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Abstract: In-season sensing can account for field variability and improve nitrogen (N) management;
however, opportunities exist for refinement. The purpose of this study was to compare different
sensors and vegetation indices (VIs) (normalized difference vegetation index (NDVI); normalized
difference red edge (NDRE); Simplified Canopy Chlorophyll Content Index (SCCCI)) at various corn
stages to predict in-season yield potential. Additionally, different methods of yield prediction were
evaluated where the final yield was regressed against raw or % reflectance VIs, relative VIs, and
in-season yield estimates (INSEY, VI divided by growing degree days). Field experiments at eight-site
years were established in Mississippi. Crop reflectance data were collected using an at-leaf SPAD
sensor, two proximal sensors: GreenSeeker and Crop Circle, and a small unmanned aerial system
(sUAS) equipped with a MicaSense sensor. Overall, relative VI measurements were superior for grain
yield prediction. MicaSense best predicted yield at the VT-R1 stages (R2 = 0.78–0.83), Crop Circle
and SPAD at VT (R2 = 0.57 and 0.49), and GreenSeeker at V10 (R2 = 0.52). When VIs were compared,
SCCCI (R2 = 0.40–0.49) outperformed other VIs in terms of yield prediction. Overall, the best grain
yield prediction was achieved using the MicaSense-derived SCCCI at the VT-R1 growth stages.

Keywords: active sensors; corn; nitrogen; remote sensing

1. Introduction

Nitrogen application has increased crop yields by 30–50% [1], promoting economic
development and supporting a larger population [2]. Currently, most of the N fertilizer
consumed in the US is used for corn production. Only half of the N applied is recovered
with the rest lost to the environment, causing agricultural N pollution [3]. One of the
reasons for low N recovery is the use of suboptimal methods such as yield goals for
N recommendation [4,5]. Moreover, Mississippi State also recommends the crop yield
goal (CYG) method for N rate recommendation [6], which was proven ineffective in
Mississippi for accounting for the spatial and temporal variabilities necessary to minimize
misapplication [7].

One proposed alternative to CYG-based N management is non-destructive canopy
reflectance sensing [8]. Nitrogen is important for many significant processes within plants.
It is required in large quantities compared to other nutrients, and its deficiency is reflected
in the chemical or physical properties of plants [6]. Crop canopy sensors accurately account
for N deficiencies as it results in lower chlorophyll content and greenness of plants. Fur-
thermore, various vegetation indices (VIs) were developed based on differences in crop
reflectance to characterize spatial and temporal N variability.

Consistently, in-season sensing has demonstrated the capability to provide an envi-
ronmentally distinct N rate that can account for temporal and spatial variability [9–11].
The development of a nutrient management strategy grounded in sensor technology is
contingent upon the ability to predict in-season yield potential using an algorithm created
from on-site observations [4,10,12]. The calculation of in-season yield potential is enabled
by the ability to distinguish differences in crop N uptake by using distinctions in vegetation
indices (VI) as a proxy for crop N uptake differences [13]. The algorithm is created by
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computing a regression analysis between actual yield and a predictor such as raw or %
reflectance-corrected VI values or in-season estimated yield (INSEY) expressed as a VI
(such as the normalized difference vegetation index (NDVI) divided by growing degree
days (GDD)), with a more robust data set generally improving yield prediction. Recently,
Paiao et al. [14] introduced relative VIs for comparison, where these values were calculated
by dividing the VI from each plot by the VI from the highest N rate treatment. Specifically,
when INSEY is used, the predicted in-season yield potential is multiplied by a response
index (RI), created from an N-rich strip as a proxy for unlimited N supply, to calculate
whether the yield may be improved by the addition of N. Finally, an N rate prescription is
created specific to that site to match the crop N demand [13].

Sensor-Based Datasets and Corn Correlations

Accurate in-season yield prediction is dependent upon a range of factors including
corn growth stage, VI, and sensors. Corn growth stages are generally divided into vegeta-
tive and reproductive stages, where V1 denotes the one-leaf stage until tasseling, which is
designated as VT. Similarly, R stages are designated as R1 based on corn kernel develop-
ment and end at R6 with a mature, harvest-ready crop [15]. Martin et al. [16] observed that
NDVI was most correlated to corn grain yields at the V7 to V9 growth stages. Similarly,
Tagarakis and Ketterings [17] observed V7 as the most effective stage for grain yield pre-
diction. Different sensors have also been compared, with Sharma et al. [18] revealing no
significant differences between the Crop Circle™ ACS-430 (Holland Scientific, Lincoln, NE,
USA) and GreenSeekerTM (Trimble Inc., Sunnyvale, CA, USA) sensors when predicting
yield using an NDVI-derived INSEY approach at the V6 stage.

