Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Samples
2.2. Soil Incubation Experiment
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Inorganic Nitrogen Content
3.2. Soil Potential Nitrification Rate (PNR)
3.3. Soil NH3 Volatilization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaman, M.; Saggar, S.; Blennerhassett, J.D.; Singh, J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol. Biochem. 2009, 41, 1270–1280. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.; Chen, Y.; Lian, Y.; Tian, G.; Ni, W. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. J. Environ. Sci. 2009, 20, 149–155. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhao, C.X.; Wang, X.L.; Li, J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. C. R. Biol. 2009, 332, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.Z.; Zhang, J.W.; Dong, S.T.; Liu, P.; Zhao, B.; Li, H. Nitrapyrin improves grain yield and nitrogen use efficiency of summer maize waterlogged in the field. Agron. J. 2017, 109, 185–192. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Ammonia oxidisers and their inhibition to reduce nitrogen losses in grazed grassland: A review. J. R. Soc. N. Z. 2017, 48, 127–142. [Google Scholar] [CrossRef]
- Hayden, H.L.; Phillips, L.A.; Marshall, A.J.; Condon, J.R.; Doran, G.S.; Wells, G.S.; Mele, P.M. Nitrapyrin reduced ammonia oxidation with different impacts on the abundance of bacterial and archaeal ammonia oxidisers in four agricultural soils. Appl. Soil Ecol. 2021, 157, 103759. [Google Scholar] [CrossRef]
- Woodward, E.E.; Kolpin, D.W.; Zheng, W.; Holm, N.L.; Meppelink, S.K.; Terrio, P.J.; Hladik, M.L. Fate and transport of nitrapyrin in agroecosystems: Occurrence in agricultural soils, subsurface drains, and receiving streams in the Midwestern US. Sci. Total. Environ. 2019, 650, 2830–2841. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3, 4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture. Biol. Fert. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- McCarty, G.W.; Bremner, J.M. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol. Fert. Soils 1989, 8, 204–211. [Google Scholar] [CrossRef]
- Hopper, A.B.; Terry, K.R. Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol. 1973, 115, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Guardia, G.; Marsdden, K.A.; Vallejo, A.; Jones, D.L.; Chadwick, D.R. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total. Environ. 2018, 624, 1202–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, X.; Matsunaka, T.; Sawamoto, T. Dicyandiamide application plus incorporation into soil reduces N2O and NH3 emissions from anaerobically digested cattle slurry. Aust. J. Exp. Agric. 2008, 48, 169–174. [Google Scholar] [CrossRef]
- Kirschke, T.; Spott, O.; Vetterlein, D. Impact of urease and nitrification inhibitor on NH4+ and NO3− dynamic in soil after urea spring application under field conditions evaluated by soil extraction and soil solution sampling. J. Plant Nutr. Soil Sci. 2019, 182, 441–450. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.X.; Liang, X.Q.; Lian, Y.F.; Li, W.H. Mineral-nitrogen leaching and ammonia volatilization from a rice–rapeseed system as affected by 3,4-dimethylpyrazole phosphate. J. Environ. Qual. 2009, 38, 2131–2137. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.M.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.J.; Zhang, H.L.; Powlson, D.; Min, J.; Shi, W.M. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crop. Res. 2015, 173, 1–7. [Google Scholar] [CrossRef]
- Wissemeier, A.H.; Linzmeier, W.; Gutser, R.; Weigelt, W.; Schmidhalter, U. The new nitrification inhibitor DMPP (ENTEC®)—Comparisons with DCD in model studies and field applications. In Plant Nutrition; Horst, W.J., Ed.; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 2001; Volume 92, pp. 702–703. [Google Scholar]
