and the average spectrum was used
for subsequent analyses.

2.3. Post-Processing of Reflectance Data and Construction of Spectral Index-Based Models
2.3.1. Conversion of Hyperspectral Bands to Sentinel-2 Broadbands

The hyperspectral bands collected using the SVC HR−1024i field spectroradiometer
were converted (convolved) into 12 multispectral Sentinel-2 (S2) broadbands using the
spectral response function for the S2A sensor. There are thirteen Sentinel-2 bands, but the
tenth (1375 nm) band was removed from the analyses due to the occurrence of noisy data.
Moreover, this band is deemed to be of less relevance for vegetation remote sensing from
satellites, due to its high sensitivity to atmospheric aerosols and water vapour.

2.3.2. Band-Pair Analysis Using the Normalised Difference Index (NDI)

Band analysis was performed on the reflectance data to assess the best combination of
S2 band-pairs for predicting the different pasture quality and quantity (PQQ) parameters.
The reflectance values from pairs of each of the different band combinations (bands x
and y) were substituted into the generic Normalised Difference Index (NDI) equation
(Equation (1)), where R is the reflectance in the corresponding bands (x and y).

NDIx,y = (Rx − Ry)/(Rx + Ry) (1)

These index values were then compared with the PQQ results obtained from de-
structive sampling and subsequent laboratory analyses (Sections 2.2.1 and 2.2.2) and from
non-destructive sampling for LAI (Section 2.2.3). This analysis was repeated for each PQQ
parameter for best-fit first, second and third orders of polynomial equations fitted through
the PQQ versus NDI data. Our methodological approach to test the potential of S2 bands
for the estimation of pasture parameters is based on regression analysis and comparable to
other studies which have undertaken similar statistical analyses in the context of different
vegetation types and properties [15,17,31].

2.3.3. Leave One Out Cross-Validation (LOOCV)

The analysis for determining the best S2 band combinations (Section 2.3.2) and
literature-based vegetation indices (Section 2.3.4) for estimating each of the PQQ parame-

http://fsf.nerc.ac.uk/
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ters was performed using a total of 39 spectral and pasture biophysical and biochemical
observations of the four different pasture types (see Section 2.2.1 and Table 1). A Leave One
Out Cross-Validation (LOOCV) method was employed for model cross-validation as the
sample size was limited. The cross-validation approach allows rigorous testing of statistical
relationships by avoiding over- and under-fitting. The average Mean Square Error (MSE)
over each of the 39 runs along with the regression r2, slope and intersect between modelled
and measured values for the left-out samples were calculated. Furthermore, the average
Concordance Correlation Coefficient (Conr), which was considered to be a robust metric
for absolute comparison of model performance with reference to measured values, was
also calculated [32].

2.3.4. Vegetation Indices (VIs) Analysis

A few selected vegetation indices (VIs) that have already been used for determination
of vegetation quantity or quality parameters, and that can be calculated using pairs of S2
bands (Table 2), were tested for statistical relationships with each PQQ parameter using
the same cross-validation method as described in Section 2.3.3.

Table 2. Vegetation indices suggested in the literature for vegetation quantity or quality that can be
calculated using pairs of Sentinel-2 bands. Ri refers to the reflectance factor at wavelength i nm.

Index Formula Selective References

NDVI (Normalised Difference
Vegetation Index)

R842−R665
R842+R665

[33,34]

GNDVI (Green Normalised Difference
Vegetation Index)

R842−R560
R842+R560

[35,36]

CLre (ChLorophyll red edge) ( R783
R705

)− 1 [20,37]

REPO (Red Edge POsition) 700 + 40
(R665+R783)

2−R705
R740−R705

[20,37]

NDMI (Normalised Difference Moisture Index) R865−R1610
R865+R1610

[38]
PSRI (Pigment Senescence Reflectance Index) R665−R490

R740
[39]

WDRVI (Wide Dynamic Range
Vegetation Index)

(0.1R783−R665)
(0.1R783+R665)

[22]

SAVI (Soil-Adjusted Vegetation Index) (R842−R665)(1+0.428)
R842+R665+0.428

[22]

The indices were chosen such that different bands ranging from VIS to SWIR were utilised. These indices have
been reported to be sensitive to different structural and biochemical constituents in a variety of vegetation types
previously.

3. Results
3.1. Relationships between Two-Band NDIs and Measured PQQ Parameters

Firstly, in order to assess the interdependencies between the determined PQQ parame-
ters, Table 3 shows Pearson correlation coefficients (r) between pairs of laboratory-derived
values for pasture quantity and quality parameters. Biomass had a strong correlation with
LAI (positive correlation) as well as with quality parameters ADF (negative) and WSC
(positive). LAI had a relatively poor correlation with pasture quality parameters, apart
from with CP (0.58). A large negative correlation was observed between ADF and WSC
(−0.90) as well as between OM and CP (−0.81) and between WSC and CP (−0.61). NDF
did not show a good correlation with any of the parameters, apart from with ADF (r = 0.65).
A large positive correlation was found between OM and WSC (0.87).
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Table 3. Pearson correlation coefficient (r) among all pairs of laboratory-derived pasture quantity
and quality parameters (39 samples for each parameter). The largest correlations (r > ±0.6) have
been highlighted in bold.

