Hazelnuts (Corylus avellana L.) from Spontaneous Flora of the West Part of Romania: A Source of Nutrients for Locals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples of Huzelnuts
2.2. Crude Protein Determination
2.3. Ash Determination
2.4. Amino Acids Determination
2.5. Preparation of Biscuits, Raw Materials, Recipes, and Baking Conditions
2.6. Proximate Composition of Biscuits
2.7. Total Polyphenol Content of Biscuits
2.8. Determination of Fatty Acids Composition of Biscuits Using GC–MS
2.9. Sensorial Analysis of Biscuits
2.10. Statistical Analysis
3. Results and Discussion
3.1. Ash and Metals Content
3.2. Crude Protein and Amino Acid Content
3.3. Correlation between Analyzed Parameters
3.4. The Proximate Composition of Biscuits
3.5. Polyphenols Composition of Biscuits
3.6. Fatty Acids Composition of Biscuits
3.7. Sensorial Analysis of Biscuits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iordănescu, O.A.; Brădean, D.R.; Blidariu, A. The behavior of some hazelnuts in the south area of Timiș county, in terms of external features of the fruits. Sci. Pap. Hortic. 2014, 58, 39–42. [Google Scholar]
- San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A. European Atlas of Forest Tree Species; The Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Enescu, C.M.; Houston Durrant, T.; de Rigo, D.; Caudullo, G. Corylus avellana in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; The Publications Office of the European Union: Luxembourg, 2016; pp. 86–87. [Google Scholar]
- Alasalvar, C.; Pelvan, E.; Amarowicz, R. Effects of roasting on taste active compounds of Turkish hazelnut varieties (Corylus avellana L.). J. Agric. Food. Chem. 2010, 58, 8674–8679. [Google Scholar] [CrossRef] [PubMed]
- The Food and Agriculture Organization (FAO). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 March 2021).
- Order 1651/31.10.2000 al Ministerul Apelor Pădurilor și Protectiei Sociale—Privind Normele Tehnice Pentru Evaluarea Volumului de Lemn Destinat Comercializării; Ministerul Apelor Pădurilor și Protectiei Sociale: Bucharest, Romania, 2000.
- An, N.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Mid-term impact of climate change on hazelnut yield. Agriculture 2020, 10, 159. [Google Scholar] [CrossRef]
- Ustaoglu, B.; Karaca, M. The effects of climate change on spatiotemporal changes of hazelnut Corylus avellana cultivation areas in the Black Sea Region Turkey. Appl. Ecol. Environ. Res. 2014, 12, 309–324. [Google Scholar] [CrossRef]
- Tuncer, C.; Ecevit, O. Current status of hazelnut pests in Turkey. Acta Hortic. 1997, 445, 545–552. [Google Scholar] [CrossRef]
- Tuncer, C.; Saruhan, I.; Akca, I. The insect pest problem affecting hazelnut kernel quality in Turkey. Acta Hortic. 2005, 686, 367–376. [Google Scholar] [CrossRef]
- Tuncer, C.; Akça, I.; Saruhan, I. Integrated pest management in Turkish hazelnut orchards. Acta Hortic. 2001, 556, 419–430. [Google Scholar] [CrossRef]
- Nera, E.; Paas, W.; Reidsma, P.; Paolini, G.; Antonioli, F.; Severini, S. Assessing the resilience and sustainability of a hazelnut farming system in Central Italy with a participatory approach. Sustainability 2020, 12, 343. [Google Scholar] [CrossRef] [Green Version]
- Cukur, T.; Atıs, E.; Akyuz, Y. The contribution of extension activities to multifunctional agriculture. Extension education worldwide. In Proceedings of the 21st ESEE European Seminar on Extension Education, Antalya, Turkey, 2–6 September 2013; p. 93. [Google Scholar]
- Aydoğan, M.; Demiryürek, K. Communication networks for organic hazelnut growers in Samsun. Extension Education Worldwide. In Proceedings of the 21st ESEE European Seminar on Extension Education, Antalya, Turkey, 2–6 September 2013; p. 45. [Google Scholar]
- Silva, A.P.; Santos, A.; Cavalheiro, J.; Ribeiro, C.; Santos, F.; Goncalves, B. Fruit chemical composition of hazelnut cultivars grown in Portugal. J. Appl. Hortic. 2007, 9, 157–161. [Google Scholar] [CrossRef]
