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Abstract: Data deficiency prevents the development of reliable machine learning models for many
agroecosystems, especially those characterized by a dearth of knowledge derived from field data.
However, other similar agroecosystems with extensive data resources can be of use. We propose a new
predictive modeling approach based upon the concept of transfer learning to solve the problem of data
deficiency in predicting productivity of agroecosystems, where productivity is a nonlinear function
of various interacting biotic and abiotic factors. We describe the process of building metamodels
(machine learning models built and trained on simulation data) from simulations built for one
agroecosystem (US wild blueberry) as the source domain, where the data resource is abundant.
Metamodels are evaluated and the best metamodel representing the system dynamics is selected. The
best metamodel is re-parameterized and calibrated to another agroecosystem (Northeast China bog
blueberry) as the target domain where field collected data are lacking. Experimental results showed
that our metamodel developed for wild blueberry achieved 78% accuracy in fruit-set prediction for
bog blueberry. To demonstrate its usefulness, we applied this calibrated metamodel to investigate the
response of bog blueberry to various weather conditions. We found that an 8% reduction in fruit-set
of bog blueberry is likely to happen if weather becomes warmer and wetter as predicted by climate
models. In addition, southern and eastern production regions will suffer more severe fruit-set decline
than the other growing regions. Predictions also suggest that increasing commercially available
honeybee densities to 18 bees/m2/min, or bumble bee densities to 0.6 bees/m2/min, is a viable way
to compensate for the predicted 8% climate induced fruit-set decline in the future.

Keywords: berry crop; fruit-set prediction; machine learning; transfer learning; agroecosystems

1. Introduction

Bog blueberry (Vaccinium uliginosum L.), is a Eurasian and North American flowering
plant species in the genus Vaccinium within the heath family [1,2]. The commercial value of
bog blueberries comes from their antioxidant content, which is the highest of 40 common
fruits and vegetables [3]. Bog blueberries are widely distributed and managed in the
highlands of Northern China [4] as a major agroecosystem supporting the local rural
economy. As of 2019, farmers in three provinces in Northeast China manage 3.5 million
hectares (15% of the nationwide blueberry coverage) of bog blueberry with an estimated
annual yield of 0.6 million metric tons (less than 5% of the national blueberry yield),
according to the Heilongjiang Bureau of Agriculture and Forestry [5]. Increasing yield,
fruit quality, and long-term economic stability in bog blueberry production requires better
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understanding of the fundamental ecological processes of cross-pollination as a result of
various interacting factors. The efficiency of several wild blueberry species fruit production,
bog blueberry included, depend heavily on cross-pollination by bees [6–10] and weather
factors such as temperature and precipitation [11,12]. For example, weather factors not
only directly affect phenology and physiology of blueberry plants [13], but also directly
affect the activities of bees during pollination, such as foraging duration during bloom.
If we can understand the relationships between fruit-set (a proxy to yield) and various
interacting factors, from which reliable fruit-set prediction can be made, then more effective
management efforts can be initiated accordingly to improve productivity [14]. However,
this is not an easy task since fruit-set is usually a highly nonlinear function of plant
genetic and morphological traits, bee species composition and density, soil fertility, weather
conditions, as well as other spatial and temporal biotic and abiotic factors [15].

To capture these complex relationships, computer simulations and statistical models
are often relied upon by investigators [14–18]. Computer simulation models, particu-
larly agent-based simulation models are popular in agricultural research because they can
express detailed causalities of interacting ecological processes that are fundamental for
nonlinear behavior prediction [19]. However, these approaches need considerable input of
knowledge exchange between experts and modelers, and also require extensive computer
power to provide meaningful results if the dimensionality of the parameter space is high.
Conventional statistical models can fit mathematical relations between variables based on
collected data, which are critical for inferring relationships. Unfortunately, statistical mod-
els suffer the limitations of representing emerging behaviors and spatial heterogeneities,
which usually cannot be ignored in extrapolating nonlinear dynamics in ecosystems. In
recent years, machine learning methods, such as Random Forest, Gradient boosted models,
K-means, and other techniques, have gained much attention as useful predictive modeling
tools for fruit-set and yield estimation [20,21]. This approach takes advantage of algorithms
to learn hidden complex patterns in huge datasets without too much human intervention
and bias, but still achieve remarkable prediction accuracy [22]. However, machine learning
models require large amounts of data for training and testing before reliable results can
be achieved [23]. This is a limiting factor in the analysis and prediction of many systems.
To overcome this drawback, the marriage of machine learning algorithms with computer
simulations, i.e., metamodeling (machine learning models built and trained on simulation
data to overcome the obstacle of data limitation), has become an emergent solution for
situations where sufficient data cannot be collected for mimicking the highly nonlinear
dynamics in agroecosystems [24].

Empirical research in China on bog blueberry is quite limited due to the undevel-
oped agricultural status of the far Northeast Highlands. Even though large-scale ecolog-
ical recovery research has been conducted in these areas, systematic field observations
on bog blueberry’s fruit production in association with bee density, composition and
weather conditions are limited [25]. This prevents the building of predictive models that
require comprehensive datasets for formulating the structure of the models, and then the
subsequent training, and validating necessary for model evaluation. To the best of our
knowledge, currently no predictive model has been found worldwide for bog blueberry
fruit-set prediction except for computer simulations, but there have been statistical models
and metamodels built for the similar blueberry species, V. angustifolium [15]. This sibling
species called wild blueberry or lowbush blueberry, is intensively managed as a commercial
fruit crop in the northeastern United States and the Canadian Maritimes [26]. Blueberry
biologists and agronomists have found that bog blueberry shares similar traits to wild
blueberry (its sibling species) in ploidy level (tetraploid), low genetic diversity, growth
form (rhizomatous shrub being clonal), pollination and reproduction system, as well as
sharing suitable climatic conditions [27]. The pioneering research on wild blueberry has
encouraged us to investigate the possibility of calibrating the predictive models built and
validated on wild blueberry for the prediction of bog blueberry fruit-set.
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Our primary goal in this research, therefore, was to test the hypothesis that pre-
dictive models successfully used for wild blueberry can be adapted to bog blueberry
fruit-set prediction with adjusted parameter estimation and validation on a relatively small
dataset. Although the two species are very similar, we still are not clear about whether a
non-reciprocal pollen compatibility relationship across different genotypes exists for bog
blueberry and what the proportion of plants that are self-compatible is in this species [28].
These relationships are critical for estimating the pollination efficiency and consequently
predicting fruit-set [15]. We hypothesized that the pollination simulation model built for
wild blueberry captures the main structure of pollination dynamics in bog blueberry. This
hypothesis is based upon the similar population reproductive structure that is shared by
the two blueberry species [15,28,29]. Both species are primarily heterogamous, meaning
that outcrossing is essential, but they also share autogamy (a proportion of self-compatible
individuals within populations). Based upon this similar reproductive and genetic struc-
ture, the metamodels based upon the wild blueberry simulation model should be able
to be used to identify bog blueberry specific patterns in pollination from the limited bog
blueberry data that we had available for modeling. Once we successfully transferred the
metamodel into bog blueberry fruit-set prediction, we applied it as a tool to evaluate the
response of Northeast China’s bog blueberry agroecosystem to weather factors, which have
been regarded as the most important abiotic variables affecting blueberry fruit-set (a proxy
to yield) [11,12]. In addition, we also investigated the viable management strategies that
could likely offset the negative effects of climate change on bog blueberry productivity.