Correlation
Coefficient Biomass LAI ADF NDF CP WSC OM

Biomass 1.0
LAI 0.70 1.0
ADF −0.72 −0.35 1.0
NDF −0.32 −0.27 0.65 1.0
CP −0.01 0.58 0.27 −0.17 1.0

WSC 0.65 0.13 −0.90 −0.36 −0.61 1.0
OM 0.37 −0.14 −0.66 −0.05 −0.81 0.87 1.0

LAI—leaf area index, ADF—acid detergent fibre, NDF—neutral detergent fibre, CP—crude protein, WSC—water
soluble carbohydrate, OM—organic matter.

Figure 1 shows a 2-D matrix plot that summarises the strength of the relationship
between NDIs and pasture quantity parameters (biomass and LAI), using MSE. Table 4
provides results for those combinations of wavelengths for which the MSE values were
lower than the fifth percentile of all MSEs, thus depicting their comparatively high potential
in capturing variations in the respective parameter.
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Figure 1. Two-dimensional matrix plot showing mean square errors (MSEs) obtained for models
built using all possible Sentinel-2-based two-band normalised difference indices (NDIs) for (a–c)
biomass (39 samples) and (d–f) leaf area index (LAI, 39 samples).

Variation in biomass was captured by those two-band NDIs that had wavelength
combinations (see Equation (1)) in the visible, red-edge and NIR bands (Figure 1a–c). An
increase in the polynomial order of the equation did not lead to any notable decrease in
MSE. Relationships developed using the SWIR bands (1610 and 2190 nm) were weaker
(i.e., higher MSE values) compared to the VNIR bands. LAI showed strong relationships
with a rather limited number of two-band indices compared to the biomass (Figure 1d–f).
None of the band combinations involving the SWIR band showed a consistently strong
relationship with LAI. The wavelengths 560 nm and 443 nm in combination with others
in the visible, NIR or red-edge region produced the best results for biomass and LAI,
respectively (Table 4). However, the accuracies were comparable across this entire spectrum
(VIS to NIR).
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Figure 2 shows the MSE matrix plot for ADF and NDF. In the case of ADF (Figure 2a–c),
strong relationships were obtained for NDIs involving the 1610 nm band. This finding is
consistent over all three orders used for the relationships. In the case of NDF, MSEs were
higher compared to those for ADF (Figure 2d–f). None of the band combinations led to
MSE values less than 20 g kg−1 of DM. The poor relationships for NDF were also evident
from low Conr values (Table 4).
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detergent fibre (ADF, 39 samples) and (d–f) neutral detergent fibre (NDF, 39 samples).

Table 4. Statistical indicators for the developed ‘best’ models for pasture quantity and quality
parameters (39 samples for each parameter) using ‘leave one out’ cross validation. Only normalised
models yielding mean square errors (MSEs) in the lowest 5th percentile (considering all possible
models) are listed. The results in bold highlight models yielding highest Conr.

Parameter Order Wave.
(1)

Wave.
(2) MSE r2 Slope intercept Conr

LAI

1 443 490 0.33 0.84 0.86 0.42 0.91
1 443 665 0.39 0.73 0.75 0.73 0.83
1 705 740 0.43 0.66 0.67 0.96 0.76
1 705 945 0.44 0.67 0.69 0.92 0.77
2 443 490 0.34 0.84 0.86 0.42 0.91
2 443 665 0.30 0.81 0.81 0.55 0.88
2 705 740 0.44 0.65 0.67 0.96 0.76
2 705 945 0.45 0.65 0.68 0.93 0.76
3 443 490 0.35 0.83 0.84 0.47 0.90
3 443 665 0.29 0.81 0.81 0.56 0.88
3 665 1610 0.45 0.54 0.56 1.30 0.64
3 705 740 0.45 0.63 0.68 0.96 0.76
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Table 4. Cont.

Parameter Order Wave.
(1)

Wave.
(2) MSE r2 Slope intercept Conr

Biomass

1 560 783 29.50 0.80 0.81 38.24 0.88
1 560 842 28.99 0.80 0.82 37.34 0.88
1 560 865 28.56 0.80 0.82 36.80 0.88
1 560 945 30.34 0.80 0.81 38.36 0.88
2 490 865 30.40 0.76 0.80 39.91 0.86
2 560 783 29.46 0.78 0.81 38.22 0.87
2 560 842 29.06 0.78 0.82 37.44 0.87
2 560 865 28.81 0.78 0.82 36.97 0.88
3 490 865 31.20 0.77 0.80 40.56 0.86
3 560 783 30.30 0.77 0.82 38.09 0.87
3 560 842 30.14 0.78 0.82 37.79 0.87
3 560 865 29.96 0.78 0.82 37.64 0.87

ADF

1 783 1610 16.51 0.81 0.82 47.30 0.88
1 842 1610 16.49 0.80 0.82 48.09 0.88
1 865 1610 16.48 0.80 0.81 48.75 0.88
1 945 1610 16.37 0.80 0.81 48.71 0.88
2 783 1610 15.87 0.81 0.83 42.99 0.89
2 842 1610 15.92 0.81 0.83 43.82 0.89
2 865 1610 15.96 0.81 0.83 44.42 0.89
2 945 1610 15.61 0.81 0.84 42.25 0.89
3 783 1610 16.16 0.82 0.83 42.66 0.89
3 842 1610 16.19 0.81 0.83 43.37 0.89
3 865 1610 16.18 0.81 0.83 43.80 0.89
3 945 1610 15.81 0.82 0.84 40.76 0.90