- Demirbas, A. Phenolics from hazelnut kernels by supercritical methanol extraction. Energ. Source Part A 2007, 29, 791–797. [Google Scholar] [CrossRef]
- Boccacci, P.; Botta, R. Investigating the origin of hazelnut (Corylus avellana L.) cultivars using chloroplast microsatellites. Genet. Resour. Crop. Evol. 2009, 56, 851–859. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Citová, I.; Santos, A.; Seabra, R.M.; Oliveira, B.P.P. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 2006, 222, 274–280. [Google Scholar]
- Iordănescu, O.A. Pomicultură Generală și Special; Eurobit: Timișoara, Romania, 2011. [Google Scholar]
- Tey, S.L.; Brown, R.C.; Chisholm, A.W.; Delahunty, C.M.; Gray, A.R.; Williams, S.M. Effects of different forms of hazelnuts on blood lipids and α-tocopherol concentrations in mildly hypercholesterolemic individuals. Eur. J. Clin. Nutr. 2010, 65, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, S.; Giacosa, A.; Bonitta, G.; Bologna, C.; Isu, A.; Guido, D.; Rondanelli, M. Effects of hazelnut consumption on blood lipids and body weight: A systematic review and Bayesian meta-analysis. Nutrients 2016, 8, 747. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Cioccoloni, G.; Bernardini, S.; Abenavoli, L.; Aiello, V.; Marchetti, M.; Cammarano, A.; Alipourfard, I.; Ceravolo, I.; Gratteri, S. A Hazelnut-enriched diet modulates oxidative stress and inflammation gene expression without weight gain. oxid med cell longev. Oxidative Med. Cell. Longev. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hulzetnut Hill. Available online: https://www.hazelnuthill.com/about/everything-you-need-to-know-about-hazelnut-flour (accessed on 22 April 2021).
- Tunç, M.T.; Kahyaoglu, T. Turkish tombul hazelnut (Corylus avellana L.) protein concentrates: Functional and rheological properties. J. Food Sci. Technol. 2015, 52, 1024–1031. [Google Scholar]
- Turhan, S.; Sagir, I.; Sule Ustun, N. Utilization of hazelnut pellicle in low-fat beef burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Dervisoglu, M. Influence of hazelnut flour and skin addition on the physical, chemical and sensory properties of vanilla ice cream. Int. J. Food Sci. Technol. 2006, 41, 657–661. [Google Scholar] [CrossRef]
- Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67. [Google Scholar] [CrossRef]
- Poșta, D.S. Arboricultură Ornamental; Agroprint: Timișoara, Romania, 2019. [Google Scholar]
- Marks-Block, T.; Lake, F.K.; Curran, L.M. Effects of understory fire management treatments on California Hazelnut, an ecocultural resource of the Karuk and Yurok Indians in the Pacific Northwest. For. Ecol. Manag. 2019, 450, 117517. [Google Scholar] [CrossRef]
- AOAC. Official Method 950.48, Total Kjeldahl Nitrogen, Nuts and Nuts Products; AOAC: Rockville, MD, USA, 1950. [Google Scholar]
- Venkatachalam, M.; Sathe, S.K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- ISO Methods: Moisture SR 91/2007 pct.10, protein SR EN ISO 8968-1:2014; Total Lipid SR 91:2007 pct.14.4; Mineral Substances SR ISO 2171/2010, Sugar SR ISO 91-2007. Available online: https://ipstesting.com/find-a-test/iso-test-methods/ (accessed on 24 November 2021).
- Cocan, I.; Alexa, E.; Danciu, C.; Radulov, I.; Galuscan, A.; Obistioiu, D.; Morvay, A.A.; Sumalan, R.M.; Poiana, M.A.; Pop, G.; et al. Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp. Ther. Med. 2018, 15, 1863–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, A.; Păucean, A.; Socaci, S.A.; Alexa, E.; Man, S.M.; Mureșan, V.; Chiş, M.S.; Salanță, L.; Popescu, I.; Berbecea, A.; et al. Quality characteristics and volatile profile of macarons modified with walnut oilcake by-product. Molecules 2020, 25, 2214. [Google Scholar] [CrossRef] [PubMed]
- ISO 6658:2017(en); Sensory Analysis—Methodology—General Guidance. ISO: Geneva, Switzerland, 2017.