- Li, Q.Q.; Cui, X.Q.; Liu, X.J.; Roelcke, M.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Chen, X.P.; Goulding, K.; Zhang, F. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Sci. Rep. 2017, 7, 43853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, C.L.; Liu, L.L.; Hu, S.J.; Compton, J.E.; Greaver, T.L.; Li, Q.L. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Chang. Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Chen, Z.M.; Ding, W.X.; Luo, Y.Q.; Yu, H.Y.; Xu, Y.H.; Müller, C.; Xu, X.; Zhu, T.B. Nitrous oxide emissions from cultivated black soil: A case study in northeast China and global estimates using empirical model. Glob. Biogeochem. Cycles 2014, 27, 1311–1326. [Google Scholar] [CrossRef]
- Meng, X.T.; Li, Y.Y.; Yao, H.Y.; Wang, J.; Dai, F.; Wu, Y.P.; Chapman, S. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil. Appl. Soil Ecol. 2020, 154, 103665. [Google Scholar] [CrossRef]
- Yu, Q.G.; Chen, Y.X.; Ye, X.Z.; Zhang, Q.L.; Zhang, Z.J.; Tian, P. Evaluation of nitrification inhibitor 3, 4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns. Chemosphere 2007, 67, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.J.; He, M.R.; Wang, Z.L.; Chen, W.F.; Hou, J.; Qiu, X.K.; Zhang, J.W. Effects of new coated release fertilizer on the growth of maize. J. Soil Sci. Plant Nut. 2016, 16, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.J.; Zhang, L.L.; Geisseler, D.; Wu, Z.J.; Gong, P.; Xue, Y.; Yu, C.X.; Juan, Y.H.; Horwath, W.R. Available C and N affect the utilization of glycine by soil microorganisms. Geoderma 2016, 283, 32–38. [Google Scholar] [CrossRef]
- Kurola, J.; Salkinoja-Salonen, M.; Aarnio, T.; Hultman, J.; Romantschuk, M. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol. Lett. 2005, 250, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Jiao, Y.; Yang, W.Z.; Gu, P.; Bai, S.G.; Liu, L.J. Review of methods for determination of ammonia volatilization in farmland. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012022. [Google Scholar] [CrossRef]
- Shi, X.Z.; Hu, H.W.; Muller, C.; He, J.Z.; Chen, D.L.; Suter, H.C. Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl. Environ. Microb. 2016, 82, 5236–5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Hayden, H.; Suter, H.; He, J.Z.; Chen, D.L. The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. J. Soil Sediment. 2015, 15, 1113–1118. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, L.L.; Wu, Z.J.; Chen, Z.H.; Chen, L.J. Responses of Ammonia-Oxidizing Bacteria and Archaea in Two Agricultural Soils to Nitrification Inhibitors DCD and DMPP—A pot experiment. Pedosphere 2016, 23, 729–739. [Google Scholar] [CrossRef]
- Lu, Y.F.; Zhang, X.N.; Jiang, J.F.; Kronzucker, H.J.; Shen, W.S.; Shi, W.M. Effects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biol. Biochem. 2019, 129, 48–59. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Zhang, Z.Y.; Wang, M.X.; Liu, Y.M.; Dai, J.S. Effect of the nitrification inhibitor (3, 4 -dimethylpyrazole phosphate) on the activities and abundances of ammonia-oxidizers and denitrifiers in a phenanthrene polluted and waterlogged soil. Ecotox. Environ. Safe 2018, 161, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Chapman, S.J.; Nicol, G.W.; Yao, H.Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 2018, 116, 290–301. [Google Scholar] [CrossRef]
- Fan, X.P.; Yin, C.; Chen, H.; Ye, M.J.; Zhao, Y.H.; Li, T.Q.; Wakelin, S.A.; Liang, Y.C. The efficacy of 3, 4-dimethylpyrazole phosphate on N2O emissions is linked to niche differentiation of ammonia oxidizing archaea and bacteria across four arable soils. Soil Biol. Biochem. 2019, 130, 82–93. [Google Scholar] [CrossRef]