NDF

1 665 705 28.96 0.38 0.41 248.16 0.45
1 783 842 25.93 0.43 0.46 225.70 0.52
1 783 865 26.85 0.45 0.47 221.74 0.53
1 842 865 28.65 0.41 0.44 234.82 0.49
2 665 705 28.74 0.37 0.41 245.64 0.46
2 665 740 29.53 0.35 0.39 254.30 0.44
2 783 842 26.57 0.39 0.44 236.04 0.49
2 783 865 27.88 0.41 0.45 232.71 0.50
3 665 705 30.24 0.33 0.37 263.00 0.41
3 783 842 28.17 0.36 0.43 240.25 0.49
3 783 865 28.56 0.43 0.47 222.36 0.53
3 842 865 30.53 0.38 0.44 233.65 0.50

CP

1 443 705 16.31 0.51 0.59 44.77 0.67
1 560 705 16.49 0.49 0.52 51.72 0.59
1 560 1610 15.27 0.61 0.63 39.71 0.71
1 705 1610 13.64 0.69 0.71 31.36 0.79
2 443 705 15.07 0.61 0.65 37.09 0.73
2 560 705 16.51 0.47 0.52 51.58 0.60
2 560 1610 14.01 0.63 0.68 34.56 0.76
2 705 1610 11.90 0.74 0.76 26.31 0.83
3 443 705 17.38 0.34 0.54 47.01 0.58
3 560 705 16.27 0.47 0.52 51.73 0.60
3 560 1610 15.67 0.50 0.67 37.03 0.70
3 705 1610 12.40 0.70 0.74 28.57 0.81
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Table 4. Cont.

Parameter Order Wave.
(1)

Wave.
(2) MSE r2 Slope intercept Conr

1 740 1610 3.86 0.81 0.82 3.77 0.88

WSC

1 842 1610 4.20 0.80 0.81 3.95 0.88
1 865 1610 4.16 0.80 0.81 3.85 0.88
1 945 1610 4.00 0.82 0.83 3.51 0.89
2 740 1610 3.97 0.80 0.82 3.64 0.88
2 842 1610 4.33 0.79 0.81 3.85 0.87
2 865 1610 4.28 0.79 0.82 3.75 0.88
2 945 1610 4.13 0.81 0.83 3.39 0.89
3 490 705 3.97 0.76 0.78 4.45 0.85
3 740 1610 3.90 0.80 0.82 3.70 0.88
3 865 1610 4.04 0.80 0.83 3.62 0.88
3 945 1610 3.81 0.82 0.85 3.18 0.90

OM

1 560 705 9.03 0.48 0.51 445.26 0.58
1 740 1610 9.23 0.47 0.50 461.21 0.56
1 865 1610 9.30 0.45 0.47 482.93 0.53
1 945 1610 9.13 0.47 0.49 462.85 0.56
2 560 705 9.11 0.46 0.54 424.48 0.61
2 740 865 9.45 0.38 0.41 538.39 0.46
2 740 1610 9.49 0.45 0.50 458.62 0.57
2 945 1610 9.40 0.45 0.50 453.26 0.57
3 490 705 7.63 0.59 0.62 347.79 0.70
3 560 705 8.03 0.56 0.61 359.88 0.69
3 740 1610 9.13 0.47 0.52 440.34 0.59
3 945 1610 9.39 0.46 0.52 441.91 0.59

Similar to ADF, both CP and WSC were predicted well by NDIs involving the 1610 nm
band (Figure 3). In the case of CP, the best combination was that of 1610 nm with 705 nm
and with the second order of relationship (Conr = 0.83, Table 4; Figure 3a–c). For WSC,
all the NDIs resulting in MSE values less than the fifth percentile of all MSEs involved
the 1610 nm band, with the highest Conr for the combination of 1610 and 945 nm (Table 4,
Figure 3d–f). Similarly, NDIs involving 1610 nm produced the best relationships for the
OM (Table 4, Figure 3g–i). However, the overall fit of the relationships was comparatively
poorer as is evident from the lower Conr values. The best relationship, i.e., the highest Conr
and lowest MSE, was obtained with the blue (490 nm) and red-edge band (705 nm), for the
third order fit (Table 4).

Figure 4 graphically represents the model fits between the PQQ parameters and their
‘best-fit’ NDIs. However, it should be noted that based on Table 4, other NDIs with similar
Conr and MSE values will result in similar model fits, for the respective order of relationship.
Both biomass and LAI were well predicted by linear models with the relationships fitting
well across all treatments, even at high vegetation densities. Similarly, for other parameters,
the ‘best’ model generally captured variations in all the treatments, avoiding any consistent
over- or under-fitting for any specific treatments, except WSC for PRG. However, the
limited number of PRG data points offered reduced scope for further investigation.
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(a) biomass, (b) leaf area index (LAI), (c) acid detergent fibre (ADF), (d) neutral detergent fibre (NDF), (e) crude protein
(CP), (f) water soluble carbohydrate (WSC), (g) organic matter (OM). For each of the parameters, 39 samples were used to fit
the relationships.
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3.2. Relationships between VIs and PQQ Parameters

For biomass, most of the indices except PSRI and NDMI led to relationships with
MSEs and Conr comparable to those of the best NDIs (Tables 4 and 5, Figure 1a–c). For
LAI, only CLre and REPO led to relationships with Conr values higher than 0.70. For the
quality parameters, the VI models were noticeably less accurate than those obtained with
the band-pair NDIs.