- Pestorić, M.; Škrobot, D.; Žigon, U.; Šimurina, O.; Filipčev, B.; Belović, M.; Mišan, A. Sensory profile and preference mapping of cookies enriched with medicinal herbs. Int. J. Food Prop. 2016, 20, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Dumbrava, D.; Popescu, L.A.; Soica, C.M.; Nicolin, A.; Cocan, I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Radulov, I.; Popescu, S.; et al. Nutritional, antioxidant, antimicrobial, and toxico-logical profile of two innovative types of vegan, sugar-free chocolate. Foods 2020, 9, 1844. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish Tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef] [PubMed]
- Tunçil, Y.E. Dietary fibre profiles of Turkish Tombul hazelnut (Corylus avellana L.) and hazelnut skin. Food Chem. 2020, 316, 126338. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.H.; Shin, K.O.; Hwang, H.J.; Choi, K.S. Chemical composition of nuts and seeds sold in Korea. Nutr. Res. Pract. 2013, 7, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Erdemir, U.S.; Gucer, S. Bioaccessibility of copper in Turkish hazelnuts (Corylus avellana L.) by chemical fractionation and in vitro methods. Biol. Trace Elem. Res. 2005, 167, 146. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Cevik, U.; Celik, N.; Celik, A.; Damla, N.; Coskuncelebi, K. Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey. Food Chem. Toxicol. 2009, 47, 2351–2355. [Google Scholar] [CrossRef]
- Özkutlu, F.; Doğru, Y.Z.; Özenç, N.; Yazici, G.; Turan, M.; Akçay, F. The importance of Turkish hazelnut trace and heavy metal contents for human nutrition. Afr. J. Soil Sci. 2013, 1, 37–44. [Google Scholar]
- Dobhal, K.; Singh, N.; Semwal, A.; Negi, A. A brief review on: Hazelnuts. Int. J. Recent Sci. Res. 2018, 9, 23680–23684. [Google Scholar]
- Scherz, H.; Kirchhoff, E. Trace elements in foods: Zinc contents of raw foods—A comparison of data originating from different geographical regions of the world. J. Food Compos. Anal. 2006, 19, 420–433. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molyb-denum, Nickel, Silicon, Vanadium, and Zinc, Panel on Micronutrients; National Academies Press: Washington, DC, USA, 2001; ISBN 10:0-309-07279-4. [Google Scholar]
- Cabrera, C.; Lloris, F.; Giménez, R.; Olalla, M.; López, M.C. Mineral content in legumes and nuts: Contribution to the Spanish dietary intake. Sci. Total Environ. 2003, 308, 1–14. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Integrated Risk Information System, IRIS—Revised. Federal Register 2005, 70, 10616. [Google Scholar]
- Ashimav, D.S. Low nickel diet in dermatology. Indian J. Dermatol. 2013, 58, 240. [Google Scholar]
- EFSA. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Roversi, A. Observations on hazelnut organic farming. Bulg. J. Agric. Sci. 2016, 22, 171–175. [Google Scholar]