2. Materials and Methods
2.1. Overview

Our study combines field observation and computer modeling (Figure 1) to produce
reliable predictions of bog blueberry’s fruit-set and utilize them to predict the productivity of
Northeast China’s bog blueberry agroecosystem in response to various weather conditions
and predicted climate change. A simulated dataset previously generated by the wild blueberry
pollination simulation model [15] was employed to develop several machine learning algo-
rithms. We use the terms “machine learning algorithm” and “metamodel” interchangeably in
this paper throughout the several steps of our analytical approach: feature selection, model
formulation and selection. Once the best metamodel with the highest prediction accuracy
was selected, its parameters were then estimated by being calibrated to the bog blueberry
fruit-set data collected from 6 fields in Northeast China in 2015 and 2016. Then the calibrated
metamodel was validated against a second independent bog blueberry fruit-set data collected
at the same 6 fields from 2017 to 2019, which had not been used for metamodel construction.
After validation, the metamodel was used for three experiments to predict bog blueberry
fruit-set in Northeast China under several weather conditions. The geographical pattern of
fruit-set change, as well as, potential management strategies to mitigate negative effects of
climate change were also investigated as model applications.
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Figure 1. Flow diagram of the study’s stages and tasks.

2.1.1. Study Area

We predicted the fruit-set of bog blueberries in 151 growth regions in three provinces:
Heilongjiang, Jilin and Inner Mongolia in Northeast China. These regions range from
116.49◦ E to 132.53◦ E, and from 40.86◦ N to 52.58◦ N, as shown in Figure 2. Each black
dot represents the geographical coordinates of the meteorological station in each of the
151 production areas. Yellow triangles are locations of the 6 bog blueberry fields where
fruit-set data was used for metamodel calibration (2015–2016) and validation (2017–2019).
These sites were Mohe (MH), Tahe (TH) Jiamusi (JMS) and Yichun (YC) in Heilongjiang
province, Genhe (GHS) in Inner Mogolia Autonomous Region and Changbai Mountain
area (CBS) in Jilin province.

Figure 2. Study area in Northeast China for bog blueberry fruit-set prediction.

2.1.2. Datasets and Simulation Data

Data used for metamodel development was downloaded from a publicly accessible
wild blueberry fruit-set dataset [30], see Mendeley Data: https://data.mendeley.com/
datasets/p5hvjzsvn8/1, accessed on 25 August 2021, which was generated by the Wild
Blueberry Pollination Simulation Model [15]. The dataset contains 777 records of simulated

https://data.mendeley.com/datasets/p5hvjzsvn8/1
https://data.mendeley.com/datasets/p5hvjzsvn8/1
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wild blueberry fruit-set, each of which is an average of 100 replications of simulation
experiments. These simulations were conducted by varying the following parameters:
the average clone size (CS) in square meters within a wild blueberry field; pollinator
density (common taxa) in bees per square meter per minute for Honeybee (HB), Bumble
bee (BB), Andrena (AD) and Osmia (OS); the highest point (MaxUTR), the lowest point
(MinUTR) and the average (AvUTR) of the upper range of the daily air temperature
along the blueberry production season; the highest point (MaxLTR), the lowest point
(MinLTR), the average (AvLTR) of the lower range of the daily air temperature during the
blueberry production season; the total number of rainy days (RD, or precipitation are used
interchangeably in this paper) during the bloom season when the daily precipitation is
higher than 2.5 cm; and the average number of days that rain (AvRD) during the bloom
season. Table 1 summarizes the range of parameter values that the simulations covered.
These ranges represent typical wild blueberry spatial traits, bee pollinator density and four
possible climatic trends around current weather conditions, which were Warm and Dry,
Warm and Wet, Cool and Dry, Cool and Wet, respectively. In other words, the simulation
data contain patterns that reveal the relationships between fruit-set and the features of
plant, pollinator, and weather conditions.

Table 1. Summary of simulated wild blueberry fruit-set data [30].

Parameter (Feature) Number of Records Unit Range Mean

Clone size (CS) 777 m2 10~40 18.768

Honeybee (HB) 777 bees/m2/min 0~18.43 0.417

Bumble bee (BB) 777 bees/m2/min 0~0.585 0.282

Andrena (AD) 777 bees/m2/min 0~0.75 0.469

Osmia (OS) 777 bees/m2/min 0~0.75 0.562

MaxOfUpperTRange (MaxUTR) 777 ◦C 20.9~34.8 27.9

MinOfUpperTRange (MinUTR) 777 ◦C 3.9~14 9.8

AverageOfUpperTRange (AvUTR) 777 ◦C 14.6~26.1 20.4

MaxOfLowerTRange (MaxLTR) 777 ◦C 10.1~20.1 15.2

MinOfLowerTRange (MinLTR) 777 ◦C −4.3~0.6 −1.8

AverageOfLowerTRange (AvLTR) 777 ◦C 5.1~13.3 9.2

RainDays (RD) 777 day 1~34 18.309

AverageRainDays (AvRD) 777 day 0.06~0.56 0.32

2.1.3. Empirical Data

From 2015 to 2019, researchers at the Institute of Natural Resources and Ecology
(Heilongjiang Academy of Sciences, China) recorded bog blueberry fruit-set at the clone
level (Figure 3) in six locations (see Section 2.1 Study area) [25]. Fruit-set was calculated
as the total number of viable fruits in one clone (genet or genetically unique plant) at
harvest divided by the number of flower buds before bloom in the same clone. Due to
uncertainties of the long duration of these field observations, sample sizes in each year
and at each field site varied from 58 to 300. Unfortunately, no plant spatial traits or bee
visitation rates had been recorded together with the fruit-set observations. In addition to
fruit-set, historical weather data including precipitation and air temperature from 2015 to
2019 were collected from the China National Meteorological Center (http://data.cma.cn,
accessed on 25 August 2021) at the geographical location of each field site. The six field
observations on bog blueberry fruit-set are included in Appendix A.

http://data.cma.cn
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Figure 3. A bog blueberry field site (A) in Amul, Mohe (MH) and one of the sampled clones (B). Photos were taken by
Dr. Dianwen Wei.

2.1.4. Feature Selection

In the process of developing a metamodel for fruit-set prediction, there may be features
that are irrelevant or of minor importance. The contribution of some of the types of features
can be determined to be minimal as compared to the most important features obtained as
the result of feature selection. The total 13 features which were obtained from the publicly
available dataset [30] of the Wild Blueberry Simulation Model have a different unit and
value range and therefore, we normalized them into a common scale (e.g., between 0
and 1) without distorting differences in the ranges of values. We then used five machine
learning methods that have their own built-in feature selection function: Decision Tree
(DT), Random Forest (RF), Gradient Boost Decision Tree (GBDT), AdaBoost, and Extreme
Gradient Boosting (XGBoost). All five methods were employed to select the subset of
features having the highest coefficient of determination (R2). Statistically, the coefficient
of determination (R2) explains the proportion of variance in the predicted result that is
explained by the features. We iteratively tested the coefficient of determination of the five
machine learning methods on all subsets of features, in which the number of features in a
subset increased from 1 to 13 [31]. It was observed that the XGBoost method achieved the
highest R2 value (0.929) among the five machine learning algorithms when the number of
features reached eight (8) (Figure 4). The eight (8) feature subset selected by XGBoost were
CS, HB, BB, AD, OS, MaxUTR, MinUTR, and RD. These eight (8) features were used for
developing the metamodels.

