Changes in the Chemical and Sensory Profile of Coffea canephora var. Conilon Promoted by Carbonic Maceration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials—Fermentation Processing
2.2. Preparation of Samples for Sensory and Chemical Analyses
2.3. Sensory Analysis of Coffee Samples
2.4. Infrared Analysis of Fermented Coffee Fruits
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guimarães, E.R.; Leme, P.H.M.V.; De Rezende, D.C.; Pereira, S.P.; Dos Santos, A.C. The Brand New Brazilian Specialty Coffee Market. J. Food Prod. Mark. 2019, 25, 49–71. [Google Scholar] [CrossRef]
- Aquino, S.O.; Kiwuka, C.; Tournebize, R.; Gain, C.; Marraccini, P.; Mariac, C.; Bethune, K.; Couderc, M.; Cubry, P.; Andrade, A.C.; et al. Adaptive Potential of Coffea canephora from Uganda in Response to Climate Change. Mol. Ecol. 2022, 31, 1800–1819. [Google Scholar] [CrossRef] [PubMed]
- Campuzano-Duque, L.F.; Herrera, J.C.; Ged, C.; Blair, M.W. Bases for the Establishment of Robusta Coffee (Coffea canephora) as a New Crop for Colombia. Agronomy 2021, 11, 2550. [Google Scholar] [CrossRef]
- Partelli, F.L.; da Silva, F.A.; Covre, A.M.; Oliosi, G.; Correa, C.C.G.; Viana, A.P. Adaptability and Stability of Coffea canephora to Dynamic Environments Using the Bayesian Approach. Sci. Rep. 2022, 12, 11608. [Google Scholar] [CrossRef] [PubMed]
- International Coffee Organization. Available online: https://www.ico.org/new_historical.asp?section=Statistics (accessed on 3 July 2022).
- Alves, A.L.; Pessoa, M.S.; de Souza, P.E.N.; Partelli, F.L.; Moscon, P.S.; da Silva, E.C.; Guimarães, A.O.; Muniz, E.P.; Pinheiro, P.F.; Borém, F.M.; et al. Influence of Environmental and Microclimate Factors on the Coffee Beans Quality (C. Canephora): Correlation between Chemical Analysis and Stable Free Radicals. Agric. Sci. 2018, 9, 1173–1187. [Google Scholar] [CrossRef]
- Lemos, M.F.; Perez, C.; da Cunha, P.H.P.; Filgueiras, P.R.; Pereira, L.L.; Almeida da Fonseca, A.F.; Ifa, D.R.; Scherer, R. Chemical and Sensory Profile of New Genotypes of Brazilian Coffea canephora. Food Chem. 2020, 310, 125850. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Becerra, R.; Hernández-Hernández, M.C.; González-Ríos, Ó.; Suárez-Quiroz, M.L.; Gálvez-Ponce, E.; Ordaz-Ortiz, J.J.; Winkler, R. Metabolomic Markers for the Early Selection of Coffea Canephora Plants with Desirable Cup Quality Traits. Metabolites 2019, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Hussain, S.A.; Ijaz, M.U.; Ullah, S.; Pasha, I.; Suleria, H.A.R. Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1184–1237. [Google Scholar] [CrossRef] [PubMed]
- Haile, M.; Kang, W.H. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- Tesniere, C.; Flanzy, C. Carbonic Maceration Wines. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1–15. [Google Scholar]
- González-Arenzana, L.; Santamaría, R.; Escribano-Viana, R.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Influence of the Carbonic Maceration Winemaking Method on the Physicochemical, Colour, Aromatic and Microbiological Features of Tempranillo Red Wines. Food Chem. 2020, 319, 126569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-S.; Du, G.; Gao, Y.-T.; Wang, L.-W.; Meng, D.; Li, B.-J.; Brennan, C.; Wang, M.-Y.; Zhao, H.; Wang, S.-Y.; et al. The Effect of Carbonic Maceration during Winemaking on the Color, Aroma and Sensory Properties of ‘Muscat Hamburg’ Wine. Molecules 2019, 24, 3120. [Google Scholar] [CrossRef] [PubMed]