Furthermore, the accuracy of in-season yield potential prediction is conditional upon
the strength of the relationship between the final grain yield and an in-season crop indicator.
An INSEY-based prediction model is predominantly used and recommended. Tagarakis
and Ketterings [17] used an INSEY-based model, with the INSEY-derived model exhibiting
superior capabilities for grain yield prediction. Paiao et al. [14] compared Soil Plant
Analysis Development (SPADTM) (Konica Minolta, Inc., Osaka, Japan), NDVI, relative
NDVI, normalized difference red edge (NDRE), and relative NDRE, with the relative NDRE
demonstrating the greatest capability for grain yield estimation.

The relationship between INSEY and yield improved when NDRE was utilized due
to the red edge wavelength being less influenced by saturation effects at later growth
stages [14]. There is also evidence that the simplified canopy chlorophyll content index
(SCCCI), which incorporates both NDVI and NDRE, is better for grain yield prediction
versus NDVI or NDRE [19–21].

Considering the intertwining factors influencing in-season yield prediction, the pur-
pose of this study was to assess the applicability of sensor-based N management compre-
hensively. N management assessment was accomplished by analyzing the ability to predict
yield potential using various sensors and VIs at multiple growth stages. The most compe-
tent method for utilizing VI data for grain yield prediction was also evaluated. The ultimate
goal of this study was to use drawn conclusions to create an algorithm capable of accurately
predicting N needs in Mississippi similar to those created for other regions [10,17].

2. Materials and Methods

The research was conducted in 2020 and 2021 at four locations across Mississippi:
(a) Black Belt Experiment Station, in Noxubee County at Brooksville, (b) R. R. Foil Plant
Science Research Center, in Oktibbeha County at Starkville, (c) Delta Research Extension
Center, in Washington County at Stoneville, and (d) Northeast Mississippi Branch Experi-
ment Station, in Lee County at Verona. In both years, soil sample data were collected on a
per replication basis at all locations. A total of 16 cores were collected per replication at a
15 cm depth. The fertility for each location was modified according to Mississippi State
University recommendations based on soil test results (Table 1).
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Table 1. Phosphorus (P), potassium (K), and magnesium (Mg) soil test results in kg ha−1 and soil pH
0 to 15 cm for Brooksville, Starkville, Stoneville, and Verona in 2020 and 2021 before nutrient amend-
ments.

Location Year P (kg ha−1) K (kg ha−1) Mg (kg ha−1) pH

Brooksville 2020 59 237 74 6.7
Brooksville 2021 18 268 189 6.6
Starkville 2020 129 294 105 8.3
Starkville 2021 151 268 166 8.2
Stoneville 2020 26 233 453 6.4
Stoneville 2021 82 286 851 6.3

Verona 2020 79 301 115 6.5
Verona 2021 66 228 168 8.1

The experiment employed a randomized complete block design with four replications.
In 2020, the experiment consisted of 12 treatments including a 0-N control, and in 2021,
11 treatments including a 0-N control. Treatment structure details are located in Table 2.
Both N applications utilized a 32% urea ammonium nitrate (UAN) solution knifed into
the soil using a four-row liquid fertilizer applicator. In 2020, the corn harvest occurred
between 3 September and 17 September. In 2021, the harvest began on 24 August and
was completed on 14 September. The middle two rows of each treatment were combine
harvested, and then the yield data were adjusted to a 15.5% moisture level.

Table 2. Treatments, first and second application rates, and total N rates applied at Brooksville,
Starkville, Stoneville, and Verona, MS in 2020 and 2021.