Figure 4. The number of features and their associated coefficient of determination (R2) for the five
machine learning algorithms DT, RF, GBDT, AdaBoost, and XGBoost.
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2.2. Model Development

The Python 3.6 software development environment was employed to develop nine
metamodels from the simulated wild blueberry dataset [30], in which wild blueberry fruit-set
was the dependent (response) variable, and the eight (8) selected features (see Section 2.4)
were used as independent (explanatory) variables.

2.2.1. Multiple Linear Regression (MLR)

MLR is a statistical modeling technique that involves predicting a numeric value given
multiple independent variables. MLR models have been used extensively in the agricultural
research field [32] to develop predictive models that assume a linear relationship between
more than one explanatory variable and a response variable by fitting an additive linear
equation to observed data. In this study, the goal of using multiple linear regression is to
model the linear relationship between the eight (8) selected features and wild blueberry
fruit-set, which is given by the general form as in Equation (1):

Y = β0 + β1 X1 + β2 X2 + · · ·+ βk Xk + ε (1)

where Y is wild blueberry fruit-set in the ith sample, i.e., the dependent variable; Xk
corresponds to the independent variables (CS, HB, BB, AD, OS, MaxUTR, MinUTR, and
RD); β0 is the equation intercept; βk is the corresponding linear coefficient of the kth

independent variable; and ε is random error. The training process is responsible for
determining the most likely coefficients for the MLR model from learning patterns in the
dataset (see Section 2.3).

2.2.2. Support Vector Regression (SVR)

The Support Vector Machine (SVM) algorithm was first introduced by Vladimir
Vapnik and his colleagues [33] and is a class of supervised machine learning algorithms for
classification problems. Later on, Drucker et al. [34] proposed Support vector regression
based on the concept of Vapnik’s support vectors. The main purpose of SVM regression is to
represent complex relationships through nonlinear mapping. Residual error is minimized
by adding a hyperplane and maximizing the distance between predicted and observed
values. Initially, the variables are modeled from the original space to a high-dimensional
feature space by a kernel function, where the kernel functions can be (linear, polynomial,
Gaussian, etc.) and depend on the relationship between the explanatory and response
variables. Then, a linear model is built in the derived feature space to minimize error,
where it becomes linearly separable [35]. The main hyperparameter fine-tuning of the
SVM model includes a kernel function, cost parameter(C), gamma (γ) and the impact of
regularization. In this study, the performance of different kernel functions was compared,
and finally a Gaussian kernel function was selected. This significantly reduces the risk of
overfitting and improves generalization.

2.2.3. K-Nearest Neighbor (K-NN)

Initially, K-NN was used only for classification. However, over the past few decades,
this model has also been used for both classification and regression modeling. The K-NN
algorithm is a nonlinear instance-based machine learning method [36] which is based on
the distance of the predictor variables to the nearest training group known to the model [37].
When K-NN is applied to solve regression problems, the value of the response is calculated
as a weighted sum of the responses of all the k neighbors, in which the weight is inversely
proportional to the distance from the input record [38]. The neighbors’ distance can be
calculated by Euclidean, Manhattan, and Minkowski distance formulas. However, in this
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study, the Minkowski distance formula was chosen by comparing the performance of
different distance measurement metrics, given by Equation (2):

(
k

∑
i=1

∣∣∣∣∣Xi −Yi

∣∣∣∣∣
q) 1

q

(2)

where k is the number of nearest neighbors, xi and yi are the distance between two points,
and q is a real value between 1 and 2.

2.2.4. Decision Trees (DT)

Decision Trees (DTs) are non-parametric algorithms that fall under the category of
supervised machine learning algorithms and can handle large and complex datasets ef-
fectively without a complex parameter structure [39]. Decision tree regression assesses
the features of an object and trains a model in the tree structure to predict data to produce
meaningful results in the future. In this study, we used the C4.5 algorithm [40] to train the
DT model for predicting wild blueberry fruit-set.

2.2.5. Random Forest (RF)

Random Forest (RF) first introduced by Breiman [41], is one of the most widely
employed ensemble of machine learning methods which create multiple regression trees
that are generated by a large set of decision trees for computing regression models [42].
When compared to using a single decision tree which often creates an unstable model, RF
makes predictions by combining predictions from several decision trees using Bootstrap
aggregation or a Bagging technique [43]. Bootstrapping involves random sampling of
data with replacement and has been proved to effectively reduce and control variance
(overfitting) of a predictive model. Random forest training includes training for each
decision tree on a randomly selected subset of features and data. Then, the final prediction
result is obtained by majority vote or averaging the outputs from each of the sub-models.
This can significantly improve the predictability of the RF model in terms of accuracy and
generalizability. With respect to handling noisy data, Random forests are more robust. In
addition, Random Forests perform well at capturing tabular data with numeric features and
maintaining nonlinear interactions between the response variable and the predictors [44].

2.2.6. Adaptive Boosting (AdaBoost)

AdaBoost regression is a machine learning meta-algorithm proposed by [45] that
begins with fitting a regressor on the training dataset and then adds additional replications
of the original regressor on the same dataset, but with performance improvement based
on error information collected from its predecessors [46]. In this way, a final model based
upon a strong learning basis can be expected. To improve performance, the algorithm can
be used in conjunction with many other learning algorithms.

2.2.7. Gradient Boosting Decision Tree (GBDT)

Jerome Friedman [47] in 1999 first introduced GBDT. This method is a popular machine
learning algorithm that optimizes the predicted value of a model in a series of steps during
the learning process. With the aim of minimizing the loss function, every single iteration of
the decision tree involves adjusting the values of the coefficients, weights, or biases employed
on each of the input variables used to predict the target value. There are four main benefits
to applying GBDT for predictive model development: (1) feature selection is inherently
performed during the learning process; (2) not prone to use of collinear or identical features;
(3) models are relatively easy to interpret, and (4) it is easy to specify different loss functions.
Hence, in order to solve predictive problems in both classification and regression domains,
GBDT is among the most widely used methods used in machine learning.
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2.2.8. Artificial Neural Networks (ANN)

Artificial Neural Networks represents a network model for emulating a biological
neural system which consists of input, hidden, and output layers [48]. The input layer
directly receives the data, whereas the output layer produces the required output. The
layers between the input and output layers are hidden layers where the intermediate com-
putation takes place. The process of creating a neural network begins with the perceptron.
The perceptron receives the inputs which correspond to the independent variables, and the
neurons in the hidden layer multiplies the inputs by weights based upon multiple passes
of the data. The results are then transferred to the output layer via an activation function
(such as relu, tanh, sigmoid) [49,50]. In this study, we adopted a three-layer perceptron
ANN having the activation function “ReLu” (because of its computational efficiency) [31]
in the hidden layers, which uses Adam as the gradient descent method. The activation
function used in our study is the non-linear rectified linear unit (ReLu) function, which has
output 0 for input less than 0 and raw output otherwise. It is mathematically expressed in
Equation (3).

R(x) =
{

0, x < 0
x, x ≥ 0

(3)

2.2.9. eXtreme Gradient Boosting (XGBoost)

In recent years, many agricultural researchers have been using XGBoost to predict
crop yields [30]. The eXtreme Gradient Boosting (XGBoost) method is an ensemble machine
learning algorithm based on the principles of the gradient boosting decision tree method.
With this method boosted trees are efficiently constructed and can automatically operate
parallel computation 10 times faster than gradient boosting [51]. It supports supervised
machine learning algorithms, including classification, regression and ranking. For better
performance, XGBoost provides three additional features compared to GBDT. First, the
weights of each new tree can be scaled down by given constant leaves which reduces
the influence of a single tree on the final score. Second, introduction of a regularized loss
function avoids the problem of overfitting. Third, the Taylor expansion method is used
to approximate the loss function thereby speeding up the process of optimization [52].
The predicted values of the tree ensemble model are computed using the formulae in
Equations (4) and (5).

