Effects of Organic Cropping on Phenolic Compounds and Antioxidant Capacity of Globe Artichoke Herbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Area, Climate, and Soil
2.2. Plant Material, Experimental Design, and Management Practices
2.3. Harvesting the Raw Material and Postharvest Treatments
3. Chemical Analyses
3.1. Reagents
3.2. Sample Preparation
3.3. HPLC Analysis
3.4. ABTS, FRAP and DPPH Methods
3.5. Statistical Analysis
4. Results
4.1. Artichoke Herb Yield
4.2. Polyphenolic Acid Content and Antioxidant Value
4.3. Fractions of Polyphenolic Acids and Flavonoids
4.4. Nitrogen Fertilization in an Organic and Conventional System
4.5. Correlations between Parameters
5. Discussion
5.1. Influence of the Cultivation System on the Globe Artichoke Yield and Antioxidant Properties
5.2. Influence of Nitrogen Fertilization on the Herb Yield
5.3. Influence of Nitrogen Fertilization on the Content of Polyphenolic Compounds
5.4. Influence of the Growing Season on Polyphenols
5.5. Interaction of “Crop System × Fertilization”
5.6. Interaction of “Cultivation System × Growing Season”
5.7. Correlations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Characterization of phenolic acids and flavonoids in leaves, stems, bracts and edible parts of globe artichokes. Acta Hort. 2012, 942, 413–417. [Google Scholar] [CrossRef]
- Pandino, G.; Mauromicale, G. Globe artichoke and cardoon forms between traditional and modern uses. Acta Hort. 2020, 1284, 1–18. [Google Scholar] [CrossRef]
- Matthes, C.; Honermeier, B. Wirkung differenzierter N-Düngung auf inhaltsstoffgehalt und morphologie der artischoke (Cynara cardunculus L. subsp. flavescens Wikl.) in einem gefäßversuch. Mitt. Ges. Pflanzenbauwiss 2005, 17, 156–157. [Google Scholar]
- Lombardo, S.; Pandino, G.; Mauromicale, G.; Knödler, M.; Carle, R.; Schieber, A. Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010, 119, 1175–1181. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Ierna, A.; Mauromicale, G. Variation of polyphenols in germplasm collection of globe artichoke. Food Res. Int. 2012, 46, 544–551. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Mineral profile in globe artichoke as affected by genotype, head part and environment. J. Sci. Food Agric. 2010, 91, 302–308. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Moglia, A.; Portis, E.; Lanteri, S.; Mauromicale, G. Leaf polyphenol profile and SSR-based finger printing of new segregant Cynara cardunculus genotypes. Front. Plant Sci. 2015, 5, 800. [Google Scholar] [CrossRef] [Green Version]
- De Falco, B.; Incerti, G.; Amato, M.; Lanzotti, V. Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phytochem. Rev. 2015, 14, 993–1018. [Google Scholar] [CrossRef]
- Ghoneim, I.M. Effect of biofertilizer types under varying nitrogen levels on vegetative growth, head yield and quality of globe artichoke (Cynara scolymus L.). J. Agric. Environ. Sci. Alex. Univ. Egypt. 2005, 4, 1–23. [Google Scholar]
- Elia, A.; Conversa, G. Mineral nutrition aspects in artichoke growing. Acta Hortic. 2007, 730, 239–249. [Google Scholar] [CrossRef]
- Shinohara, T.; Shinsuke, A.; Kil, Y.S.; Leskovar, D.I. Irrigation and nitrogen management of artichoke: Yield, head quality, and phenolic content. Hort. Sci. 2011, 46, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.A.; Zaki, M.F.; Tantawy, A.S.; Salama, Y.A.M. Response of artichoke productivity to different proportions of nitrogen and potassium fertilizers. Int. J. Chem. Technol. Res. 2016, 9, 25–33. [Google Scholar]