2020 2021

Treatment Application 1
kg N ha−1

Application 2
kg N ha−1

Total N Rate
kg N ha−1

Application 1
kg N ha−1

Application 2
kg N ha−1

Total N Rate
kg N ha−1

1 0 0 0 0 0 0
2 45 0 45 90 0 90
3 45 35 80 45 45 90
4 90 0 90 135 0 135
5 45 70 115 45 90 135
6 135 0 135 180 0 180
7 45 100 145 45 135 180
8 180 0 180 225 0 225
9 45 135 180 45 180 225
10 45 170 215 270 0 270
11 225 0 225 45 225 270
12 45 200 245 - - -

The V stage was identified each time staging was executed by the number of visible
leaf collars on a random selection of three corn plants within the field. At later stages, where
the earliest collars had diminished, three plants were bisected, and nodes were counted to
gain an indication of the V stage. The R1 stage was identified by the presence of visible
silks and the R5 stage by denting on a majority of corn kernels.

2.1. Sensor Technologies

The center two rows of each plot were used for data collection. The sensors uti-
lized in this study included the GreenSeeker hand-held, Crop Circle ACS-430, SPAD, and
MicaSense™ MX RedEdge (MicaSense Inc., Seattle, WA, USA) sensors. The wavelengths
measured by each sensor are noted in Table 3. The GreenSeeker sensor utilizes two bands,
a 656 nm red band and a 774 nm NIR band, which can be used to calculate NDVI [22].
The Crop Circle sensor employs three bands, a 670 nm red band, a 730 nm red edge band,
and a 780 nm near-infrared (NIR), band to calculate both the NDVI and NDRE [22]. The
MicaSense camera utilizes five bands, a 668 nm red band, a 560 nm green band, a 475 nm
blue band, an 840 nm NIR band, and a 717 nm red edge band [23]. The band combinations
can calculate, among other VIs, NDVI, NDRE, and SCCCI [24]. Consistent sensor deploy-
ment and/or timing was not executed in either year, with sensor heterogeneity and sensing
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frequency concentrated within the later stages, the 2020 year, the Crop Circle sensor, and
the Brooksville and Starkville locations.

Table 3. Sensor types with their respective sensed wavelengths.

Sensor Name Blue λ Green λ Red λ Red Edge λ NIR λ

Crop Circle 670 730 780
GreenSeeker 656 774
MicaSense 475 560 668 717 840

SPAD 650 940

Three SPAD measurements were sampled per plant on the corn leaf between the
midrib and leaf margin and then averaged for three different plants for a total of three
SPAD values per treatment. This averaged number was not further modified except for
transformations to an INSEY and relative value in the relevant VI comparisons. In both
years, SPAD measurements were collected during the VT and R1 growth stages.

In 2020 and 2021, remote and proximal sensing was conducted from the V4 to R5
growth stages, with measurements primarily taken within the V6 to VT growth stages. The
proximal sensing measurements were parallel to the canopy at 0.5 m from the canopy. The
remote sensing sensor was mounted on a 650 mm class X-frame small unmanned aerial
system (sUAS). Flight creation and implementation were completed using ArduPilot®

Mission Planner® [25]. The flights were conducted during solar noon at 60 m above the
canopy and speed of 7.6 m s−1. Overlap and sidelap were set to 75%, and overshoot
and lead in 15 m. All images were 1280 × 960 pixels at a 16-bit resolution. Camera
specifications included a 47.2◦ horizontal field of view (HFOV) and a 35.4◦ vertical field of
view (VFOV). Reflectance panel imagery was taken before and after each flight for absolute
reflectance referencing.

2.2. Data Processing

Data from the Crop Circle and GreenSeeker sensors were averaged in Microsoft®

Office Excel to create a single data point per treatment per growth stage. Post-flight image
processing was conducted using the Ag Multispectral workflow in Pix4DMapper® [26] to
create image mosaics. Pixels were converted to % reflectance using the reflectance panel
imagery at a reflectance value of 0.98. The purpose of this was to compensate for varying
light conditions so that the image mosaics would be comparable across space and time.
The Raw Crop Circle, GreenSeeker, and SPAD values were not converted to % reflectance.
VI data extraction was completed within QGIS® Desktop 3.16.6 with GRASS 7.8.5 [27],
ArcGIS® Desktop 10.8.1 [28], and R® version 4.0.2 [29], with only the center two rows
extracted and subsequently used for VI calculations.

2.3. Vegetation Indices

Indices including NDVI, NDRE, and SCCCI were calculated for each sensor. Table 4
displays the VI calculations calculated for each sensor.

Table 4. Vegetation indices used in the study table adapted from Fox [30].