- Bak, T.; Karadeniz, T. Effects of branch number on quality traits and yield properties of European hazelnut (Corylus avellana L.). Agriculture 2021, 11, 437. [Google Scholar] [CrossRef]
- Campa, A.; Rodriguez Madrera, R.; Suárez Valles, B.; Ferreira, J.J. Variation of morphological, agronomic and chemical composition traits of local hazelnuts collected in northern Spain. Front. Plant Sci. 2021, 1, 12. [Google Scholar]
- Savage, G.P.; Mc Neil, D.L. Chemical composition of hazelnuts (Corylus avellana L.) grown in New Zeeland. Int. J. Food Sci. Nutr. 1998, 49, 199–203. [Google Scholar] [CrossRef]
- Gunes, N.T.; Köksal, A.İ.; Artık, N.; Poyrazoğlu, E. Biochemical content of hazelnut (Corylus avellana L.) cultivars from West Black Sea Region of Turkey. Eur. J. Hort. Sci. 2010, 75, S77–S84. [Google Scholar]
- Köksal, İ.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Xu, Y.; Hanna, M. Nutritional and anti-nutritional compositions of defatted Nebraska hybrid hazelnut meal. Int. J. Food Sci. Technol. 2011, 46, 2022–2029. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Wang, Z.; Wang, D.; Xu, J.; Shi, G. Comparative analysis of mineral elements and essential amino acids compositions in juglans sigillata and J. regia walnuts kernels. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, M.; Biolley, E.; Ballester, D. Protein complementation of defatted hazelnut flour with pea flour. Arch. Latinoam. Nutr. 1990, 40, 379–386. [Google Scholar] [PubMed]
- Emre, Y.; Sevgili, H.; Şanlı, M. Partial replacement of fishmeal with hazelnut meal in diets for juvenile gilthead sea bream (Sparus aurata). Isr. J. Aquac. Bamidgeh 2008, 60, 198. [Google Scholar]
- Bakkalbasi, E.; Raciye Meral, R.; Dogan, I.S. Bioactive compounds, physical and sensory properties of cake made with walnut press-cake. J. Food Qual. 2015, 38, 422–430. [Google Scholar] [CrossRef]
- Ros, E.; Mataix, J. Fatty acid composition of nuts—Implications for cardiovascular health. Br. J. Nut. 2006, 96, S29–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, L.-H.; Latif, N.W.A. Nutritional composition, physical properties, and sensory evaluation of cookies prepared from wheat flour and pitaya (Hylocereusundatus) peel flour blends. Cogent Food Agric. 2016, 2, 1136369. [Google Scholar]
Metal | Wavelength λ (nm) | Lamp Current (mA) | Slit Width (mm) |
---|---|---|---|
Ni | 232 | 4 | 0.2 |
Cr | 357.9 | 7 | 0.2 |
Cu | 324.8 | 4 | 0.5 |
Mn | 279.5 | 5 | 0.2 |
Zn | 213 | 5 | 1 |
Fe | 248.3 | 5 | 0.2 |
Time (min) | %E1 | %E2 | %E3 |
---|---|---|---|
0 | 80 | 20 | 0 |
2 | 80 | 20 | 0 |
12 | 80 | 20 | 0 |
16 | 80 | 20 | 0 |
24 | 68 | 32 | 40 |
30 | 36 | 24 | 40 |
30.1 | 20 | 80 | 0 |
32.1 | 20 | 80 | 0 |
32.2 | 80 | 20 | 0 |
52 | 80 | 20 | 0 |
Sample | Ash | Ni | Cr | Cu | Mn | Zn | Fe |
---|---|---|---|---|---|---|---|
(g/100g) | (µg·g−1) | (µg·g−1) | (µg·g−1) | (µg·g−1) | (µg·g−1) | (µg·g−1) | |
C1 | 2.34 ± 0.03 a | 4.87 ± 0.39 a | 2.84 ± 0.16 a | 79.10 ± 2.42 a | 45.79 ± 0.37 a | 105.33 ± 0.33 a | 114.55 ± 0.96 a |