- Ierna, A.; Mauro, R.P.; Mauromicale, G. Improved yield and nutrient efficiency in two globe artichoke genotypes by balancing nitrogen and phosphorus supply. Agron. Sustain. Dev. 2012, 32, 773–780. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The nutraceutical response of two globe artichoke cultivars to contrasting NPK fertilizer regimes. Food Res. Int. 2015, 76, 852–859. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of pre-harvest factors on the quality of globe artichoke. Sci. Hortic. 2018, 233, 479–490. [Google Scholar] [CrossRef]
- Baier, C.; Eich, J.; Grün, M.; Wagenbreth, D.; Zimermann, R. Artichoke leaves used for herbal drug production: Influence of nitrogen fertilization on yield and on pharmaceutical quality. Acta Hort. 2005, 681, 545–551. [Google Scholar] [CrossRef]
- Mohd, H.I.; Hawa, Z.E.; Rahmat, J.A.; Rahman, Z.A. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia pumila Blume). Int. J. Mol. Sci. 2011, 12, 5238–5254. [Google Scholar]
- Negro, D.; Montesano, V.; Sonnante, G.; Rubino, P.; De Lisi, A.; Giulio Sarli, G. Fertilization strategies on cultivars of globe artichoke: Effects on yield and quality performance. J. Plant Nutr. 2016, 39, 279–287. [Google Scholar] [CrossRef]
- Vitaleb, D.; Andrea, L.D.; Palumbo, A.D. Carbon assimilation and water use efficiency of a perennial bioenergy crop (Cynara cardunculus L.) in Mediterranean environment. Agric. For. Meteorol. 2016, 217, 137–150. [Google Scholar]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Minerals profile of two globe artichoke cultivars as affected by NPK fertilizer regimes. Food Res. Int. 2017, 100, 95–99. [Google Scholar] [CrossRef]
- Lombardo, S.; Restuccia, C.; Muratore, G.; Barbagallo, R.N.; Licciardello, F.; Pandino, G.; Mauromicale, G. Effect of nitrogen fertilization on the overall quality of minimally processed globe artichoke heads. J. Sci. Food Agric. 2017, 97, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Spanu, E.; Deligios, P.A.; Azara, E.; Delogu, G.; Ledda, L. Effects of alternative cropping systems on globe artichoke qualitative traits. J. Sci. Food Agric. 2018, 98, 1079–1087. [Google Scholar] [CrossRef]
- Al Mohandes Dridi, B.; Guesmi, J.; Ibn Maaouia Houimli, S.; Omezzine, A.; Tellisi, A. Monitoring of the flora developed an organic artichoke crop (Cynara scolymus L.). Acta Hortic. 2012, 942, 207–214. [Google Scholar] [CrossRef]
- Fateh, E.; Chaichi, M.R.; Sharifi Ashorabadi, E.; Mazaheri, D.; Jafari, A.A.; Rengel, Z. Effects of organic and chemical fertilizers on forage yield and quality of globe artichoke (Cynara scolymus L.). Asian J. Crop Sci. 2009, 1, 40–48. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No.106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Sałata, A.; Buczkowska, H.; Galarza, S.V.L.; Moreno-Ramon, H. The Polyphenolic Compounds Content of a Cardoon Herb Depending on Length of the Vegetation Period. Acta Sci. Pol. Hortorum Cultus 2015, 14, 155–167. Available online: http://www.hortorumcultus.actapol.net/tom14/zeszyt4/14_4_155.pdf (accessed on 1 September 2021).