Acronym Name Algorithm Reference

NDVI Normalized Difference
Vegetation Index

(R840-R650)/(R840 +
R650) Rouse et al. [31]

NDRE Normalized Difference
Red Edge

(R780-R720)/(R780 +
R720)

Barnes et al. [32]
Varco et al. [33]

SCCCI
Simplified Canopy

Chlorophyll Content
Index

NDRE/NDVI

Barnes et al. [32]
Varco et al. [33]

Raper and Varco [34]
Fox [30]
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2.4. Calculations and Statistics

Three methods were utilized for the best means of sensor-based yield prediction.
Regression analysis with grain yield included comparisons with raw or % reflectance-
corrected VI values [35], an INSEY-based comparison [13], and relative VI values [14] for all
sensors. The INSEY was calculated as VI divided by growing degree days (GDD), consisting
of the sum of the number of days from sowing to sensing with an average temperature
above 10 ◦C [13]. Similarly, relative VI values were calculated by dividing the sensor
reading in each plot by the mean reading in the highest N rate treatment [14]. Comparisons
of the three methods were completed across each VI sensor combination present within
this study with the entire VI dataset utilized within this segment of comparison.

Next, the VI with the greatest capability for yield prediction was evaluated. Only the
MicaSense relative NDVI, NDRE, and SCCCI, and Crop Circle relative NDVI, NDRE, and
SCCCI values were utilized in this comparison due to the capability of both sensors to
calculate each VI evaluated within this study.

After the VI-to-yield comparison, the most efficient sensor for yield prediction was
evaluated. The SPAD, GreenSeeker, and Crop Circle sensors were compared at the VT stage.
For the GreenSeeker and Crop Circle sensors, NDVI-relative values were employed for
comparison. VT was chosen due to being the most prominent stage for VI data collection.
NDVI was used due to the commonality between sensors. The lack of VT data for every
location in 2021 led to 2021 data omission for the sensor comparison. There was an
inadequate amount of MicaSense data to accurately make a yield prediction comparison to
its counterparts.

Lastly, the optimum stage for yield prediction was assessed. All GreenSeeker, MicaS-
ense, and Crop Circle sensor data, differentiated by stage, were utilized for comparison. As
SCCCI was most correlated to yield, the MicaSense and Crop Circle sensors’ relative SCCCI
values were chosen for comparison. For the GreenSeeker sensor, relative NDVI was used.
For the GreenSeeker sensor, the V4, V6, V10, and VT stages were compared; for the Crop
Circle sensor, the V4, V6, V8, V10, and VT stages were compared; and for the MicaSense
sensor, the V6, V8, V10, VT, R1, and R5 stages were compared.

The datapoints with 2.5 standard deviations or greater were removed as outliers
before analysis. Comparisons were gauged by the goodness of fit through the coefficient
of determination (R2), Akaike Information Criterion (AIC), and Root Mean Square Error
(RMSE). As this study should be considered a feasibility study, no independent validation
of results was performed and will be completed in future research.

3. Results
3.1. Best Method for Sensor-Based Grain Yield Predictions

All collected VI data were utilized in this segment of comparison. The best results for
the Crop Circle and the MicaSense sensor are illustrated in Figure 1. Sensor-based yield
prediction employed three different methods for grain yield prediction, including raw or %
reflectance corrected VI values, INSEY, and relative VI values. With the SPAD sensor, the
raw values were best at explaining grain yield variations with an R2 of 0.49, AIC of 1873,
and RMSE of 1.945. Relative values were almost identical in yield prediction capabilities,
with an R2 of 0.48, AIC of 1888, and RMSE of 1.976 (Table 5). For the GreenSeeker sensor,
no method effectively predicted grain yield. The INSEY VI values were the most effective
method, with a low R2 of 0.11, AIC of 1941, and RMSE of 3.171 (Table 5). With the Crop
Circle-derived NDVI, the INSEY method predicted the yield with a low R2 of 0.07, AIC of
5602, and RMSE of 2.955. Furthermore, for Crop Circle, the relative NDRE yield prediction
resulted in an R2 of 0.29, AIC of 5299, and RMSE of 2.582 (Figure 1C). The relative SCCCI
was the best yield prediction method for the Crop Circle-derived SCCCI, with an R2 of 0.40,
AIC of 5109, and RMSE of 2.371 (Table 5; Figure 1E). For the MicaSense sensor’s NDVI,
the relative values predicted the yield with an R2 of 0.25, AIC of 1347, and RMSE of 1.941
(Figure 1B). NDRE’s yield prediction capabilities for the MicaSense sensor were maximized
when relative values were used, with an R2 of 0.44, AIC of 1251, and RMSE of 1.674. For
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SCCCI, the relative values were also best for yield prediction, with an R2 of 0.49, AIC of
1227, and RMSE of 1.611 (Table 5; Figure 1F).
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Figure 1. Grain yield vs. relative VI comparison when collected using Crop Circle and MicaSense
sensors. Crop Circle relative VIs included NDVI (A), NDRE (C), and SCCCI (E), whereas MicaSense
relative VIs included NDVI (B), NDRE (D), and SCCCI (F). The number of datapoints for each
equation is represented by n, the equation is represented by y, the coefficient of determination is
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Table 5. Comparison in yield prediction between the raw or % reflectance corrected VI, INSEY, and
relative VI values for the SPAD, GreenSeeker, Crop Circle, and MicaSense sensors. The best fit method
based on R2, AIC, and RMSE for each VI by sensor is bolded.