Table 5. Mean square error (MSE) and concordance correlation coefficients (Conr) for predicting pasture quantity and
quality parameters (39 samples for each parameter) using literature-based indices (Table 2). The results in bold highlight
models yielding highest Conr.

Biomass LAI CP ADF NDF WSC OM

Index Order MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr MSE Conr

NDVI 1 41.99 0.77 0.50 0.64 26.28 0.00 26.31 0.58 31.10 0.32 7.95 0.27 12.63 0.00
NDVI 2 32.13 0.84 0.51 0.64 25.62 0.09 26.23 0.63 30.14 0.43 7.69 0.48 11.94 0.30
NDVI 3 35.29 0.82 0.51 0.63 28.04 0.18 30.11 0.51 31.56 0.34 8.74 0.41 13.29 0.33

GNDVI 1 28.99 0.88 0.52 0.68 26.68 −0.01 24.30 0.63 33.87 0.17 7.53 0.40 12.22 0.04
GNDVI 2 29.06 0.87 0.53 0.67 27.65 −0.02 24.77 0.62 31.56 0.40 7.87 0.40 13.11 0.08
GNDVI 3 30.14 0.87 0.54 0.68 25.38 0.04 25.90 0.64 32.40 0.40 7.11 0.49 11.51 0.22

SAVI 1 42.21 0.77 0.50 0.64 26.21 0.00 26.73 0.56 31.06 0.32 8.01 0.26 12.68 −0.01
SAVI 2 30.91 0.86 0.51 0.64 25.41 0.12 26.40 0.62 30.16 0.43 7.64 0.49 11.77 0.32
SAVI 3 33.23 0.84 0.50 0.64 27.53 0.19 30.46 0.50 32.00 0.33 8.65 0.42 12.97 0.35
CLre 1 33.86 0.83 0.47 0.75 25.96 0.00 27.59 0.53 35.78 0.10 8.23 0.29 12.65 0.02
CLre 2 34.81 0.84 0.47 0.75 26.75 −0.01 26.40 0.55 33.32 0.32 8.23 0.30 13.39 0.02
CLre 3 33.37 0.84 0.48 0.75 23.15 0.23 27.93 0.56 28.97 0.48 7.70 0.43 11.49 0.32
REPO 1 31.44 0.86 0.49 0.73 26.51 −0.01 26.68 0.56 37.06 0.05 7.91 0.37 12.43 0.06
REPO 2 31.66 0.87 0.50 0.72 25.10 0.00 24.07 0.63 33.83 0.27 6.89 0.45 12.11 0.06
REPO 3 31.99 0.86 0.50 0.76 22.32 0.24 25.60 0.63 32.54 0.35 7.06 0.55 11.56 0.31

WDRVI 1 38.92 0.80 0.50 0.64 26.41 −0.01 25.57 0.61 31.91 0.29 7.81 0.32 12.48 0.00
WDRVI 2 34.03 0.83 0.51 0.63 25.57 0.06 26.17 0.63 29.77 0.43 7.64 0.47 11.87 0.27
WDRVI 3 34.72 0.83 0.52 0.63 27.01 0.18 27.61 0.59 30.68 0.40 8.12 0.48 12.74 0.35
NDMI 1 48.72 0.68 0.77 0.09 22.72 0.09 16.48 0.88 34.39 0.17 4.16 0.88 9.30 0.53
NDMI 2 44.30 0.73 0.68 0.25 21.65 0.24 15.96 0.89 35.13 0.15 4.28 0.88 9.60 0.55
NDMI 3 47.18 0.72 0.66 0.27 21.55 0.25 16.18 0.89 35.62 0.14 4.04 0.88 9.60 0.56
PSRI 1 70.88 0.18 0.58 0.46 22.40 0.24 38.41 0.06 31.56 0.31 9.48 −0.01 12.58 0.03
PSRI 2 68.72 0.21 0.54 0.49 22.16 0.23 39.49 0.04 32.65 0.27 9.73 −0.01 12.80 0.02
PSRI 3 81.20 0.15 0.60 0.41 23.96 0.31 44.14 −0.05 32.89 0.25 10.90 −0.12 14.97 0.08

For both ADF and WSC, NDMI produced a closely fitting model with low MSE and
Conr > 0.85. However, it is important to note that NDMI involves bands 865 and 1610 nm
(Table 2); we had already identified the 1610 nm band, when used in combination with other
bands in NDIs, as a band that yields good fits for certain quality parameters (including
ADF and WSC; see Section 3.1 and Figure 3). None of the VIs chosen resulted in a good
relationship for CP, NDF and OM.