- IUPAC. Nomenclature of cyclitols. Biochem. J. 1976, 153, 23–31. [Google Scholar]
- Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem. 2010, 58, 1026–1031. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Antioxidant potential of Artemisia argentea L’Hér alcoholic extract and its relation with the phenolic composition. Food Res. Int. 2011, 44, 1620–1631. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.M.; Chun, J.; Lee, H.B.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Zarabi, M.; Jalali, M. Leaching of nitrogen and base cations from calcareous soil amended with organic residues. Environ. Technol. 2012, 33, 1577–8158. [Google Scholar] [CrossRef] [PubMed]
- Rogolini, M.; Bissuel-Bélaygue, C.; Leterme, P. Effect of temporary N limitation on growth, development, and N utilization by two cauliflower cultivars (Brassica oleracea L. botrytis). Acta Hortic. 2006, 700, 51–56. [Google Scholar] [CrossRef]
- Hamilton, J.; Zangerl, A.; DeLucia, E.; Berenbaum, M. The carbon-nutrient balance hypothesis: Its rise and fall. Ecology Letters 2001, 4, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Leskovar, D.; Othman, Y.A. Organic and conventional farming differentially influenced soil respiration, physiology, growth and head quality of artichoke cultivars. J. Soil Sci. Plant Nutr. 2018, 18, 865–880. [Google Scholar] [CrossRef] [Green Version]
- Matthes, C.; Honermeier, B. Cultivation of the artichoke as a medicinal plant under temperate climate conditions in Germany. Acta Hort. 2007, 630, 483–489. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G.; Lincandro, P. Yield and harvest time of globe artichoke in relations to nitrogen and phosphorous fertilization. Acta Hortic. 2006, 700, 115–120. [Google Scholar] [CrossRef]
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Bogucka, B. Effect of N fertilization on the content of phenolic compounds in Jerusalem Artichoke (Helianthus tuberosus L.) tubers and their antioxidant capacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Sahandi, M.S.; Mehrafarin, A.; Khalighi-Sigaroodi, F.; Sharif, M. Changes in essential oil content and composition of peppermint (Mentha piperita L.) in responses to nitrogen application. J. Med. Plant. 2019, 2, 81–97. [Google Scholar] [CrossRef]
- Jakovljević, D.; Stanković, M.; Bojović, B.; Topuzović, M. Regulation of early growth and antioxidant defense mechanism of sweet basil seedlings in response to nutrition. Acta Physiol. Plant. 2017, 39, 243. [Google Scholar] [CrossRef]
Year | May | June | July | August | Average |
---|---|---|---|---|---|
Temperature (°C) | |||||
S1 a | 15.0 | 19.2 | 19.9 | 18.7 | 18.2 |
S2 | 14.1 | 19.6 | 18.9 | 20.2 | 18.2 |
S3 | 16.7 | 18.8 | 20.6 | 20.8 | 19.2 |
Average 1951–2012 | 13.0 | 16.2 | 17.8 | 17.1 | 16.0 |
Rainfall (mm) | Total | ||||
S1 | 37.9 | 43.4 | 129.7 | 71.4 | 282.4 |
S2 | 29.1 | 28.2 | 107.9 | 48.0 | 213.2 |
S3 | 56.1 | 64.9 | 124.6 | 71.8 | 317.4 |
Average 1951–2012 | 57.7 | 65.7 | 83.5 | 68.6 | 275.5 |
Year | Month | Temperature (°C) | Insolation (Sum of Hours) | ||
---|---|---|---|---|---|
Average Maximum | Average Minimum | Average Daily | |||
S1 a | May | 19.2 | 8.2 | 14.3 | 222 |
June | 22.4 | 13.0 | 18.6 | 205 | |
July | 22.0 | 14.7 | 18.4 | 170 | |
August | 24.5 | 13.4 | 18.8 | 202 | |
Average/Total | 22.0 | 12.3 | 17.5 | 200/799 | |