Sensor Method n Y R2 p AIC RMSE

SPAD
SPAD 448 −1.39 + 0.236 X 0.49 <0.001 1873 1.945

SPAD-INSEY 448 6.1 + 97.2 X 0.17 <0.001 2096 2.494
rSPAD 448 −3.95 + 13.8 X 0.48 <0.001 1888 1.976

GreenSeeker
GS-NDVI 376 11.7 − 5.67 X 0.11 <0.001 1942 3.176

GS-INSEY 376 3.75 + 6.61 × 103 X 0.11 <0.001 1941 3.171
GS-rNDVI 376 0.259 + 8.03 X 0.08 <0.001 1954 3.228

Crop Circle

CC-NDVI 1118 9.1 − 0.786 X < 0.01 0.095 5681 3.062
CC-INSEY (NDVI) 1118 4.91 + 5.38 × 103 X 0.07 <0.001 5602 2.955

CC-rNDVI 1118 1.18 + 7.74 X 0.07 <0.001 5607 2.962
CC-NDRE 1118 7.84 + 2.95 X < 0.01 0.004 5675 3.054

CC-INSEY (NDRE) 1118 3.64 + 1.72 × 104 X 0.16 <0.001 5491 2.812
CC-rNDRE 1118 −3.71 + 13.2 X 0.29 <0.001 5299 2.582
CC-SCCCI 1118 −6.4 + 35.7 X 0.21 <0.001 5418 2.723

CC-INSEY (SCCCI) 1118 6.62 + 3.79 × 103 X 0.09 <0.001 5583 2.931
CC-rSCCCI 1118 −17.1 + 26.5 X 0.40 <0.001 5109 2.371

MicaSense

MC-NDVI 322 3.93 + 7.1 X 0.11 <0.001 1404 2.120
MC-INSEY (NDVI) 322 7.37 + 3.27 × 103 X 0.06 <0.001 1421 2.178

MC-rNDVI 322 −6.6 + 16.8 X 0.25 <0.001 1347 1.941
MC-NDRE 322 4.05 + 10.9 X 0.24 <0.001 1354 1.962

MC-INSEY (NDRE) 322 7.09 + 5.62 × 103 X 0.11 <0.001 1402 2.114
MC-rNDRE 322 −3.22 + 13.6 X 0.44 <0.001 1251 1.674
MC-SCCCI 322 2.66 + 10.7 X 0.17 <0.001 1381 2.048

MC-INSEY (SCCCI) 322 8.22 + 2.33 × 103 X 0.04 <0.001 1428 2.202
MC-rSCCCI 322 −14.6 + 24.9 X 0.49 <0.001 1227 1.611
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3.2. Comparison of VIs for Sensor-Based Yield Prediction

Total MicaSense and Crop Circle sensor data were utilized in this comparison segment.
For the Crop Circle sensor, the relative SCCCI values were best for grain yield prediction,
with an R2 of 0.40, AIC of 5109, and RMSE of 2.371 (Table 5; Figure 1E). Relative SCCCI
was also best for yield prediction for the MicaSense sensor, with an R2 of 0.49, AIC of 1227,
and RMSE of 1.611 (Table 5; Figure 1F). For the MicaSense sensor, the relative NDRE values
provided a similar capability for grain yield prediction with an R2 of 0.44, AIC of 1251, and
RMSE of 1.674 (Table 5; Figure 1D). For both the Crop Circle and MicaSense sensor, NDVI
was the worst VI for grain yield prediction (Table 5).