- Yang, M.; Fang, Y.T.; Sun, D.; Shi, Y.L. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis. Sci. Rep. 2016, 6, 22075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Sun, Z.M.; Wu, Z.J.; Chen, L.J.; Ma, X.Z. Regulation of soil nitrification with nitrification inhibitors and related mechanisms. Chin. J. Appl. Ecol. 2008, 19, 1389–1395. [Google Scholar]
- Slangen, J.; Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture: A literature review. Fert. Res. 1984, 5, 1–76. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Gao, Q.; Yang, J.M.; Li, L.J.; Li, Y.; Liu, J.H.; Wang, Y.J.; Su, H.G.; Wang, Y.; Wang, S.J.; et al. Effect of soil organic matter on adsorption of nitrification inhibitor nitrapyrin in black soil. Commun. Soil Sci. Plan. 2020, 51, 883–895. [Google Scholar] [CrossRef]
- Keeney, D.R. Inhibition of nitrification in soils. In Nitrification; Special Publication of the Society for General Microbiology; Prosser, J.I., Ed.; IRL Press: Oxford, UK, 1986; pp. 99–115. [Google Scholar]
- Barth, G.; Von Tucher, S.; Schmidhalter, U. Effectiveness of 3, 4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor content, application form, and soil matric potential. Pedosphere 2008, 18, 378–385. [Google Scholar] [CrossRef]
- Salazar, F.; Martínez-Lagos, J.; Alfaro, M.; Misselbrook, T. Low nitrogen leaching following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile. Agric. Ecosyst. Environ. 2012, 160, 23–28. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, Z.J.; Shen, S.M.; Zhou, H.; Jiang, C.M.; Xu, Y.G.; Liu, R.; Yu, W.T. Responses of biotic and abiotic effects on conservation and supply of fertilizer N to inhibitors and glucose inputs. Soil Biol. Biochem. 2015, 89, 72–81. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, L.H.; Hu, Z.P. Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application. Trans. Chin. Soc. Agric. Eng. 2018, 34, 132–138. [Google Scholar]
- Li, Q.Q.; Yang, A.L.; Wang, Z.H.; Roelcke, M.; Chen, X.P.; Zhang, F.S.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Liu, X.J. Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Field Crops Res. 2015, 175, 96–105. [Google Scholar] [CrossRef]
- Kim, J.G.; Jung, M.Y.; Park, S.J.; Rijpstra, W.I.C.; Damsté, J.S.S.; Madsen, E.L.; Min, D.; Kim, J.S.; Kim, G.J.; Rhee, S.K. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ. Microbiol. 2012, 14, 1528–1543. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, Z.J.; Pan, F.F.; Wang, J.; Zhou, H.; Jiang, C.M.; Xu, Y.G.; Yu, W.T. Effect of glucose addition on the fate of urea-15N in fixed ammonium and soil microbial biomass N pools. Eur. J. Soil Biol. 2016, 75, 168–173. [Google Scholar] [CrossRef]
- Ahmed, M.; Yu, W.J.; Lei, M.; Raza, S.; Zhou, J.B. Mitigation of ammonia volatilization with application of urease and nitrification inhibitors from summer maize at the Loess Plateau. Plant Soil Environ. 2018, 64, 164–172. [Google Scholar]
- Dempsey, R.J.; Slaton, N.A.; Norman, R.J.; Roberts, T.L. Ammonia volatilization, rice yield, and nitrogen uptake responses to simulated rainfall and urease inhibitor. Agron. J. 2017, 109, 363–377. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Mosier, A.R.; Chen, D. Using nitrification inhibitors to mitigate agricultural N2O emission: A double-edged sword? Glob. Chang. Biol. 2017, 23, 485–489. [Google Scholar] [CrossRef]
- Banerjee, B.; Pathak, H.; Aggarwal, P.K. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Biol. Fert. Soils 2002, 36, 207–214. [Google Scholar]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Guo, Y.J.; Li, B.W.; Di, H.J.; Zhang, L.J.; Gao, Z.L. Effects of dicyandiamide (DCD) on nitrate leaching, gaseous emissions of ammonia and nitrous oxide in a greenhouse vegetable production system in northern China. Soil Sci. Plant Nutr. 2012, 58, 647–658. [Google Scholar] [CrossRef]