S2 | May | 20.6 | 8.5 | 14.2 | 198 |
June | 24.1 | 13.3 | 18.6 | 222 | |
July | 23.9 | 14.5 | 19.0 | 185 | |
August | 24.5 | 13.6 | 20.0 | 201 | |
Average/Total | 23.3 | 12.5 | 18.0 | 202/806 | |
S3 | May | 18.8 | 14.4 | 17.1 | 245 |
June | 20.4 | 16.5 | 18.8 | 206 | |
July | 22.6 | 19.4 | 20.7 | 169 | |
August | 23.2 | 18.1 | 20.7 | 214 | |
Average/Total | 21.3 | 17.1 | 19.3 | 209/834 |
Factor | Source of Variation | Yield of Air DW | TCQA (mg 100 g−1 DW) | ABTS d (μM Trolox 100 g−1 DW) | DPPH (μM Trolox 100 g−1 DW) | FRAP (μM Fe2+ 100 g−1 DW) |
---|---|---|---|---|---|---|
Cropping system (CS) | ORG a | 2.10 ± 0.04 b | 912 ± 11.4 a | 280 ± 5.93 a | 39.42 ± 1.35 a | 60.21 ± 1.94 |
CON | 2.95 ± 0.05 a | 690 ± 18.6 b | 156 ± 5.21 b | 26.39 ± 1.19 b | 57.49 ± 2.60 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | NS | |
Fertilization (F) | 0 b | 2.09 ± 0.04 c | 712 ± 12.3 c | 175 ± 6.82 b | 26.16 ± 1.51 c | 44.63 ± 1.53 c |
10 | 2.50 ± 0.05 b | 822 ± 12.2 b | 207 ± 7.07 b | 34.65 ± 1.20 b | 57.50 ± 1.69 b | |
20 | 2.99 ± 0.06 a | 869 ± 12.6 a | 272 ± 8.58 a | 42.42 ± 0.82 a | 74.43 ± 2.51 a | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Year (Y) | S1 c | 2.53 ± 0.05 | 709 ± 12.5 c | 216 ± 9.91 | 29.12 ± 1.19 b | 46.68 ± 1.19 b |
S2 | 2.50 ± 0.08 | 788 ± 12.6 b | 217 ± 7.69 | 28.00 ± 0.96 b | 47.35 ± 1.17 b | |
S3 | 2.54 ± 0.06 | 906 ± 14.0 a | 221 ± 8.09 | 46.10 ± 1.12 a | 82.53 ± 2.10 a | |
p-value | NS | <0.001 | NS | <0.001 | <0.001 | |
CS × F | p-value | NS | NS | NS | NS | NS |
CS × Y | p-value | 0.006 | <0.001 | 0.022 | 0.008 | 0.018 |
F × Y | p-value | NS | NS | NS | NS | NS |
CS × F × Y | p-value | NS | NS | NS | NS | NS |
Factor | Yield of DW | TCQA (mg 100 g−1 DW) | ABTS c (μM Trolox 100 g−1 DW) | DPPH (μM Trolox 100 g−1 DW) | FRAP (μM Fe2+ 100 g−1 DW) |
---|---|---|---|---|---|
ORG a | |||||
S1 b | 2.30 ± 0.02 a | 896 ± 10.8 b | 304 ± 5.2 a | 36.91 ± 0.92 b | 53.05 ± 1.18 b |
S2 | 1.85 ± 0.04 b | 906 ± 10.8 ab | 271 ± 5.2 ab | 27.81 ± 1.11 c | 48.65 ± 1.18 c |
S3 | 2.15 ± 0.04 ab | 934 ± 12.5 a | 265 ± 7.3 b | 53.56 ± 0.28 a | 78.94 ± 1.90 a |
p-value | 0.041 | 0.030 | 0.026 | <0.001 | <0.001 |
CON | |||||
S1 | 2.76 ± 0.06 | 521 ± 11.8 c | 130 ± 2.56 | 21.34 ± 0.91 b | 40.31 ± 0.86 c |
S2 | 3.16 ± 0.04 | 671 ± 10.6 b | 171 ± 6.49 | 28.20 ± 0.90 ab | 46.05 ± 1.27 b |
S3 | 2.93 ± 0.04 | 878 ± 10.5 a | 167 ± 5.60 | 38.64 ± 1.16 a | 86.12 ± 2.40 a |
p-value | NS | <0.001 | NS | 0.005 | <0.001 |
Factor | Source of Variation | CYN a | CAF | CHL | FER | API | LUT |
---|---|---|---|---|---|---|---|
Cropping system (CS) | ORG b | 0.719 ± 0.03 b | 1.76 ± 0.22 a | 672 ± 8.8 a | 2.98 ± 0.15 a | 232 ± 3.96 a | 1.866 ± 0.06 a |
CON | 0.869 ± 0.04 a | 1.60 ± 0.24 b | 506 ± 16.5 b | 2.14 ± 0.07 b | 179 ± 4.71 b | 1.238 ± 0.02 b | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Fertilization (F) | 0 c | 0.379 ± 0.01 c | 1.56 ± 0.20 c | 531 ± 19.6 b | 1.30 ± 0.02 c | 177 ± 5.00 b | 1.383 ± 0.05 c |
10 | 0.742 ± 0.01 b | 1.66 ± 0.24 b | 604 ± 15.2 a | 2.60 ± 0.04 b | 211 ± 4.42 ab | 1.533 ± 0.05 b | |
20 | 1.262 ± 0.02 a | 1.81 ± 0.23 a | 632 ± 14.3 a | 3.79 ± 0.12 a | 229 ± 4.72 a | 1.741 ± 0.05 a | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.007 | <0.001 | |