- Brioschi Junior, D.; Carvalho Guarçoni, R.; de Cássia Soares da Silva, M.; Gomes Reis Veloso, T.; Catarina Megumi Kasuya, M.; Catarina da Silva Oliveira, E.; Maria Rodrigues da Luz, J.; Rizzo Moreira, T.; Grancieri Debona, D.; Louzada Pereira, L. Microbial Fermentation Affects Sensorial, Chemical, and Microbial Profile of Coffee under Carbonic Maceration. Food Chem. 2021, 342, 128296. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.L.; Guarçoni, R.C.; Pinheiro, P.F.; Osório, V.M.; Pinheiro, C.A.; Moreira, T.R.; ten Caten, C.S. New Propositions about Coffee Wet Processing: Chemical and Sensory Perspectives. Food Chem. 2020, 310, 125943. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.L.; Cardoso, W.S.; Guarçoni, R.C.; da Fonseca, A.F.A.; Moreira, T.R.; Caten, C.S. ten The Consistency in the Sensory Analysis of Coffees Using Q-Graders. Eur. Food Res. Technol. 2017, 243, 1545–1554. [Google Scholar] [CrossRef]
- Oliveira, E.C.d.S.; Carvalho Guarçoni, R.; Vinicius Ribeiro de Castro, E.; Gomes de Castro, M.; Louzada Pereira, L. Chemical and Sensory Perception of Robusta Coffees under Wet Processing. Coffee Sci. 2020, 15, e151672. [Google Scholar] [CrossRef]
- Maleke, M.; Doorsamy, W.; Abrahams, A.M.; Adefisoye, M.A.; Masenya, K.; Adebo, O.A. Influence of Fermentation Conditions (Temperature and Time) on the Physicochemical Properties and Bacteria Microbiota of Amasi. Fermentation 2022, 8, 57. [Google Scholar] [CrossRef]
- Guzzon, R.; Malacarne, M.; Larcher, R.; Franciosi, E.; Toffanin, A. The Impact of Grape Processing and Carbonic Maceration on the Microbiota of Early Stages of Winemaking. J. Appl. Microbiol. 2020, 128, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, P.; González-Arenzana, L.; Escribano-Viana, R.; Garijo, P.; López, R.; Sanz, S.; Gutiérrez, A.R. Difficulties Associated with Small-Scale Production of Carbonic Maceration Wines. Fermentation 2022, 8, 27. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Wang, H.; Yang, F.; Chen, L.; Hao, F.; Lv, X.; Du, H.; Xu, Y. Effects of Initial Temperature on Microbial Community Succession Rate and Volatile Flavors during Baijiu Fermentation Process. Food Res. Int. 2021, 141, 109887. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, J.; Pérez, M.; Romero, L.I. Semicontinuous Temperature-Phased Anaerobic Digestion (TPAD) of Organic Fraction of Municipal Solid Waste (OFMSW). Comparison with Single-Stage Processes. Chem. Eng. J. 2016, 285, 409–416. [Google Scholar] [CrossRef]
- Nie, E.; He, P.; Zhang, H.; Hao, L.; Shao, L.; Lü, F. How Does Temperature Regulate Anaerobic Digestion? Renew. Sustain. Energy Rev. 2021, 150, 111453. [Google Scholar] [CrossRef]
- Pereira, T.S.; Batista, N.N.; Santos Pimenta, L.P.; Martinez, S.J.; Ribeiro, L.S.; Oliveira Naves, J.A.; Schwan, R.F. Self-Induced Anaerobiosis Coffee Fermentation: Impact on Microbial Communities, Chemical Composition and Sensory Quality of Coffee. Food Microbiol. 2022, 103, 103962. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.S.; da Cruz Pedrozo Miguel, M.G.; Martinez, S.J.; Bressani, A.P.P.; Evangelista, S.R.; Silva e Batista, C.F.; Schwan, R.F. The Use of Mesophilic and Lactic Acid Bacteria Strains as Starter Cultures for Improvement of Coffee Beans Wet Fermentation. World J. Microbiol. Biotechnol. 2020, 36, 186. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.F.; Pinheiro, C.A.; Osório, V.M.; Pereira, L.L. Chemical Constituents of Coffee. In Quality Determinants in Coffee Production; Springer: Berlin/Heidelberg, Germany, 2021; pp. 209–254. [Google Scholar]
- Abreu, M.B.; Marcheafave, G.G.; Bruns, R.E.; Scarminio, I.S.; Zeraik, M.L. Spectroscopic and Chromatographic Fingerprints for Discrimination of Specialty and Traditional Coffees by Integrated Chemometric Methods. Food Anal. Methods 2020, 13, 2204–2212. [Google Scholar] [CrossRef]
- Fioresi, D.B.; Pereira, L.L.; Catarina da Silva Oliveira, E.; Moreira, T.R.; Ramos, A.C. Mid Infrared Spectroscopy for Comparative Analysis of Fermented Arabica and Robusta Coffee. Food Control 2021, 121, 107625. [Google Scholar] [CrossRef]