C2 | 2.54 ± 0.05 b | 7.88 ± 0.39 b | 2.00 ± 0.11 b | 100.38 ± 10.84 b | 54.05 ± 0.58 b | 123.23 ± 0.73 b | 117.59 ± 1.36 b |
C3 | 2.33 ± 0.03 a | 10.12 ± 0.44 c | 1.88 ± 0.03 b | 47.67 ± 1.28 c | 44.85 ± 0.67 a | 108.56 ± 1.73 c,d | 88.39 ± 4.27 c |
C4 | 2.63 ± 0.07 b,c | 6.36 ± 0.50 d | 1.87 ± 0.08 b | 73.30 ± 3.95 d | 26.00 ± 1.89 c | 96.93 ± 1.30 c | 92.45 ± 4.12 c |
C5 | 2.31 ± 0.04 a | 32.19 ± 2.24 e | 2.07 ± 0.28 b | 95.81 ± 2.20 b | 87.78 ± 3.06 d | 107.07 ± 13.13 a,d | 146.98 ± 20.65 d |
Sample | C1 | C2 | C3 | C4 | C5 | Mean |
---|---|---|---|---|---|---|
CP (g/100 g) | 21.34 ± 1.13 a | 19.54 ± 0.49 b,c | 16.33 ± 1.11 b,d | 20.63 ± 0.808 a,c | 22.31 ± 0.963 a,d | 20.04 |
Arg (g/100 g) | 0.643 ± 0.029 a | 0.931 ± 0.083 b | 0.773 ± 0.074 a,b,c | 0.365 ± 0.024 b | 0.704 ± 0.025 c | 0.683 |
Ser (g/100 g) | 0.255 ± 0.052 a | 0.279 ± 0.066 a | 0.411 ± 0.111 b | 0.210 ± 0.0316 a | 0.461 ± 0.026 b | 0.277 |
Lys (g/100 g) | 0.062 ± 0.0064 a | 0.001 ± 0.0001 b | (0.001 ± 0.0001) b | 0.013 ± 0.003 c | 0.081 ± 0.0077 c | 0.031 |
Gly (g/100 g) | 0.028 ± 0.0045 a | 0.016 ± 0.00094 b | 0.006 ± 0.0006 c | 0.072 ± 0.0051 c | (0.016 ± 0.001 b | 0.026 |
Phe (g/100 g) | 0.249 ± 0.034 a | 0.42 ± 0.049 b | 0.648 ± 0.043 c | 0.345 ± 0.0439 b | (0.412 ± 0.0075) b | 0.415 |
Glu (g/100 g) | 0.171 ± 0.032 a | 0.142 ± 0.032 a | 0.161 ± 0.0293 a | 0.214 ± 0.0204 b | 0.252 ± 0.031 a,b | 0.188 |
Asp (g/100 g) | 0.249 ± 0.025 a | 0.164 ± 0.0097 b | 0.082 ± 0.005 c | 0.159 ± 0.0123 b | 0.012 ± 0007 d | 0.133 |
Pro (g/100 g) | 0.013 ± 0.003 a | 0.018 ± 0.000 a | 0.017 ± 0.0053 a | 0.127 ± 0.0029 b | 0.016 ± 0.0021 a | 0.038 |
Arg | Ser | Lys | Gly | Fen | Glu.Ac | Asp.Ac | Pro | Ni | Cr | Cu | Mn | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arg | 1 | 0.364 | −0.144 | −0.171 | 0.086 | −0.571 ** | −0.680 ** | −0.836 ** | 0.115 | −0.066 | 0.259 | 0.463 * | 0.799 ** | 0.254 |
Ser | 0.364 | 1 | −0.054 | −0.788 ** | −0.431 | −0.173 | −0.853 ** | −0.194 | 0.561 * | −0.714 ** | −0.073 | 0.513 * | 0.160 | 0.180 |
Lys | −0.144 | −0.054 | 1 | 0.411 | −0.568 ** | 0.457 * | 0.256 | −0.190 | 0.519 * | 0.496 * | 0.391 | 0.671 ** | −0.239 | 0.710 ** |
Gly | −0.171 | −0.788 ** | 0.411 | 1 | 0.393 | 0.026 | 0.752 ** | −0.213 | −0.335 | 0.922 ** | 0.008 | −0.145 | −0.115 | 0.057 |
Fen | 0.086 | −0.431 | −0.568 ** | 0.393 | 1 | −0.698 ** | 0.257 | −0.190 | −0.692 ** | 0.218 | −0.631 ** | −0.685 ** | 0.087 | −0.714 ** |
Glu.Ac | −0.571 ** | −0.173 | 0.457 * | 0.026 | −0.698 ** | 1 | 0.348 | 0.595 ** | 0.269 | 0.100 | 0.550 * | 0.156 | −0.343 | 0.459 * |
Asp.Ac | −0.680 ** | −0.853 ** | 0.256 | 0.752 ** | 0.257 | 0.348 | 1 | 0.444 * | −0.434 | 0.629 ** | −0.084 | −0.510 * | −0.505 * | −0.193 |
Pro | −0.836 ** | −0.194 | −0.190 | −0.213 | −0.190 | 0.595 ** | 0.444 * | 1 | −0.156 | −0.293 | −0.108 | −0.565 ** | −0.622 ** | −0.351 |