4. Discussion

Spectral data-based monitoring of pasture quality has mainly been conducted using
hyperspectral data [23,25,40,41], whereas limited research has been done to investigate the
application of satellite multispectral sensors for pasture quality monitoring. The availability
of Sentinel-2 images offers great potential for regular monitoring of pasture quantity [18]
as well as quality [22]. The analysis presented in the present study, with a large number
of two-band indices, showed good sensitivity in a moderate number of Sentinel-2 band
combinations to variations in ADF and WSC, but reduced sensitivity of Sentinel-2 bands
for the prediction of CP, NDF and OM. These results are different from those presented by
Lugassi et al. [22], wherein the authors demonstrated a reasonable capability of information
retrieved from Sentinel-2 images for CP and NDF estimation. However, different authors
have reported variable performance of spectral data in estimating a range of pasture
quality parameters [11,25,42,43], which suggests that the relationships between the spectral
bands or regions studied and pasture quality parameters are not as strong as for other
biochemicals, for example, leaf chlorophyll content [44]. Another interpretation of the
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variable performance in different studies could be that relationships between spectral
reflectance and pasture quality are less stable than for other biochemicals—e.g., correlated
bands may differ depending on forage species, weed proportion, structure of the canopy,
etc., which would all change between studies. Vegetation nitrogen content (which is related
to CP) in particular does not have any specific spectral response because it appears in many
different chemical forms within the plant [45] and in different plant organs. Moreover,
CP represents a broad range of proteins which collectively did not appear to have strong
spectral features when considering reflectance at the canopy level, at least not diagnosed
by the majority of band combinations tested in this study.

A strong influence of pasture quantity parameters, biomass followed by LAI, on
the spectral reflectance was observed in our study. The correlations among and between
pasture quantity (especially biomass) and quality (ADF, WSC) parameters also play a role
(see Table 3); they are influenced by pasture composition, weather and soil conditions and
management as well as pasture phenological stages [22,46]. The increase in biomass as the
canopy grows is strongly related to increased proportions of ADF and a drop in CP because
of the increased lignification of the plant stem and the reduction in leaf:stem ratio [47].
The reduced sensitivity of reflectance to CP and NDF may also be linked to their reduced
content in the pastures towards the fully-grown vegetative stage of the plant.

The correlations between quality and quantity parameters make it difficult to model
the spectral response to changes in a single parameter independently [25,45]. Some of these
complexities can be reduced by selectively choosing bands showing increased sensitivity
to a particular parameter. This kind of approach to band selection has been found to
improve predictability of multispectral remote sensing-based models for pasture param-
eters [11,41,48]. Our findings show that while most of the pasture quality parameters
influenced reflectance in the 1610 nm band (Figures 2 and 3), this band is not particularly
sensitive to changes in biomass and LAI (Figure 1). Thus, the detection of pasture quality
indices can ideally focus on this band.

The pasture quantity parameters dominate the spectral reflectance at the canopy level
more than the leaf level quality parameters, as evident from the strong statistical relation-
ships between biomass and LAI with NDIs compared to those with the pasture quality
parameters that were measured at the leaf level. Hence, their role cannot be neglected while
designing remote sensing-based pasture quality monitoring and mapping methods. Our
results highlight the possibilities of developing pasture quality prediction models based
on correlations with NDIs. Therefore, while developing a multivariate model for pasture
quality parameters based on remote sensing data, it may be advantageous to integrate
remotely-sensed biomass estimates (and hence implicit information on plant structure and
growth stage) directly as prior information. Such integration of prior information has been
found to be useful for retrieval of vegetation parameters such as leaf chlorophyll [49,50].
Further insight into this complex issue of dominance of certain parameters in the overall re-
flectance can potentially be achieved using physically-based radiative transfer models [51].
However, it will require development of conversion equations to relate the pasture quality
parameters with those required for the radiative transfer model simulations.

The best-fit relationship plots presented in Figure 4 between NDIs and biomass,
LAI, ADF and WSC, respectively, seem to fit well across the four treatments. This shows
that the chosen band combinations have good predictability for these quality parameters,
irrespective of pasture type. However, it is also important to note that the increase in the
polynomial orders generally led to marginal improvements only in the statistical indicators
(Table 4). Most relationships between pasture parameters and respective normalised
difference indices (apart from the one shown in Figure 4g) display a trend that appears
linear on inspection. Hence, when developing models for predictions, the use of complex
polynomial models may result in undesirable overfit issues with little improvement in the
model variance.

The SWIR band of 1610 nm, in combination with red-edge and NIR bands, were
sensitive to ADF, CP, WSC and OM. This wavelength region has been found to be important
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in pasture quality estimates [25,40,41]. However, none of the band combinations that
included SWIR band 2190 were found to have a good or moderate relationship with the
pasture quality parameters. In contrast, this waveband has been found to be quite sensitive
by other researchers [11,25,41], especially with reference to fibre content, due to absorption
features in cellulose molecules. In the present study, some highly diverse mixtures of
pastures (including different grasses, herbs and legumes) were studied, with considerable
variability in structure and vegetation moisture content, which can possibly explain the
poor correlation with these bands. Moreover, at peak growth stage of pasture canopies,
there is an increased fraction of non-photosynthetic vegetation components, which can
possibly dampen the spectral features in this region [23]; in the present study, pasture cuts
were always taken around the time of peak growth stage.