- Moreira, R.F.A.; Trugo, L.C.; De Maria, C.A.B. Componentes Voláteis Do Café Torrado. Parte II. Compostos Alifáticos, Alicíclicos e Aromáticos. Quim. Nova 2000, 23, 195–203. [Google Scholar] [CrossRef]
- Purwoko, T.; Suranto, S.; Setyaningsih, R.; Marliyana, S.D. Chlorogenic Acid and Caffeine Content of Fermented Robusta Bean. Biodiversitas J. Biol. Divers. 2022, 23, 902–906. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Modulation of Coffee Aroma via the Fermentation of Green Coffee Beans with Rhizopus Oligosporus: I. Green Coffee. Food Chem. 2016, 211, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal Biotransformation of Chlorogenic and Caffeic Acids by Fusarium Graminearum: New Insights in the Contribution of Phenolic Acids to Resistance to Deoxynivalenol Accumulation in Cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Assis, C.; Oliveira, L.S.; Sena, M.M. Variable Selection Applied to the Development of a Robust Method for the Quantification of Coffee Blends Using Mid Infrared Spectroscopy. Food Anal. Methods 2018, 11, 578–588. [Google Scholar] [CrossRef]
- Wei, F.; Tanokura, M. Chemical Changes in the Components of Coffee Beans during Roasting. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 83–91. [Google Scholar]
- Wang, N.; Fu, Y.; Lim, L.-T. Feasibility Study on Chemometric Discrimination of Roasted Arabica Coffees by Solvent Extraction and Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 3220–3226. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Evaluation of the Potential of FTIR and Chemometrics for Separation between Defective and Non-Defective Coffees. Food Chem. 2012, 132, 1368–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fermentation Time (h) | Fermentation Temperature (°C) | Regression Equation | R2 | ||
---|---|---|---|---|---|
18 | 28 | 38 | |||
24 | 78.64 | 79.42 | 80.20 | Y = 77.2292 + 0.0781250 ** X | 0.9999 ** |
48 | 78.51 | 79.78 | 79.38 | - | - |
72 | 79.10 | 80.40 | 82.16 | Y = 76.2792 + 0.152604 * X | 0.9921 ** |
96 | 79.00 | 80.40 | 81.85 | Y = 76.4229 + 0.142708 ** X | 0.9998 ** |
120 | 79.35 | 80.55 | 83.25 | - | - |
Regression Equation | Y | Y = 79.2421 + 0.0120486 ** X | Y = 78.7917 + 0.0357639 * X | ||
R2 | 0.7776 * | 0.8790 * | 0.7563 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, W.d.S.; Pereira, L.L.; Filete, C.A.; Moreira, T.R.; Guarçoni, R.C.; Catarina da Silva Oliveira, E.; Moreli, A.P.; Guimarães, C.V.; Simmer, M.M.B.; Júnior, V.L.; et al. Changes in the Chemical and Sensory Profile of Coffea canephora var. Conilon Promoted by Carbonic Maceration. Agronomy 2022, 12, 2265. https://doi.org/10.3390/agronomy12102265
Gomes WdS, Pereira LL, Filete CA, Moreira TR, Guarçoni RC, Catarina da Silva Oliveira E, Moreli AP, Guimarães CV, Simmer MMB, Júnior VL, et al. Changes in the Chemical and Sensory Profile of Coffea canephora var. Conilon Promoted by Carbonic Maceration. Agronomy. 2022; 12(10):2265. https://doi.org/10.3390/agronomy12102265
Chicago/Turabian StyleGomes, Willian dos Santos, Lucas Louzada Pereira, Cristhiane Altoé Filete, Taís Rizzo Moreira, Rogério Carvalho Guarçoni, Emanuele Catarina da Silva Oliveira, Aldemar Polonini Moreli, Cleidiana Vieira Guimarães, Marinalva Maria Bratz Simmer, Valdemar Lacerda Júnior, and et al. 2022. "Changes in the Chemical and Sensory Profile of Coffea canephora var. Conilon Promoted by Carbonic Maceration" Agronomy 12, no. 10: 2265. https://doi.org/10.3390/agronomy12102265
APA StyleGomes, W. d. S., Pereira, L. L., Filete, C. A., Moreira, T. R., Guarçoni, R. C., Catarina da Silva Oliveira, E., Moreli, A. P., Guimarães, C. V., Simmer, M. M. B., Júnior, V. L., Romão, W., de Castro, E. V. R., & Partelli, F. L. (2022). Changes in the Chemical and Sensory Profile of Coffea canephora var. Conilon Promoted by Carbonic Maceration. Agronomy, 12(10), 2265. https://doi.org/10.3390/agronomy12102265