Ni | 0.115 | 0.561 * | 0.519 * | −0.335 | −0.692 ** | 0.269 | −0.434 | −0.156 | 1 | −0.216 | 0.265 | 0.729 ** | 0.020 | 0.511 * |
Cr | −0.066 | −0.714 ** | 0.496 * | 0.922 ** | 0.218 | 0.100 | 0.629 ** | −0.293 | −0.216 | 1 | 0.160 | 0.063 | 0.072 | 0.244 |
Cu | 0.259 | −0.073 | 0.391 | 0.008 | −0.631 ** | 0.550 * | −0.084 | −0.108 | 0.265 | 0.160 | 1 | 0.522 * | 0.352 | 0.727 ** |
Mn | 0.463 * | 0.513 * | 0.671 ** | −0.145 | −0.685 ** | 0.156 | −0.510 * | −0.565 ** | 0.729 ** | 0.063 | 0.522 * | 1 | 0.319 | 0.849 ** |
Zn | 0.799 ** | 0.160 | −0.239 | −0.115 | 0.087 | −0.343 | −0.505 * | −0.622 ** | 0.020 | 0.072 | 0.352 | 0.319 | 1 | 0.176 |
Fe | 0.254 | 0.180 | 0.710 ** | 0.057 | −0.714 ** | 0.459 * | −0.193 | −0.351 | 0.511 * | 0.244 | 0.727 ** | 0.849 ** | 0.176 | 1 |
CP | Ar | Se | Ly | Gly | Fen | Glu.Ac | Asp.Ac | Pro | |
---|---|---|---|---|---|---|---|---|---|
CP | 1 | ||||||||
Ar | −0.359 | 1 | |||||||
Se | −0.264 | 0.364 | 1 | ||||||
Ly | 0.678 ** | −0.144 | −0.054 | 1 | |||||
Gly | 0.314 | −0.171 | −0.788 ** | 0.411 | 1 | ||||
Fen | −0.640 ** | 0.086 | −0.431 | −0.568 ** | 0.393 | 1 | |||
Glu.Ac | 0.791 ** | −0.571 ** | −0.173 | 0.457 * | 0.026 | −0.698 ** | 1 | ||
Asp.Ac. | 0.372 | −0.680 ** | −0.853 ** | 0.256 | 0.752 ** | 0.257 | 0.348 | 1 | |
Pro | 0.226 | −0.836 ** | −0.194 | −0.190 | −0.213 | −0.190 | 0.595 ** | 0.444 * | 1 |
Products | Humidity g/100 g Product | Ash g/100 g Product | Protein g/100 g Product | Lipids g/100 g Product | Carbohydrates g/100 g Product | Energetic Value kcal/100 g Product | Reference Consumption g/100 g Product |
---|---|---|---|---|---|---|---|
HB 5% | 6.33 ± 0.15 a | 1.31 ± 0.03 a | 7.38 ± 0.09 a | 12.97 ± 0.19 a | 72.02 | 434.28 | 21.71 |
HB 10% | 6.40 ± 0.13 a | 1.37 ± 0.02 b | 10.36 ± 0.14 b | 15.33 ± 0.30 b | 64.54 | 445.56 | 22.28 |
HB 15% | 6.60 ± 0.08 a | 1.44 ± 0.03 b | 14.54 ± 0.15 c | 17.70 ± 0.23 c | 59.73 | 456.32 | 22.82 |
CB | 6.80 ± 0.08 b | 1.24 ± 0.02 c | 9.10 ± 0.26 d | 10.60 ± 0.34 d | 72.26 | 420.84 | 21.04 |
Shorthand Nomenclature | Fatty Acid Name | Type | Retention time | Fatty Acid Content (%) | |||
---|---|---|---|---|---|---|---|
CB | HB 5% | HB 10% | HB 15% | ||||
C4:0 | Butyric acid | SFA | 9.294 | 2.351 ± 0.052 a | 1.624 ± 0.040 b | 1.422 ± 0.042 c | 1.388 ± 0.034 c |
C6:0 | Caproic acid | SFA | 11.450 | 1.258 ± 0.024 a | 1.189 ± 0.024 a,c | 1.167 ± 0.049 a,c | 1.092 ± 0.028 b,c |
C8:0 | Caprilyc acid | SFA | 15.296 | 0.800 ± 0.028 a | 0.779 ± 0.017 a | 0.799 ± 0.017 a | 0.724 ± 0.031 a |
C10:0 | Capric acid | SFA | 20.559 | 1.959 ± 0.057 a | 1.931 ± 0.028 a | 1.950 ± 0.071 a | 1.844 ± 0.059 a |
C12:0 | Lauric acid | SFA | 26.211 | 2.599 ± 0.082 a | 2.456 ± 0.086 a | 2.463 ± 0.076 a | 2.372 ± 0.052 a |
C14:0 | Myristic acid | SFA | 31.588 | 9.624 ± 0.368 a | 8.794 ± 0.311 a | 8.792 ± 0.314 a | 8.875 ± 0.191 a |
C17:0 | Isomargaric acid | SFA | 32.847 | 0.209 ± 0.006 a | 0.139 ± 0.006 b | 0.155 ± 0.007 b | 0.140 ± 0.007 b |