ŷi = ∅ (xi) =
n
∑

k=1
k = fk(xi), fk ∈ F#

F = f (x) = wq(x)

(
q : Rm → T, w ∈ Rt) (4)

Equation (4) represents the regression tree space where xi is the input, ŷi is the output,
q the tree structure, and the number of leaves in the tree are identified as T. Each fk matches
the independent tree structure q and the weight w, where wi represents the score of the ith

leaf. This predicted value can be evaluated by:

L(∅) = ∑
i

l(ŷi , yi) + ∑
k

Ω( fk) (5)

where, Ω( f ) = yT +
1
z

λw2

L is the loss function which is the difference between the predicted value ŷi and the re-
sponse value yi. The entity Ω represents the complexity of the model and is a regularization
term that has the function of smoothing the weight to avoid overfitting.
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2.3. Model Evaluation and Selection

We employed a widely used statistical approach, cross-validation, to address the
problem of overfitting, in which we built models using 5-fold cross validation methodology.
The five folds were divided into training (four-folds) and testing (one-fold) sets. The
cross-validation was repeated in n rounds or trials. In each round the wild blueberry
simulation dataset was partitioned into a complementary subset. The model estimation
was conducted on one subset (the training set), while the validation was conducted on
the other subset (the validation or test set). The wild blueberry simulation dataset was
partitioned differently in different rounds, and the validation results were averaged over
the n rounds as an estimation of the model’s prediction accuracy.

In this study, to examine the prediction accuracy of the nine metamodels for wild
blueberry fruit-set predictions, four different statistical evaluation metrics were employed.
First, the coefficient of determination (R2) was used, which is defined as the proportion
of the variance in the response variable that is explained by the independent variables.
Second, we used the mean absolute error (MAE), which is defined as the absolute mean
difference between the ith actual fruit-set yi and the ith predicted fruit-set ŷi. Third, we
used the mean average percentage error (MAPE), defined as the prediction accuracy as an
average of ratios, each of which is the ith prediction error yi − ŷi divided by the ith actual
value yi. Fourth, the root mean squared error (RMSE) was used and is defined as a measure
of the quadratic mean difference between predicted and actual fruit-set. The mean absolute
error (MAE), mean average percentage error (MAPE) and root mean squared error (RMSE)
were computed using the Equations (6)–(8); respectively:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

where n is the number of samples, yi is the observed fruit-set and ŷi is the model-predicted
fruit-set. The coefficient of determination (R2) was computed according to [53] and is given
by Equation (9):

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (9)

where yi , ŷi and n are as defined above, and yi is the mean observed wild blueberry
fruit-set. The metamodel with the lowest prediction error and the highest R2 was selected
as the best metamodel.

2.4. Model Calibration and Validation

When the best metamodel was selected as the candidate for wild blueberry fruit-
set prediction, it needed to be further calibrated to fit the reproductive dynamics of bog
blueberry before specific predictions could be made for bog blueberry. The best metamodel
trained on the wild blueberry simulation dataset was regarded as the best representation of
the relationships between fruit-set and the eight variables by learning the basic pattern of
pollination dynamics produced by the Wild Blueberry Pollination Simulation Model. We
hypothesized that the selected metamodel has the potential to describe a similar pattern of
pollination dynamics in the bog blueberry agroecosystem [30]. This hypothesis was tested
in two steps. Step one was based upon exploring and estimating the best parameter set of
the best metamodel for bog blueberry. Step two was based upon comparing the predictions
with bog blueberry fruit-set not used previously in order to examine the goodness of fit.
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The best metamodel of wild blueberry prediction had eight parameters (or features,
including clone size, bee taxon-specific densities and weather) that determine fruit-set.
However, the prediction only needs weather data from bog blueberry fields as input. Other
parameters such as clone size, densities of different bee taxa are unknown and need to be
predetermined before fruit-set prediction can be made for the bog blueberry agroecosys-
tems. Therefore, to calibrate the best metamodel to bog blueberry, it was necessary to find
optimal values for the subset of parameters that (1) minimized the difference between
the predicted bog blueberry fruit-set and the observed of bog blueberry fruit-set on six
bog blueberry fields in years 2015 and 2016; and simultaneously (2) maximized the total
coefficient of determination (R2, see Equation (9)) of these parameters that explain the
variance of the model. The first objective can be mathematically formulated as:

J1(θ) =
M

∑
i=1

N

∑
j=1

ei,j(θ) (10)

where ei,j(θ) is a metric function that evaluates the prediction error, which was specified
as the RMSE in equation 8; M and N are the number of fields (i.e., (6)) and the number of
years (i.e., (2)) being predicted, respectively; θ denotes the following subset of parameters
selected for optimization from the metamodel: Clone size (CS), density of Honeybees (HB),
Bumble bees (BB), Andrena bees (AD) and Osmia bees (OS).

The second objective can be formulated as:

J2(θ) =
M

∑
i=1

N

∑
j=1

1
R2

i,j(θ)
(11)

where R2
i,j(θ) is the coefficient of determination (R2) of θ that explains the variance from the

metamodel, which is defined in Equation (9). Finally, we looked for the set of values for the
5 parameters θ that optimize both objectives, which can be formulated as a multi-objective
problem:

minJ(θ)
θ ∈ <5 = [J1(θ), J2(θ)] ∈ <2 (12)

A multi-objective optimization method [54] was employed to search the best parameter
set for the metamodel that is expected to achieve the highest prediction accuracy and
interpretability for bog blueberry fruit-set. To minimize the random effect, we replicated
the optimization algorithm 100 times, each of which was considered to have reached
convergence when both of the objectives did not make further improvement in values
smaller than 10−6 upon successive iterations.

Once the best values of the five parameters (except for the three weather relevant
parameters) were found for the metamodel, its predictions were validated on the mean fruit-
set observed in the same six bog blueberry fields in the years 2017–2019. Our conceptual
approach was that if the validation results were acceptable, it indicated that the metamodel
had successfully learned the difference in pollination patterns between wild blueberry and
bog blueberry. The metamodel could then be regarded as successfully calibrated to bog
blueberries and would be ready for making realistic field predictions.

2.5. Prediction Applications

We conducted three prediction experiments to evaluate how different weather con-
ditions expected in the near future (5~10 years) might affect bog blueberry fruit-set in
northeastern China. Specifically, we used the calibrated metamodel, i.e., XGBoost, to make
predictions for bog blueberry fruit-set in the 151 growth regions with several combinations
of temperature and precipitation variation while keeping other parameters unchanged.
Then the variation in predicted fruit-set of these regions were analyzed to determine if a
geographical pattern existed. Finally, if specific weather conditions caused a decline in
fruit-set, several management efforts which were available to be adjusted in the metamodel,
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such as increasing commercial honeybee or bumble bee densities, were tested for potential
mitigation of the fruit-set decline under the stress of weather factors.