The relatively poor performance in general of the literature-based spectral indices
(Tables 2 and 5) suggests that for the development of reliable remote sensing-based predic-
tive models of pasture quality parameters, the testing of all possible band combinations
is important, in particular when the pasture canopy is composed of a diverse mixture of
grasses, legumes and forbs. With the relatively limited set of data in terms of numbers as
well as growth stages used in this study, it is not possible to test a multivariate approach
using a variety of bands and spectral indices together through more robust statistical mod-
elling methods such as PLSR or machine learning. However, the present paper assesses the
sensitivity of Sentinel-2 spectral bands to pasture quantity and quality parameters in its
most straightforward form, while ensuring statistical robustness through the LOOCV ap-
proach. The good correlation found between the various bespoke multispectral two-band
indices, and to a lesser extent the literature-based indices, as well as the various pasture
quality and quantity parameters is encouraging. However, our findings are based on
proximal optical remote sensing data. Hence, further research is needed to build prediction
models using the actual Sentinel-2 images in combination with large field datasets ranging
across a variety of pasture types at different growth stages. Moreover, our plots were
cut by hand and not grazed nor trampled by livestock. This will also affect the shape of
the relationships between the spectral indices and pasture parameters by causing more
variability in terms of vegetation structure.

5. Conclusions

The study presented results for the assessment of Sentinel-2 bands, simulated from
field hyperspectral data, in capturing pasture quality parameters for mixed-species pastures
at a stage of growth appropriate for rotational grazing. The results suggest that the role of
pasture quantity parameters, such as biomass and LAI, has to be taken into account while
developing remote sensing-based pasture quality prediction models, firstly due to the
higher sensitivity of reflectance to quantity parameters, and secondly, due to non-specific
and weaker relationships between most of the quality parameters and the spectral data.
However, some strong relationships were found between certain quality parameters (ADF,
CP and WSC) and bespoke vegetation indices, especially for normalised vegetation indices
using the 1610 nm band, thus highlighting its importance in remote sensing-based pasture
quality monitoring. The scope of the present study has some limitations, for example in
relation to its sample size and range of pasture growth stages. However, it does provide
important insights into the complexities that have to be taken into account while designing
remote sensing-based pasture monitoring projects, in particular for multi-species swards.

Author Contributions: Conceptualisation, S.M.P., A.V., A.T.; methodology, S.M.P., A.V.; experimental
field plots set-up, D.J.H., A.T., C.K.R.; field data collection, S.M.P., A.T., A.V., D.J.H.; data analysis
and interpretation, S.M.P., A.T., A.V., C.K.R.; manuscript development, S.M.P., A.V., A.T., C.K.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Innovate UK (PASQUAL project: Monitoring and prediction
of pasture quality and productivity from satellites; Project No. 102681). The Sonning farm mixed-
species pasture plots were established and maintained as part of the BBSRC SARIC biodiverse forages
project (Project BB/N004353/1). These sponsors had no involvement in the study design; collection,



Agronomy 2021, 11, 1661 15 of 17

analysis and interpretation of data; in the writing of the paper; and in the decision to submit the
article for publication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not yet publicly available because the project BB/N004353/1 is
still ongoing.

Acknowledgments: We thank Tristan Quaife for a number of useful discussions on the remote
sensing analyses procedures. We are grateful to the Natural Environment Research Council (NERC)
Field Spectroscopy Facility, based at Edinburgh University, for providing us with the second SVC
field hyperspectral instrument (loan reference 752.1116) and in particular to Chris MacLellan for his
guidance on how to configure and use the dual-instrument set-up. In addition, we acknowledge the
contributions of Caroline Hadley, Richard Casebow, Colin Green, Paul Kirton and Chris Fawdry in
establishing, maintaining and sampling the pasture plots. Finally, we thank Pierre-Antoine Ariotti
who helped with field data collection.

Conflicts of Interest: The authors declare no conflict of interests with respect to this study.

References
1. Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—

More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [CrossRef]
2. DEFRA. Farming Statistics Provisional Crop. Areas, Yields and Livestock Populations At June 2018—United Kingdom; DEFRA, 2018;

pp. 1–23. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/
file/747210/structure-jun2018prov-UK-11oct18.pdf (accessed on 1 May 2021).

3. Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867.
[CrossRef]

4. Edirisinghe, A.; Clark, D.; Waugh, D. Spatio-Temporal Modelling of Biomass of Intensively Grazed Perennial Dairy Pastures
Using Multispectral Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 5–16. [CrossRef]

5. Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some Challenges and Opportunities for Grazing Dairy Cows on
Temperate Pastures. Grass Forage Sci. 2020, 75, 1–17. [CrossRef] [PubMed]

6. Uberoi, E. UK Dairy Industry Statistics; House of Commons Library: London, UK, 2020; pp. 1–11.
7. Thomson, N.A.; Mccallum, D.A.; Howse, S.; Holmes, C.W.; Matthews, P.N.P.; Matthew, C. Estimation of Dairy Pastures—The

Need for Standardisation. In Proceedings of the New Zealand Grassland Association; 1997; Volume 59, pp. 221–225. Available online:
https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2245 (accessed on 19 August 2020).

8. Somasiri, S.C.; Kenyon, P.R.; Morel, P.C.H.; Kemp, P.D.; Morris, S.T. Alternative Method to Measure Herbage Dry Matter Mass in
Plantain and Chicory Mixed Swards Grazed by Lambs. Proc. N. Z. Soc. Anim. Prod. 2014, 74, 115–123.

9. Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting Forage Quality by Infrared Replectance Spectroscopy. J. Anim. Sci.
1976, 43, 889–897. [CrossRef]

10. Petisco, C.; García-Criado, B.; García-Criado, L.; Vázquez-de-Aldana, B.R.; García-Ciudad, A. Quantitative Analysis of Chloro-
phyll and Protein in Alfalfa Leaves Using Fiber-Optic Near-Infrared Spectroscopy. Commun. Soil Sci. Plant. Anal. 2009, 40,
2474–2484. [CrossRef]

11. Lugassi, R.; Chudnovsky, A.; Zaady, E.; Dvash, L.; Goldshleger, N. Estimating Pasture Quality of Fresh Vegetation Based on
Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development. Remote Sens. 2015, 7, 8045–8066. [CrossRef]

12. Nakagami, K.; Itano, S. Improving Pooled Calibration of a Rising-Plate Meter for Estimating Herbage Mass over a Season in
Cool-Season Grass Pasture. Grass Forage Sci. 2014, 69, 717–723. [CrossRef]

13. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J.
Plant. Ecol. 2016, 9, 649–671. [CrossRef]

14. Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.P.; Galvão, L.S.; Soares, J.V. Evaluation of Hyperspectral Data for Pasture
Estimate in the Brazilian Amazon Using Field and Imaging Spectrometers. Remote Sens. Environ. 2008, 112, 1569–1583. [CrossRef]

15. Jin, Y.; Yang, X.; Qiu, J.; Li, J.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.; Yu, H.; Xu, B. Remote Sensing-Based Biomass Estimation and Its
Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [CrossRef]

16. Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative Analysis of Different Retrieval
Methods for Mapping Grassland Leaf Area Index Using Airborne Imaging Spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43,
19–31. [CrossRef]

17. Sibanda, M.; Mutanga, O.; Rouget, M. Examining the Potential of Sentinel-2 MSI Spectral Resolution in Quantifying above
Ground Biomass across Different Fertilizer Treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [CrossRef]

http://doi.org/10.1002/ecs2.2582
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747210/structure-jun2018prov-UK-11oct18.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747210/structure-jun2018prov-UK-11oct18.pdf
http://doi.org/10.1098/rstb.2010.0134
http://doi.org/10.1016/j.jag.2011.11.006
http://doi.org/10.1111/gfs.12458
http://www.ncbi.nlm.nih.gov/pubmed/32109974
https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2245
http://doi.org/10.2527/jas1976.434889x
http://doi.org/10.1080/00103620903111350
http://doi.org/10.3390/rs70608045
http://doi.org/10.1111/gfs.12070
http://doi.org/10.1093/jpe/rtw005
http://doi.org/10.1016/j.rse.2007.08.014
http://doi.org/10.3390/rs6021496
http://doi.org/10.1016/j.jag.2015.01.009
http://doi.org/10.1016/j.isprsjprs.2015.10.005


Agronomy 2021, 11, 1661 16 of 17

18. Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A Data
for Pasture Biomass Monitoring Using a Physically Based Radiative Transfer Model. Remote Sens. Environ. 2018, 218, 207–220.
[CrossRef]

19. Abuzar, M.; Whitfield, D.; McAllister, A. Farm Level Assessment of Irrigation Performance for Dairy Pastures in the Goulburn-
Murray District of Australia by Combining Satellite-Based Measures with Weather and Water Delivery Information. ISPRS Int. J.
Geo-Inf. 2017, 6, 239. [CrossRef]

20. Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands
on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [CrossRef]

21. Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the Canopy Chlorophyll Content from Sentinel-2 Spectral Bands to Estimate
Nitrogen Uptake in Intensive Winter Wheat Cropping Systems. Remote Sens. Environ. 2018, 216, 245–261. [CrossRef]

22. Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. Spatial and Temporal Monitoring of Pasture Ecological
Quality: Sentinel-2-Based Estimation of Crude Protein and Neutral Detergent Fiber Contents. Remote Sens. 2019, 11, 799.
[CrossRef]

23. Beeri, O.; Phillips, R.; Hendrickson, J.; Frank, A.B.; Kronberg, S. Estimating Forage Quantity and Quality Using Aerial Hyperspec-
tral Imagery for Northern Mixed-Grass Prairie. Remote Sens. Environ. 2007, 110, 216–225. [CrossRef]

24. Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Mapping of Macro and Micro Nutrients of Mixed Pastures Using Airborne AisaFENIX
Hyperspectral Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 1–10. [CrossRef]

25. Castro, P.A.; Garbulsky, M.F. Spectral Normalized Indices Related with Forage Quality in Temperate Grasses: Scaling up from
Leaves to Canopies. Int. J. Remote Sens. 2018, 39, 3138–3163. [CrossRef]

26. Cherney, D.J.R. Characterization of forages by chemical analysis. In Forage Evaluation in Ruminant Nutrition; Givens, D.I., Owen,
E., Axford, R.F.E., Omed, H.M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 281–300.

27. AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000.
28. Kitcherside, M.A.; Glen, E.F.; Webster, A.J.F. FibreCap: An Improved Method for the Rapid Analysis of Fibre in Feeding Stuffs.

Anim. Feed Sci. Technol. 2000, 86, 125–132. [CrossRef]
29. Fuller, K.W. Automated Determination of Sugars. In Proceedings of the Automation in Analytical Chemistry, European Technicon

Symposia, Paris, France, 2–4 November 1966; pp. 57–61.
30. MacLellan, C.; Gray, A. Dual FOV Measurements with SVC HR-1024i Field Spectroradiometers—Bi-Conical Relative Reflectance Method;

Edinburgh, UK, 2017; pp. 1–6. Available online: https://fsf.nerc.ac.uk/resources/guides/pdf_guides/DFOV_SVC_1024i.pdf
(accessed on 19 August 2020).

31. Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 Data for Estimation of
Leaf Area Index in Temperate Forests. Remote Sens. 2019, 11, 1160. [CrossRef]

32. Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [CrossRef] [PubMed]
33. Gargiulo, J.; Clark, C.; Lyons, N.; de Veyrac, G.; Beale, P.; Garcia, S. Spatial and Temporal Pasture Biomass Estimation Integrating

Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data. Remote Sens. 2020, 12, 3222. [CrossRef]
34. Manning, J.; Cronin, G.; González, L.; Hall, E.; Merchant, A.; Ingram, L. The Behavioural Responses of Beef Cattle (Bos Taurus)

to Declining Pasture Availability and the Use of GNSS Technology to Determine Grazing Preference. Agriculture 2017, 7, 45.
[CrossRef]

35. Loris, V.; Damiano, G. Mapping the Green Herbage Ratio of Grasslands Using Both Aerial and Satellite-Derived Spectral
Reflectance. Agric. Ecosyst. Environ. 2006, 115, 141–149. [CrossRef]

36. Moges, S.M.; Raun, W.R.; Mullen, R.W.; Freeman, K.W.; Johnson, G.V.; Solie, J.B. Evaluation of Green, Red, and Near Infrared
Bands for Predicting Winter Wheat Biomass, Nitrogen Uptake, and Final Grain Yield. J. Plant Nutr. 2005, 27, 1431–1441. [CrossRef]

37. Munyati, C.; Balzter, H.; Economon, E. Correlating Sentinel-2 MSI-Derived Vegetation Indices with in-Situ Reflectance and Tissue
Macronutrients in Savannah Grass. Int. J. Remote Sens. 2020, 41, 3820–3844. [CrossRef]

38. Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture
Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System. Water 2019, 11, 62. [CrossRef]

39. Ren, S.; Chen, X.; An, S. Assessing Plant Senescence Reflectance Index-Retrieved Vegetation Phenology and Its Spatiotemporal
Response to Climate Change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017, 61, 601–612. [CrossRef]

40. Starks, P.J.; Zhao, D.; Brown, M.A. Estimation of Nitrogen Concentration and in Vitro Dry Matter Digestibility of Herbage
of Warm-Season Grass Pastures from Canopy Hyperspectral Reflectance Measurements. Grass Forage Sci. 2008, 63, 168–178.
[CrossRef]

41. Thulin, S.; Hill, M.; Held, A.; Jones, S.; Woodgate, P. Predicting Levels of Crude Protein, Digestibility, Lignin and Cellulose in
Temperate Pastures Using Hyperspectral Image Data. Am. J. Plant Sci. 2014, 5, 997–1019. [CrossRef]

42. Ausseil, A.-G.; Dymond, J.R.; Dynes, R.; Shepherd, J.D.; DeVantier, B.; Sutherland, A. Estimating Pasture Quality Using Landsat
ETM+: Application for the Greenhouse Gas Inventory of New Zealand. In Proceedings of the 34th International Symposium on
Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, Sydney, Australia, 10–15
April 2011; pp. 1–4.

43. Pellissier, P.A.; Ollinger, S.V.; Lepine, L.C.; Palace, M.W.; McDowell, W.H. Remote Sensing of Foliar Nitrogen in Cultivated
Grasslands of Human Dominated Landscapes. Remote Sens. Environ. 2015, 167, 88–97. [CrossRef]

http://doi.org/10.1016/j.rse.2018.09.028
http://doi.org/10.3390/ijgi6080239
http://doi.org/10.1016/j.jag.2012.10.008
http://doi.org/10.1016/j.rse.2018.06.037
http://doi.org/10.3390/rs11070799
http://doi.org/10.1016/j.rse.2007.02.027
http://doi.org/10.1016/j.isprsjprs.2016.03.010
http://doi.org/10.1080/01431161.2018.1430394
http://doi.org/10.1016/S0377-8401(00)00153-X
https://fsf.nerc.ac.uk/resources/guides/pdf_guides/DFOV_SVC_1024i.pdf
http://doi.org/10.3390/rs11101160
http://doi.org/10.2307/2532051
http://www.ncbi.nlm.nih.gov/pubmed/2720055
http://doi.org/10.3390/rs12193222
http://doi.org/10.3390/agriculture7050045
http://doi.org/10.1016/j.agee.2005.12.018
http://doi.org/10.1081/PLN-200025858
http://doi.org/10.1080/01431161.2019.1708505
http://doi.org/10.3390/w11010062
http://doi.org/10.1007/s00484-016-1236-6
http://doi.org/10.1111/j.1365-2494.2007.00619.x
http://doi.org/10.4236/ajps.2014.57113
http://doi.org/10.1016/j.rse.2015.06.009


Agronomy 2021, 11, 1661 17 of 17

44. Asner, G.P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sens. Environ. 1998, 64, 234–253.
[CrossRef]

45. Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants. New Phytol. 2011, 189, 375–394.
[CrossRef]

46. Buxton, D.R. Quality-Related Characteristics of Forages as Influenced by Plant Environment and Agronomic Factors. Anim. Feed
Sci. Technol. 1996, 59, 37–49. [CrossRef]
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