- Rodgers, G.A. Effect of dicyandiamide on ammonia volatilisation from urea in soil. Fert. Res. 1983, 4, 361–367. [Google Scholar] [CrossRef]
- Nelson, D.W. Gaseous losses of nitrogen other than through denitrification. In Nitrogen in Agricultural Soils; Stevenson, F.J., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 327–363. [Google Scholar]
- Fan, C.H.; Li, B.; Xiong, Z.Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China. Sci. Total Environ. 2018, 612, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, J.; Li, B.; Xiong, Z.Q. Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: A three-year field study. Atmos. Environ. 2019, 206, 247–257. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.J.; Kronzucker, H.J.; Wang, Y.; Shi, W.M. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agric. Ecosyst. Environ. 2021, 307, 107227. [Google Scholar] [CrossRef]
- Ni, K.; Pacholski, A.; Kage, H. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agric. Ecosyst. Environ. 2014, 197, 184–194. [Google Scholar] [CrossRef]
- Tang, Q.; Ti, C.P.; Xia, L.L.; Xia, Y.Q.; Wei, Z.J.; Yan, X.Y. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in China. J. Clean. Prod. 2019, 224, 779–788. [Google Scholar] [CrossRef]
- Woodley, A.L.; Drury, C.F.; Yang, X.M.Y.; Phillips, L.A.; Reynolds, D.W.; Calder, W.; Oloya, T.O. Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Sci. Soc. Am. J. 2020, 84, 1327–1341. [Google Scholar] [CrossRef]
Soil Property | Acid Soil | Neutral Soil | Alkaline Soil |
---|---|---|---|
pH SOM (g/kg) | 5.44 ± 0.13 52.25 ± 1.91 | 7.66 ± 0.07 32.65 ± 1.57 | 9.94 ± 0.17 30.12 ± 0.54 |
Total C (g/kg) | 30.31 ± 1.11 | 18.94 ± 0.91 | 17.47 ± 0.32 |
Total N (g/kg) | 2.63 ± 0.03 | 1.66 ± 0.07 | 0.92 ± 0.15 |
NH4+-N (mg/kg) | 18.69 ± 1.05 | 27.83 ± 3.46 | 44.44 ± 3.48 |
NO3−-N (mg/kg) | 80.68 ± 1.46 | 132.73 ± 2.19 | 24.33 ± 2.16 |
Available P (mg/kg) | 48.40 ± 2.13 | 18.42 ± 0.56 | 15.43 ± 0.32 |
Available K (mg/kg) | 401.45 ± 34.27 | 344.04 ± 19.23 | 375.28 ± 24.33 |
Clay % | 12.3 | 37.3 | 60.6 |
Silt % | 44.3 | 52.2 | 37.3 |
Sand % | 43.4 | 10.4 | 2.1 |
Texture class | loam | silt clay | clay |
Factors | DF | NH4+-N | NO3−-N | PNR | NH3 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
T | 4 | 172.5 | *** | 10.1 | *** | 18.0 | *** | 2.3 | n.s. |
S | 2 | 21.8 | *** | 66.3 | *** | 37.9 | *** | 39.8 | *** |
T * S | 8 | 3.9 | *** | 4.4 | *** | 12.6 | *** | 1.7 | n.s. |
Item | NH4+-N | NO3−-N | PNR | NH3 |
---|---|---|---|---|
NH4+-N | 1 | −0.321 ** | −0.538 ** | 0.123 |
NO3−-N | 1 | 0.757 ** | −0.214 * | |
PNR | 1 | −0.159 | ||
NH3 | 1 |
Item | NH4+-N | NO3−-N | NH3 |
---|---|---|---|
Soil pH | −0.018 | −0.217 * | 0.523 ** |
SOM | 0.064 | 0.089 | −0.452 ** |
Soil texture | −0.013 | −0.231 ** | 0.530 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Li, D.; Wu, Z.; Xue, Y.; Xiao, F.; Zhang, L.; Song, Y.; Li, Y.; Zheng, Y.; Zhang, J.; et al. Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH. Agronomy 2021, 11, 1674. https://doi.org/10.3390/agronomy11081674
Cui L, Li D, Wu Z, Xue Y, Xiao F, Zhang L, Song Y, Li Y, Zheng Y, Zhang J, et al. Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH. Agronomy. 2021; 11(8):1674. https://doi.org/10.3390/agronomy11081674
Chicago/Turabian StyleCui, Lei, Dongpo Li, Zhijie Wu, Yan Xue, Furong Xiao, Lili Zhang, Yuchao Song, Yonghua Li, Ye Zheng, Jinming Zhang, and et al. 2021. "Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH" Agronomy 11, no. 8: 1674. https://doi.org/10.3390/agronomy11081674
APA StyleCui, L., Li, D., Wu, Z., Xue, Y., Xiao, F., Zhang, L., Song, Y., Li, Y., Zheng, Y., Zhang, J., & Cui, Y. (2021). Effects of Nitrification Inhibitors on Soil Nitrification and Ammonia Volatilization in Three Soils with Different pH. Agronomy, 11(8), 1674. https://doi.org/10.3390/agronomy11081674