2.5.1. Bog Blueberry Fruit-Set in Various Weather Conditions during Bloom

According to a recent climate research report, the most likely climate change direction
in Northeast China in the near future (5~10 years) would be higher air temperatures with
more rainy days during the bog blueberry production season. These conditions may pose
a threat to bog blueberry’s fruit-set. The primary goal of this experiment was to estimate
bog blueberry’s fruit-set under higher temperature and precipitation conditions. However,
the opposite weather conditions were also considered in this experiment to elucidate the
full effects of a highly variable fluctuation in weather on bog blueberry crop production.
Specifically, we conducted a full factorial prediction experiment, in which the two factors
(i.e., MaxUTR and RD) were systematically varied on seven levels (decreased or increased
by 5%, 15% and 25% with respect to the baseline scenario indicating the recent weather
conditions between 2017 and 2019). Therefore, there were 7 × 7 = 49 combinations of
predictions made. The predicted fruit-set of the 151 bog blueberry growth regions in
Northeast China were plotted and projected onto a GIS map with ArcGIS [55], from which
the variation of predicted bog blueberry fruit-set can be observed along a gradient of
weather change.

2.5.2. Geographical Pattern of Bog Blueberry Fruit-Set Change

We were particularly interested in whether the change in weather during bloom evenly
or irregularly affects bog blueberry fruit-set across the 151 growth regions in Northeast
China. If the effects were irregular, we expected to observe geographical patterns in
response. For example, are specific parts of the growing regions more likely affected by
weather change than others? It is important to evaluate the potential for bog blueberry
production along a geographical gradient under a changing climate and provide insight
into management and conservation. Specifically, we used the predictions generated in
the previous experiment to analyze the changes in correlation between fruit-set and the
longitudes and latitudes of the predicted regions when the air temperature positively or
negatively 5%, 15% and 25% deviated from the current climate baseline (2017–2019). We
also conducted a similar analysis for scenarios in which the number of rainy days during
bloom were changed in the same proportional pattern.

2.5.3. Bee Density Enhancement for Compensating Bog Blueberry Fruit-Set Decline

Some weather conditions may negatively affect pollinator foraging activities, which
could cause a decline in bog blueberry fruit-set. We were especially interested in whether
some factors that are relevant to bog blueberry production can be manipulated to increase
fruit-set. Hopefully these efforts can compensate or mitigate a decline in fruit-set caused
by inappropriate weather conditions. Of the three groups of eight features (parameters
of the XGBoost model), weather (RD, MaxUTR and MinUTR), plant spatial traits (CS)
and bee density (HB, BB, OS and AD); only bee density is subject to human intervention.
Commercial honeybee and bumble bees are available in many regions in Northeast China.
Therefore, it is feasible to increase the density of honeybees or bumble bees without
reducing the density of wild bees for the purpose of enhancing the pollination service
in a field. By exploring the parameter space of the XGBoost model, we aimed at finding
the optimal density for honeybees or bumble bees that can independently compensate
for fruit-set decline. Specifically, we made two sets of predictions with the metamodel
to fit the relationships between bee density and bog blueberry fruit-set while keeping
other factors unchanged in accordance with the weather conditions where fruit-set was
negatively affected. Then we quantitatively estimated the percentage of extra honeybee or
bumble bee investment necessary to mitigate the negative effect of climate change.
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3. Results
3.1. Metamodel Formulation and Selection

Nine metamodels were constructed and their performances in terms of prediction
ability were evaluated on the simulated wild blueberry pollination dataset with a five-fold
cross-validation method. The three best metamodels that had the lowest MAE, MAPE,
and RMSE and the highest R2 were: RF (Random Forest), GBDT (Gradient Boosting
Decision Tree), and XGBoost (eXtreme Gradient Boosting) (Table 2). The remaining six
metamodels were not considered further in future metamodeling steps. Even though RF
and GBDT had almost the same level of prediction error as XGBoost, we selected XGBoost
as the best metamodel and used it for bog blueberry fruit-set prediction because it had
a higher R2 (0.932) than RF (0.922) and GBDT (0.927). The XGBoost metamodel had the
lowest unexplained variance in wild blueberry fruit-set among the three-best performed
metamodels. The highest R2 achieved by XGBoost has given the best model generalization
capability in dealing with unexpected patterns in validation data not used to construct
the metamodels. The scatter plots (Figure 5) illustrate how accurate the fruit-set in the
validation data can be predicted by different metamodels trained in the training set of the
wild blueberry pollination dataset.

Table 2. The model’s performance on the simulated wild blueberry pollination dataset.

Model
Evaluation Metrics

MAE MAPE RMSE R2

SVM 0.044 9.025% 0.053 0.553
MLR 0.034 7.282% 0.042 0.721

AdaBoost 0.030 6.398% 0.038 0.773
DT 0.013 3.093% 0.03 0.845

ANN 0.022 4.720% 0.029 0.861
KNN 0.014 3.152% 0.024 0.912

RF 0.011 1 2.520% 0.022 0.922
GBDT 0.011 1 2.483% 1 0.021 1 0.927

XGBoost 0.011 1 2.489% 0.021 1 0.932 2

1 bold denotes the best overall lowest value for MAE, MAPE and RMSE; 2 bold denotes the best overall highest
value for the R2.

In addition to model prediction performance, feature importance in the three best
metamodels were also evaluated to understand the influence of potential predictive factors
on blueberry fruit-set. The importance of features was estimated by the coefficient statistics
between each feature and fruit-set and then standardized to 100% as a relative importance
measure. Results showed that CS (clone size), RD (Raining days), and MaxUTR (the highest
point of the upper range of the daily air temperature along the blueberry product season)
were the three most important factors influencing blueberry fruit-set across the three
best metamodels (Figure 6). It was not surprising that CS was the most important factor
affecting blueberry fruit-set due to the outcrossing nature of blueberry (i.e., differential
outcrossing success depending upon clone genetics of sire and recipient [28]) and bee
foraging behavior, which is confirmed by previous empirical [6] and simulation research
results [15]. However, both wild blueberry and bog blueberry are wild species that are
not planted, so farmers have no control over this feature. The two weather parameters,
precipitation and air temperature showed the next highest influence on blueberry fruit-set.



Agronomy 2021, 11, 1736 14 of 28

Figure 5. Scatter plots of actual fruit-set versus predicted fruit-set based on the wild blueberry pollination simulation
validation dataset for MLR (A), SVR (B), AdaBoost (C), DT (D), ANN (E), KNN (F), RF (G), GBDT (H) and XGBoost (I).
Black lines are 1:1 slopes and the red lines are least squares regression lines.

Figure 6. Relative importance of features affecting results of three different metamodels (GBDT, RF,
and XGBoost). Clone size, the number of rainy days, and maximum upper temperature ranges were
the three most important features across metamodels.
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3.2. Metamodel Calibration and Validation

The XGBoost metamodel outperformed the remaining eight metamodels in previous
training and evaluation steps on the wild blueberry pollination dataset. It was therefore
selected as the candidate model to predict bog blueberry fruit-set since it had learned the
basic dynamics of pollination and fruit-set for blueberry species. The XGBoost model was
then calibrated to the empirical bog blueberry fruit-set dataset collected at the six field
sites (CBS, GHS, JMS, MH, TH and YC) in years 2015 and 2016. The calibration process
is a multi-objective optimization [55] that simultaneously minimizes prediction error and
maximizes interpretability by finely tuning the parameters. Figure 7A,C,E,G,I shows
the predicted versus the observed bog blueberry fruit-set for the six fields in years 2015
and 2016 without calibration, i.e., the XGBoost metamodel trained on wild blueberry data
were directly used in bog blueberry fruit-set prediction. After calibration, the average
accuracy of bog blueberry fruit-set prediction increased from 0.658 to 0.975, as shown
in Figure 7B,D,F,H,J, in which the prediction accuracy is defined as the coefficient of
determination (R2) of the linear regression between predicted and observed fruit-set. The
visualizations in Figure 7 also shows that specific ranges of parameters, such as clone size
and bee density, are also the optimal settings for bog blueberry. Table 3 presents the means
and 95% confidence intervals of the optimal parameter set for the XGBoost model that
had been calibrated to bog blueberry observations. The optimal parameter set obtained on
the bog blueberry dataset showed a slight difference in contrast with the original version
trained and tested on the wild blueberry dataset. Clone size shrunk from 18.78 to 15.32;
honeybee density increased from 0.417 to 1.026; bumble bee density decreased from 0.282 to
0.232, etc. These variations of model parameters likely reflect the difference of plant
physiology, phenology, and genetics in vegetative and reproductive growth between wild
blueberry and bog blueberry.