3.3. Comparison of Sensors for Sensor-Based Yield Prediction

In this segment, the 2020 SPAD, GreenSeeker, and Crop Circle VT sensor data were
compared. Between the SPAD, GreenSeeker, and Crop Circle sensors, the SPAD sensor was
most effective for grain yield prediction when all sensors were compared, with an R2 of
0.53, AIC of 647.3, and RMSE of 2.243 (Table 6; Figure 2A). The second most suitable sensor
was the Crop Circle sensor with an R2 of 0.31, AIC of 701.6, and RMSE of 2.709 (Table 6;
Figure 2C). The least effective sensor for grain yield prediction was the GreenSeeker sensor
with an R2 of 0.24, AIC of 714.3, and RMSE of 2.831 (Table 6; Figure 2B).

Table 6. Sensor comparison between the relative VI values for the SPAD, GreenSeeker, and Crop
Circle sensors. Data were collected at the VT stage from the Brooksville, Starkville, and Verona 2020
sites. The best fit sensor based on R2, AIC, and RMSE is bolded.

Sensor n Y R2 p AIC RMSE

rSPAD 144 −6.31 + 15.6 X 0.53 <0.001 647.3 2.243
GS-rNDVI 144 −31.4 + 40.2 X 0.24 <0.001 714.3 2.831
CC-rNDVI 144 −35.9 + 45 X 0.31 <0.001 701.6 2.709
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(Table 7). The most suitable stage for yield prediction for the Crop Circle sensor was the 
VT stage with an R2 of 0.57, AIC of 1156, and RMSE of 1.916 (Table 7). For the MicaSense 
sensor, the superior stage for grain yield prediction within the vegetative stages was the 
VT stage with an R2 of 0.78, AIC of 134.3, and RMSE of 1.075. When the reproductive 
stages are included, R1 was most suitable for grain yield prediction with an R2 of 0.83, AIC 
of 124.7, and RMSE of 0.962 (Table 7). 

Table 7. Stage comparison between the GreenSeeker, Crop Circle, and MicaSense sensors. The best 
fit stage based on R2, AIC, and RMSE is bolded. 

Sensor Stage n y R2 p AIC RMSE 

GreenSeeker 

V4 88 8.77 + 1.89 X 0.05 0.029 300.6 1.291 
V6 48 8.89 + 1.6 X 0.07 0.074 152.5 1.113 

V10 96 −15.1 + 21 X 0.52 <0.001 359.7 1.527 
VT 144 −31.4 + 40.2 X 0.24 <0.001 714.3 2.831 

Crop Circle 
V4 275 −23.9 + 33.2 X 0.15 <0.001 1331 2.691 
V6 192 −32.2 + 42 X 0.46 <0.001 849.6 2.177 

Figure 2. Sensor comparison between the relative VI values for the SPAD (A), GreenSeeker (B), and
Crop Circle sensors (C) at the VT stage. The population for each equation is represented by n, the
equation is represented by y, the coefficient of determination is represented by R2, the p-value by P,
and the Akaike Information Criterion by AIC.
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3.4. Comparison of Growth Stages for Sensor-Based Yield Prediction

In this segment, total GreenSeeker, MicaSense, and Crop Circle sensor data, separated
by stage, were compared. For the GreenSeeker sensor, the most effective stage for yield
prediction was the V10 stage with an R2 of 0.52, AIC of 359.7, and RMSE of 1.527 (Table 7).
The most suitable stage for yield prediction for the Crop Circle sensor was the VT stage
with an R2 of 0.57, AIC of 1156, and RMSE of 1.916 (Table 7). For the MicaSense sensor, the
superior stage for grain yield prediction within the vegetative stages was the VT stage with
an R2 of 0.78, AIC of 134.3, and RMSE of 1.075. When the reproductive stages are included,
R1 was most suitable for grain yield prediction with an R2 of 0.83, AIC of 124.7, and RMSE
of 0.962 (Table 7).

Table 7. Stage comparison between the GreenSeeker, Crop Circle, and MicaSense sensors. The best fit
stage based on R2, AIC, and RMSE is bolded.