C15:0 | Pentadecanoic acid | SFA | 34.092 | 0.965 ± 0.028 a | 0.858 ± 0.020 a | 0.843 ± 0.011 a | 0.826 ± 0.041 a |
C16:0 | Acid palmitic | SFA | 36.533 | 34.081 ± 1.124 a | 32.206 ± 0.554 a | 31.487 ± 0.604 a | 31.110 ± 1.131 a |
C17:0 | Acid margaric | SFA | 37.642 | 0.797 ± 0.040 a | 0.431 ± 0.008 b | 0.669 ± 0.014 c | 0.325 ± 0.007 d |
C18:0 | Stearic acid | SFA | 40.990 | 9.753 ± 0.337 a | 9.242 ± 0.202 a | 8.861 ± 0.327 a | 9.166 ± 0.460 a |
C10:1 | Decenoic acid | MUFA | 23.107 | 0.216 ± 0.006 a | 0.186 ± 0.006 b,c | 0.200 ± 0.007 a,c | 0.166 ± 0.004 b |
C16:1 | Palmitoleic acid | MUFA | 37.849 | 2.130 ± 0.064 a | 1.852 ± 0.042 b | 1.863 ± 0.041 b | 1.865 ± 0.038 b |
C18:1 | Oleic acid, Δ6 | MUFA | 41.817 | 25.559 ± 1.003 a | 31.047 ± 0.663 b | 33.421 ± 1.082 b | 34.313 ± 1.093 b |
C18:2, n − 6 | Linoleic acid | PUFA | 43.734 | 4.441 ± 0.126 a | 4.587 ± 0.191 a | 3.774 ± 0.147 b | 3.791 ± 0.130 b |
C18:3, n − 3 | Linolenic acid, cis | PUFA | 46.414 | 1.384 ± 0.051 a | 0.667 ± 0.017 b | 0.611 ± 0.021 b | 0.607 ± 0.016 b |
C20:4, n − 6 | Arachidonic acid | PUFA | 50.427 | 0.293 ± 0.007 a | 0.317 ± 0.008 a | 0.256 ± 0.057 a,c | 0.143 ± 0.007 b,c |
ΣSFA | 64.396 | 59.649 | 58.608 | 57.862 | |||
ΣMUFA | 27.905 | 33.085 | 35.484 | 36.344 | |||
ΣPUFA | 6.118 | 5.571 | 4.641 | 4.541 | |||
ΣUFA | 34.023 | 38.656 | 40.125 | 40.885 | |||
Other compounds | 1.419 | 1.154 | 1.141 | 1.123 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poșta, D.S.; Radulov, I.; Cocan, I.; Berbecea, A.A.; Alexa, E.; Hotea, I.; Iordănescu, O.A.; Băla, M.; Cântar, I.C.; Rózsa, S.; et al. Hazelnuts (Corylus avellana L.) from Spontaneous Flora of the West Part of Romania: A Source of Nutrients for Locals. Agronomy 2022, 12, 214. https://doi.org/10.3390/agronomy12010214
Poșta DS, Radulov I, Cocan I, Berbecea AA, Alexa E, Hotea I, Iordănescu OA, Băla M, Cântar IC, Rózsa S, et al. Hazelnuts (Corylus avellana L.) from Spontaneous Flora of the West Part of Romania: A Source of Nutrients for Locals. Agronomy. 2022; 12(1):214. https://doi.org/10.3390/agronomy12010214
Chicago/Turabian StylePoșta, Daniela S., Isidora Radulov, Ileana Cocan, Adina A. Berbecea, Ersilia Alexa, Ionela Hotea, Olimpia A. Iordănescu, Maria Băla, Ilie C. Cântar, Sándor Rózsa, and et al. 2022. "Hazelnuts (Corylus avellana L.) from Spontaneous Flora of the West Part of Romania: A Source of Nutrients for Locals" Agronomy 12, no. 1: 214. https://doi.org/10.3390/agronomy12010214
APA StylePoșta, D. S., Radulov, I., Cocan, I., Berbecea, A. A., Alexa, E., Hotea, I., Iordănescu, O. A., Băla, M., Cântar, I. C., Rózsa, S., Crista, F. L., Boldea, M. V., Negrea, M., & Popescu, I. (2022). Hazelnuts (Corylus avellana L.) from Spontaneous Flora of the West Part of Romania: A Source of Nutrients for Locals. Agronomy, 12(1), 214. https://doi.org/10.3390/agronomy12010214