Table 3. The optimal parameter set of the best metamodel found by the multi-objective optimization
algorithm [54] when XGBoost was calibrated to the observed fruit-set of the six bog blueberry field
sites (CBS, GHS, JMS, MH, TH, and YC) in the years 2015 and 2016.

Parameter Unit Mean 95% CI (Upper) 95% CI (Lower)

Clone size (CS) m2 15.32 15.945 14.694
Honeybee (HB) bees/m2/min 1.026 1.068 0.984
Bumble bee (BB) bees/m2/min 0.232 0.241 0.223

Andrena bee (AD) bees/m2/min 0.435 0.453 0.417
Osmia bee (OS) bees/m2/min 0.637 0.663 0.611

The calibrated XGBoost model with the optimal parameter set was validated on bog
blueberry fruit-set data collected at the six field sites (CBS, GHS, JMS, MH, TH and YC), but in
different years between 2017 and 2019. Table 4 shows that 14 out of 18 bog blueberry fruit-set
predictions made by XGBoost fell into the 95% confidence interval of the field observations,
which achieved an overall 78% prediction accuracy. If we consider the 4 missed predictions
(Wilcoxon Signed Rank test, p < 0.05) further, the worst case (CBS in year 2018) had only
a 4% prediction error between the lower bound of the 95% confidence interval (0.504) and
the XGBoost prediction (0.482); while the best case (MH in year 2018) had less than 1%
prediction error between the lower bound of the 95% confidence interval (0.509) and the
XGBoost prediction (0.504). This evidence suggests a successful model validation if one takes
into account the general acceptance rate of model prediction [56]. Therefore, the XGBoost
metamodel can be adapted and trusted in bog blueberry fruit-set predictions.
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Figure 7. Cont.
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Figure 7. Accuracy of bog blueberry fruit-set prediction before (A,C,E,G,I) and after (B,D,F,H,J) parameter optimizations
were conducted. The prediction accuracy is defined as the coefficient of determination (R2) of the linear regression between
predictions and observations in fruit-set.

Table 4. Validation results of the calibrated metamodel (XGBoost). The model predictions were compared with field
observations in six sites (CBS, GHS, JMS, MH, TH, and YC) in the years between 2017–2019, using the Wilcoxon Signed-Rank
test. Bold and italic numbers indicate statistically significant differences (α = 0.05), which means that the metamodel failed
to predict bog blueberry fruit-set in a specific field site and year.

Field Site Year of
Observation

Field Fruit-Set
Mean

Field Fruit-Set 95%
CI (Upper)

Field Fruit-Set 95%
CI (Lower)

Predicted
Fruit-Set df p-Value

CBS 2017 0.494 0.519 0.468 0.498 163 0.724
CBS 2018 0.520 0.537 0.504 0.482 287 <0.001
CBS 2019 0.560 0.576 0.543 0.570 272 0.220
GHS 2017 0.452 0.491 0.413 0.466 67 0.475
GHS 2018 0.554 0.592 0.516 0.576 58 0.257
GHS 2019 0.520 0.549 0.491 0.504 145 0.283
JMS 2017 0.456 0.487 0.429 0.458 111 0.872
JMS 2018 0.567 0.587 0.548 0.576 205 0.382
JMS 2019 0.495 0.533 0.458 0.481 75 0.446
MH 2017 0.462 0.504 0.420 0.466 71 0.829
MH 2018 0.534 0.559 0.509 0.504 128 0.020
MH 2019 0.545 0.570 0.521 0.524 102 0.089
TH 2017 0.471 0.502 0.440 0.461 125 0.525
TH 2018 0.541 0.567 0.514 0.546 102 0.697
TH 2019 0.509 0.537 0.481 0.564 122 <0.001
YC 2017 0.582 0.603 0.560 0.544 113 <0.001
YC 2018 0.564 0.592 0.536 0.556 99 0.564
YC 2019 0.487 0.519 0.455 0.510 95 0.154
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3.3. Bog Blueberry Fruit-Set Predictions

The first experiment revealed that under the current weather conditions (baseline
scenario (T + R)) in which the variation of air temperature and precipitation was zero, the
151 bog blueberry growth regions had a mean fruit-set of 0.403 and a median of 0.374. The
highest fruit-set prediction recorded was 0.521 in Oroqin county (50.6◦ N, 123.73◦ E). The
lowest fruit-set prediction was 0.373 and recorded in multiple regions including Horqin
county (46.36◦ N, 121.13◦ E). As expected, higher temperature significantly drove the fruit-set
decline in most regions (ANOVA, F = 6.360, df = 603, p < 0.001). The rise of air temperature
alone by 5, 15 and 25% caused 3.5% (mean = 0.389), 4.2% (0.386) and 4.2% (0.386) decline
in bog blueberry fruit-set in the 151 regions (Figure 8A). The lowest fruit-set recorded was
0.317 in Sunwu county (49.25◦ N, 127.2◦ E) in both scenarios where air temperature was
raised by 15 and 25%. Surprisingly, fruit-set in currently warmer weather did not drop by
an equivalent percentage as the increase in air temperature. We also did not find further
fruit-set decline when the air temperature in these regions was already 15% higher than
current weather conditions (Tukey-Kramer HSD test, p = 0.866). This indicates a nonlinear
relationship between bog blueberry fruit-set and possible warmer weather conditions. The
opposite direction in weather change, i.e., when the air temperature in these regions declined
by 5, 15 and 25%, promoted bog blueberry fruit-set by 7.7% (0.434), 21.8% (0.491) and 18.9%
(0.479) in the 151 regions (ANOVA, F = 200.723, df = 603, p < 0.001, Figure 8A).

Figure 8. Effects of change in air temperature (A) or precipitation (B) on bog blueberry’s fruit-set in the 151 growing
regions in Northeast China. Error bars are one standard deviation of the mean. Different letters on bars indicate significant
differences (α = 0.05) between climate change scenarios.

If the weather became dryer and the air temperature remained unchanged, the average
fruit-sets of the 151 bog blueberry growth regions were increased by 4.2, 13.9, and 20.8%
when the number of rainy days decreased by 5, 15, and 25% (Figure 8B), which were
significantly higher than those fruit-sets associated with the baseline weather conditions
(Turkey-Kramer HSD, p < 0.001). The highest fruit-set recorded was 0.528 in Manchuria
county (49.35◦ N, 117.19◦ E). On the contrary, if the weather was more wet, the average
fruit-sets in the 151 bog blueberry growing regions showed 0.2, 4.4, and 8.2% decline in
contrast with the baseline scenario when the number of rainy days increased by 5, 15, and
25% (Figure 8B). It appears that only a 5% precipitation increase in the future will not
(Turkey-Kramer HSD, p = 0.999) cause a decline in bog blueberry fruit-set. The lowest
fruit-set in wetter weather conditions was 0.317 in 28 counties.