Year | 2016 | 0.853 ± 0.05 a | 1.43 ± 0.19 b | 512 ± 16.7 c | 2.25 ± 0.13 b | 191 ± 6.21 b | 1.083 ± 0.01 b |
2017 | 0.715 ± 0.05 b | 1.80 ± 0.14 a | 590 ± 14.4 b | 2.68 ± 0.12 a | 192 ± 3.19 b | 1.766 ± 0.05 a | |
2018 | 0.815 ± 0.02 a | 1.80 ± 0.18 a | 666 ± 11.8 a | 2.75 ± 0.13 a | 233 ± 4.57 a | 1.808 ± 0.06 a | |
p-value | 0.006 | <0.001 | <0.001 | 0.010 | 0.015 | <0.001 | |
CS × F | p-value | 0.014 | 0.018 | 0.026 | <0.001 | NS | NS |
CS × Y | p-value | 0.041 | 0.003 | 0.023 | NS | NS | <0.001 |
F × Y | p-value | <0.001 | NS | NS | NS | NS | NS |
CS × F × Y | p-value | 0.015 | NS | NS | NS | NS | NS |
Factor | CYN a | CAF | CHL | FER | API | LUT |
---|---|---|---|---|---|---|
ORG | ||||||
S1 b | 0.803 ± 0.04 a | 1.56 ± 0.17 b | 655 ± 19.9 b | 2.73 ± 0.16 | 235 ± 6.18 | 1.03 ± 0.01 b |
S2 | 0.579 ± 0.03 b | 1.80 ± 0.18 a | 679 ± 14.8 ab | 3.08 ± 0.14 | 219 ± 1.78 | 2.23 ± 0.01 a |
S3 | 0.777 ± 0.02 a | 1.92 ± 0.16 a | 682 ± 19.0 a | 3.15 ± 0.16 | 243 ± 3.24 | 2.33 ± 0.01 a |
p-value | <0.001 | <0.001 | 0.004 | NS | NS | <0.001 |
CON | ||||||
S1 | 0.90 ± 0.06 | 1.30 ± 0.08 c | 368 ± 10.9 c | 1.80 ± 0.16 | 148 ± 1.93 b | 1.13 ± 0.01 |
S2 | 0.85 ± 0.04 | 1.80 ± 0.11 a | 500 ± 10.9 b | 2.28 ± 0.18 | 165 ± 1.18 b | 1.30 ± 0.02 |
S3 | 0.85 ± 0.02 | 1.69 ± 0.11 b | 648 ± 10.9 a | 2.35 ± 0.18 | 223 ± 5.74 a | 1.28 ± 0.03 |
p-value | NS | <0.001 | <0.001 | NS | 0.009 | NS |
Parameter | ORG | CON | ||||||
---|---|---|---|---|---|---|---|---|
r | r2 | a0 | a1 | r | r2 | a0 | a1 | |
TCQA a | 0.30 * | 0.11 | 1.58 | 0.00 | 0.34 * | 0.22 | 0.01 | 0.00 |
CYN | 0.71 ** | 0.51 | 7.37 | 0.03 | 0.47 ** | 0.22 | 9.40 | 0.01 |
CAF | 0.39 * | 0.15 | 1.48 | 0.00 | 0.24 NS | 0.06 | 1.52 | 0.00 |
CHL | 0.07 NS | 0.00 | 548.18 | 0.38 | 0.73 ** | 0.54 | 391.75 | 2.16 |
FER | 0.81 ** | 0.65 | 1.36 | 0.02 | 0.80 ** | 0.78 | 1.34 | 0.01 |
API | 0.03 NS | 0.00 | 165.68 | −0.04 | 0.08 NS | 0.00 | 168.61 | 0.06 |
LUT | 0.49 ** | 0.24 | 2.12 | 0.00 | 0.42 * | 0.17 | 2.34 | 0.00 |
ABTS | 0.48 * | 0.00 | 208.43 | 0.15 | 0.72 ** | 0.53 | 147.80 | 0.02 |
DPPH | 0.48 * | 0.00 | 49.66 | 0.03 | 0.72 ** | 0.53 | 35.00 | 0.19 |
FRAP | 0.48 * | 0.00 | 93.81 | 0.07 | 0.72 ** | 0.53 | 66.12 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sałata, A.; Nurzyńska-Wierdak, R.; Kalisz, A.; Kunicki, E.; Ibáñez-Asensio, S.; Moreno-Ramón, H. Effects of Organic Cropping on Phenolic Compounds and Antioxidant Capacity of Globe Artichoke Herbs. Agronomy 2022, 12, 192. https://doi.org/10.3390/agronomy12010192
Sałata A, Nurzyńska-Wierdak R, Kalisz A, Kunicki E, Ibáñez-Asensio S, Moreno-Ramón H. Effects of Organic Cropping on Phenolic Compounds and Antioxidant Capacity of Globe Artichoke Herbs. Agronomy. 2022; 12(1):192. https://doi.org/10.3390/agronomy12010192
Chicago/Turabian StyleSałata, Andrzej, Renata Nurzyńska-Wierdak, Andrzej Kalisz, Edward Kunicki, Sara Ibáñez-Asensio, and Héctor Moreno-Ramón. 2022. "Effects of Organic Cropping on Phenolic Compounds and Antioxidant Capacity of Globe Artichoke Herbs" Agronomy 12, no. 1: 192. https://doi.org/10.3390/agronomy12010192
APA StyleSałata, A., Nurzyńska-Wierdak, R., Kalisz, A., Kunicki, E., Ibáñez-Asensio, S., & Moreno-Ramón, H. (2022). Effects of Organic Cropping on Phenolic Compounds and Antioxidant Capacity of Globe Artichoke Herbs. Agronomy, 12(1), 192. https://doi.org/10.3390/agronomy12010192