Sensor Stage n y R2 p AIC RMSE

GreenSeeker

V4 88 8.77 + 1.89 X 0.05 0.029 300.6 1.291
V6 48 8.89 + 1.6 X 0.07 0.074 152.5 1.113

V10 96 −15.1 + 21 X 0.52 <0.001 359.7 1.527
VT 144 −31.4 + 40.2 X 0.24 <0.001 714.3 2.831

Crop Circle

V4 275 −23.9 + 33.2 X 0.15 <0.001 1331 2.691
V6 192 −32.2 + 42 X 0.46 <0.001 849.6 2.177
V8 181 −3.64 + 13.5 X 0.27 <0.001 786.6 2.091

V10 192 −25.3 + 34.6 X 0.56 <0.001 856.9 2.219
VT 278 −16.1 + 25.9 X 0.57 <0.001 1156 1.916

MicaSense

V6 48 −45.7 + 54.9 X 0.43 <0.001 150.7 1.092
V8 48 −60.4 + 72.7 X 0.67 <0.001 187.3 1.599

V10 96 −23.2 + 33.8 X 0.5 <0.001 366.9 1.585
VT 43 −19.7 + 30.1 X 0.78 <0.001 134.3 1.075
R1 43 −14 + 24.1 X 0.83 <0.001 124.7 0.962
R5 44 −7.2 + 17.5 X 0.54 <0.001 156 1.331

4. Discussion

As opposed to Tagarakis and Ketterings [17], where GreenSeeker INSEY values were
better suited for yield prediction, we found that was not the most common optimal method
overall (Table 5). The insufficiency of the INSEY method may be derived from the consistent
GDDs present within the corn-growing season relative to crops such as winter annuals. The
results also correspond to the findings of Paiao et al. [14], with five of the eight sensor VI
combinations best predicting the yield when the relative VI method was utilized (Table 5).
Akin to past studies, VIs that incorporated the red-edge wavelength were better predictors
of grain yield, with SCCCI superior to either NDVI or NDRE (Table 5, [19,20]). This greater
prediction capability is possibly due to SCCCI, which integrates NDRE and NDVI, being
responsive to variance in both biomass and chlorophyll [20]. While NDVI is the most
common VI utilized in yield prediction, the improved relationship between relative SCCCI
and yield necessitates further research into the capabilities of relative SCCCI-derived al-
gorithms. For the sensor comparison, the results were similar to Sharma et al. [18], with
the Crop Circle and GreenSeeker sensors providing proximate prediction capability when
NDVI is employed (Table 6). The sUAS-driven MicaSense sensor has the greatest potential
for commercial use due to its ability for rapid data collection relative to the other sensors.
Considering this advantage, the significance of the proportion of sensor capability to appli-
cability should be considered when the aim is for commercial employment. Additionally,
the capability of an algorithm to accurately predict N requirements should be gauged when
the data originates from a sensor type not utilized in its creation [20]. The study results
are similar to findings from past studies that have analyzed the effect of the stage, with
the VI-to-yield correlation strengthening as the season progresses [16,17]. The improved
correlation between yield and relative VI as the corn matures will need to be considered
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in algorithm creation due to the need for specialized equipment at later stages. In total,
the combination that produced the highest correlation between VI and grain yield was the
MicaSense sensor with relative SCCCI at the VT or R1 growth stages.

Recently, Colaço et al. [36] challenged the existing sensor-based N management strate-
gies and inferred that encompassing multiple variables and using a non-mechanistic model
would lead to a more accurate N rate. Furthermore, this paper is accentuating the need
to account for the VI methodology for algorithm creation in N management. By distin-
guishing the most accurate VI, sensor, and stage, and considering the best method for
VI data manipulation, a more robust algorithm can be created that could enhance N rate
prescription capabilities.

5. Conclusions

In this study, four sensors and three VIs across multiple growth stages were assessed.
Distinctions in the capability for grain yield prediction were observed across the different
VIs, sensors, and stages. Specifically, SCCCI and later growth stages were best able to
predict grain yield. While the SPAD sensor was best suited for grain yield prediction,
practicality should be considered when the ultimate goal for an algorithm is commercial
employment. Additionally, this study evaluated and found significant variance when the
VI data methodology was examined. The variance derived from methodology differences
highlights the pertinence of assessing VI methodology in future yield prediction modeling.
By considering each factor, more accurate yield prediction algorithms may be derived that,
sequentially, could provide better N prescription capabilities.
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