Overall, increased air temperature and/or precipitation posed a larger magnitude
of threat to bog blueberry fruit-set than that the benefit of increased fruit-set brought
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about by an opposite weather direction of decreased air temperature or precipitation (see
Appendix A, Figure A1). The nonsymmetrical effects of temperature or precipitation
variation indicated that the most likely trend of future weather may cause severe damage
to bog blueberries as we initially expected. Most bog blueberry production regions in
Northeast China will suffer fruit-set declines if the weather continues to warm or become
more wet, a model prediction of future climate change.

Predictions also provided evidence of interactions between air temperature and pre-
cipitation (ANOVA, df = 36, F = 15.821, p < 0.001). The highest fruit-set was 0.562 in
Manchuria county (49.35◦ N, 117.19◦ E) under the cooler and dryer weather conditions (air
temperature was 15% lower, and precipitation was 25% lower than the baseline situation).
This record was also the highest fruit-set value in our predictions for all possible combina-
tions of changes in temperature and precipitation. It suggests that cooler and dryer weather
might be ideal for bog blueberry reproduction and harvestable yields. The lowest fruit-set
was recorded as 0.317 in more than 60 counties under the warmer and wetter weather
scenario (air temperature and precipitation were both increased 25% over baseline), which
is much worse than the negative effect caused by increased air temperature or precipitation
alone. This is a warning signal to future bog blueberry production in Northeast China,
again as warmer more rainy springs are to be expected. Bog blueberry fruit-set predictions
in the 151 regions under different weather variation scenarios are geographically shown
in Figures 9 and 10, in which fruit-set of counties were categorized into three levels (less
than 0.4, between 0.4 and 0.5, higher than 0.5).

The second experiment found that overall, bog blueberry fruit-set is positively corre-
lated with latitude of the production regions. This is true for both field observations and
metamodel predictions. Northern regions had higher fruit-set than southern ones. But
no apparent trend was detected in this relationship when air temperatures varied while
precipitation was static (see Appendix A, Table A1, p = 0.595). This finding suggests that
warmer or cooler weather in the near future is not likely to change the geographical pattern
of the locations of the highest bog blueberry productivity in Northeast China. Surprisingly,
a strong trend in the correlations between latitude and the change in fruit-set was detected
when precipitation was varied (Table A2, R2 = 0.833, p < 0.001). The higher the precipitation
level, the stronger the correlation between latitude and fruit-set. The trend indicated that
if the level of precipitation goes up in the future, the northern bog blueberry production
regions (such as Mohe, Tahe, and Oroqin counties) will have an advantage in achieving
high bog blueberry fruit-set compared to the southern regions (such as Changbaishan,
Shulan and Tonghua counties). However, if weather becomes dryer, the southern regions
will benefit more from optimal weather growing conditions and the difference in fruit-set
levels between northern and southern regions will shrink.

The decline in bog blueberry fruit-set due to climate induced increases in air tempera-
ture and rainy days can be estimated at 8%, from 0.403 down to 0.37 (Figure 8B). According
to the third prediction experiment, the 8% decline in fruit-set can be compensated by inten-
tionally increasing honeybee density from the current 1.0 bees/m2/min to 18 bees/m2/min
(Figure 11A). If all other factors are fixed and only honeybee density is increased, the 8%
of bog blueberry fruit-set that has to be compensated for requires much higher honeybee
density than a scenario where all factors are fully interactive and able to be manipulated.
However, due to the recognized high efficiency of bumble bees as pollinators for blueberry,
increasing commercial bumble bee density alone from the current 0.232 bees/m2/minute to
0.568 bees/m2/minute (Figure 11B) can enhance bog blueberry fruit-set by 8%. One should
note that even though the more efficient bumble bee can offset climate induced fruit-set
decline, a bottleneck exists since our predictions show that it is almost impossible to have
higher bog blueberry fruit-set than 0.60 by only introducing bumble bees (bumble bee
density higher than 0.65 bees/m2/minute) because predicted proportion fruit set increases
at a decreasing rate with increasing bumble bee forager density.
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Figure 9. Fruit-set predictions in 151 bog blueberry production regions in Northeast China with
increased temperatures and precipitation.
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Figure 10. Fruit-set predictions in 151 bog blueberry growing regions in Northeast China with
decreased temperatures and precipitation.
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Figure 11. Predicted bog blueberry proportion fruit-set based on the density of commercial honeybee
density (A) and bumble bee density (B) using the XGBoost model parameterized for recent weather
conditions while keeping other parameters at default values. Blue-grey areas around the trend lines
represent a 95% confidence interval envelope.

4. Discussion
4.1. Modelling Approach and Interpretation

This research contributed to our scientific knowledge with a novel modeling approach
to predicting the fruit-set of Northeast China’s bog blueberry based upon a very limited
amount of data for model development. As a major agroecosystem in Northeast China;
bog blueberry’s yield, fruit quality and economic stability are important to the local rural
economy. Machine learning models that capture the complex nonlinear relationships be-
tween fruit-set and various interacting biotic and abiotic factors are essential for developing
adaptive bog blueberry management strategies. However, due to the lack of systematic
field experiments and observations on bog blueberries in Northeast China, it was unlikely
that in the next few years agricultural scientists could directly develop and train reliable
machine learning models for prediction purposes. We therefore utilized previously devel-
oped and validated computer simulation models based on US wild blueberry production
as a reliable data generator to feed nine machine learning models. The best machine model
with the highest prediction performance from the previous step was parameterized and
calibrated on a small bog blueberry data set (less than 1500 samples). After calibration, the
metamodel was used for bog blueberry fruit-set prediction. This approach allows machine
learning models to be adapted to new prediction tasks even though the available data
for retraining is limited. The theoretical foundation for this approach is well-known and
referred to as transfer learning [57]. The approach provides a general machine learning
framework where a model trained (aka knowledge gained) in one domain of interest can
be applied (aka transferred) to a new but similar domain where data is usually limited.
In recent years, transfer learning has been widely used in deep learning models for crop
disease detection [58–60], but it is not common for non-deep learning models [61], which
may need more fine-tuning with multi-objective optimization techniques [54]. However,
transfer learning would work with any type of machine learning algorithms where the
base features are the same [62] with different magnitudes of interpretability [63]. In our
research, the best machine learning model trained on the wild blueberry simulation dataset
was regarded as the best representation of the relationships between fruit-set and the eight
predictor variables by learning the basic pattern of pollination dynamics of multiple blue-
berry species. Although bog blueberry may have diverse genotypes (e.g., the proportion
of self-compatible genotypes, [64]) that could cause different pollination dynamics, these
differences can still be explained by a metamodel with re-parameterization on a small amount
of bog blueberry data. The difference of decomposed feature-level variance before and after
metamodel calibration (the visualizations in Figure 7) might shed light on this point.
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Unlike the deep neural network-based transfer learning approach [65], in which only
the very few last layers are replaced and retrained while front layers are kept as storage of
common knowledge between the source and the target domain [57], our approach uses a
similar concept of knowledge storage, but with a different way of retraining [62]. In our
approach, the basic patterns of pollination dynamics are captured and stored in the machine
learning models (metamodels) trained on vast amounts of simulation data. However, we
did not split these metamodels, instead, the difference in pollination dynamics between
different blueberry species was offset by adjusting a partial parameter set. Specifically, clone
size (CS) and the density of different bee species (OS, BB, AD, and HB) were chosen for
adjusting with the help of a multi-objective optimization method. In doing so, the best value
of these features in the metamodels maximize the likelihood of predicting bog blueberry
fruit-set. The merits of this technique are threefold. First, directly adjusting parameters
(not for model manipulation) instead of the structure of a metamodel for retraining is
helpful in some scenarios where the features learned are not multiscale. Splitting the
model for retraining (e.g., like deep neural networks do) may not work. Second, directly
adjusting parameters is straightforward and can be done very quickly, because searching an
optimal set by means of a strong multi-objective optimization procedure has much lower
computational complexity than training a deep neural network until it converges [54].
Third, since the number of parameters in our approach (four) is much less than the number
of hyperparameters in a deep neural network (usually thousands), the retraining process
requires much less data [63], which implies that our approach is more robust and universal
than many transfer learning situations where data insufficiency is common. However, we
acknowledge that our method, like all metamodeling approaches based on simulation data,
is restricted by how effectively the simulation model can be exploited. If the simulation
experimental design is not representative of the system or the number of experiments
conducted is not adequate, information loss is expected and missed patterns might bias
prediction results.

4.2. Practical Implications of Model Prediction

Our metamodel predictions showed that warmer, wetter weather is detrimental to
optimal fruit set. As a measure of potential yield, a decline in fruit set has direct implications
on profitability and sustainability of bog blueberry production in Northeast China. The
current geographic distribution of bog blueberry is the cool, temperate (circumpolar)
regions of the northern hemisphere [66]. This current climate envelope of cool, dry weather
suggests that bog blueberry will not be tolerant to higher temperature and increased
precipitation [67]. Our metamodel prediction experiments focused on reproduction and
fruit set. Based upon wild blueberry, some of the mechanisms of decreased fruit set
due to climate warming and increased precipitation are: reduced activity of bees during
rainy days, reduction of the longevity of stigma viability during warm springs, faster
rate of progression through the bloom period by the flowering clones (genetically unique
individual plants), asynchrony between the emergence of wild bees and the early blooming
clones, and increased blossom loss due to infection by Monilinia vaccinii-corymbosi (Reade)
(the causal fungal organism of mummy berry disease) [15,26,68]. Parkinson and Mulder [2]
also support our hypothesis that bog blueberry fruit set will be affected in a similar way
that wild blueberry fruit set is by warming. In Alaska, USA, they found that bog blueberry
exhibited a decline in fruit set in warmer lowland sites relative to cooler upland sites.

However, the loss in bog blueberry productivity due to climate warming and increased
precipitation may be even greater than the losses that we modeled. Increased precipitation
can result in other plant diseases due to fungi that reduce photosynthetic area and overall
vigor of the plant and may make plants susceptible to other pathogens [26]. Graae et al. [69]
support our hypothesis that climate change may increase fungal disease in bog blueberry
as it does in wild blueberry. They found increased seed infection by fungi under warmer
temperatures. Also in wild blueberry, Tasnim et al. [13] found that already occurring
climate change resulting in warming and increased potential evapotranspiration is having
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negative effects on wild blueberry photosynthetic rates and overall plant growth rates. We
expect that these same responses will be observed in the sibling species, bog blueberry. One
of the few experiments with bog blueberry under changing weather conditions showed that
nutrient uptake under warming declines in bog blueberry [70]. Therefore, the predicted
decline in bog blueberry fruit set due to climate change may be only one component of a
more complex suite of detrimental responses as a result of future climate change.

5. Conclusions

In our research, a new predictive modeling approach was introduced based upon
the concept of transfer learning to solve the problem of data deficiency in predicting
productivity of agroecosystems. Our paper delineates the process of building machine
learning models (metamodels) from simulations built for one agroecosystem, where data
resources are abundant; evaluating and selecting the best metamodel representing the
dynamics of the system; and re-parameterizing and calibrating the metamodel to another
agroecosystem where crop species-specific data is scare. To test our proposal, we used
the pollination dynamics of the wild (lowbush) blueberry agroecosystem in the US as the
source domain and the bog blueberry agroecosystem in Northeast China as the target
domain. We have shown that knowledge gained in one crop system by modeling and
simulation can be used for other crop systems sharing similar traits, which could save
considerable investment in field observation and data collection [71]. Another contribution
of our work is that it provides a feasible path for packaging knowledge and making it
available across the scientific and grower community, which is often a neglected aspect
of sustainable solution development [72]. In addition to the methodological exploration,
we also applied our approach to predicting the response of productivity (i.e., fruit-set, as
a proxy to yield) of Northeast China’s bog blueberry agroecosystem to different weather
conditions, which are regarded to be the most important abiotic factor affecting bog
blueberry yield. Our application showed that in the most likely climate change scenario
(i.e., higher temperatures with more precipitation), a decrease in fruit-set of Northeast
China bog blueberries, the worst-case scenario being an 8% reduction was expected. The
geographical pattern also revealed that the southern and eastern production regions will
suffer more severe fruit-set decline than the rest of the bog blueberry growing regions. We
suggest that while controlling blueberry clone size and wild bee populations is unlikely
to be successful, increasing commercially available honeybee density from the current 1
bee/m2/minute to 18 bees/m2/minute, or commercially available bumble bee density
from the current 0.2 bee/m2/minute to 0.6 bees/m2/minute, might be a viable way to
compensate for the predicted 8% climate induced fruit-set decline in the near future.
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Appendix A

Figure A1. Cumulative probability of predicted fruit-set in the 151 bog blueberry production regions in Northeast China
under potential future temperature (A) or precipitation (B) change. T and R denote the baseline scenario where no
temperature (T) or precipitation (R) changes were applied to current conditions.

Table A1. Correlations between latitude/longitude and bog blueberry fruit-set in the 151 regions in Northeast China with
changes of air temperature from −25% to 25% (Pearson’s product-moment correlation test) when the number of rainy days
was kept the same as the baseline scenario. Bold and italic numbers indicate statistically significant correlations (α = 0.05).

0.75T + R 0.85T + R 0.95T + R Baseline (T + R) 1.05T + R 1.15T + R 1.25T + R

Latitude 0.211
(p = 0.009)

0.046
(p = 0.579)

0.233
(p = 0.004)

0.344
(p <0.001)

0.348
(p <0.001)

0.245
(p = 0.003)

0.245
(p = 0.003)

Longitude −0.244
(p = 0.003)

0.005
(p = 0.947)

−0.101
(p = 0.219)

−0.274
(p = 0.001)

−0.217
(p = 0.007)

−0.190
(p = 0.020)

−0.190
(p = 0.020)

Table A2. Correlations between latitude/longitude and bog blueberry fruit-set in the 151 regions in Northeast China with
changes in precipitation from −25% to 25% (Pearson’s product-moment correlation test) when air temperature was kept the
same as the baseline scenario. Bold and italic numbers indicate statistically significant correlations (α = 0.05).

T + 0.75R T + 0.85R T + 0.95R Baseline (T + R) T + 1.05R T + 1.15R T + 1.25R

Latitude 0.089
(p = 0.279)

0.139
(p = 0.088)

0.193
(p = 0.018)

0.344
(p < 0.001)

0.324
(p < 0.001)

0.303
(p < 0.001)

0.374
(p < 0.001)

Longitude −0.103
(p = 0.208)

−0.393
(p < 0.001)

−0.376
(p < 0.001)

−0.274
(p = 0.001)

−0.263
(p < 0.001)

−0.260
(p < 0.001)

−0.488
(p < 0.001)
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