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Abstract: To control gene expression, plants use the post-transcriptional/translational regulation
system, which plays important roles in development and biotic and abiotic responses. Some RNA-
binding proteins (RBPs) are known to regulate target genes via direct binding of specific RNA motifs.
Pumilio and fem-3 binding factor (Puf) proteins exhibit a specific capacity for binding of the 3’
untranslational region (3’ UTR) of target mRNA and work as a post-transcriptional regulator in
the mammalian system. Recently, it was reported that Arabidopsis Pumilio RNA-binding protein
(APUM), a plant Puf homologue, is involved in biotic and abiotic stress and development. However,
the function of plant Puf proteins has not yet been fully recovered. In the current study, APUM6
gene expression was reduced by salt stress. APUM6 localized in the cytoplasmic foci of the mRNA
decay sites and ER membrane. Purified APUM6-pumilio homologue domain (HD) protein showed
‘UGUANAUA’ binding activity in vitro. APUM6-RNAi transgenic plants displayed reduced tolerance
to salt stress during the germination and mature plant stages. In APUM6-RNAi transgenic plants
under salt stress, abiotic stress-responsive gene expression levels showed no significant difference
compared with Col-0. Collectively, these results indicate that APUM6 might play important roles in
responses to salt stress via translational modification.

Keywords: RNA-binding protein; Arabidopsis; abiotic stress; transcriptional regulation; crop
development

1. Introduction

Most eukaryotic organisms have a translational regulation system. Some specific RNA-
binding proteins (RBPs) are known as translational regulators, which bind to target-specific
elements and affect the mRNA stability, localization, and translation of target genes [1–3].
The RNA-binding domains carried by eukaryotes are known as the RNA recognition motif
(RRM), K homology (KH), Pumilio-homology domain (PUM-HD), and double-stranded
RNA-binding motif (dsRBM) [4–6]. One of them, Pumilio and fem-3 binding factor (Puf),
also has the capacity to target specific RNA-binding and systemically identified some
RNA targets in mammalians [7–10]. Recently, major cytoplasmic exonuclease CCR4-NOT
complex was found to interact with Arabidopsis Pumilio RNA-binding protein APUM2
and APUM5 in the cytoplasm with a foci structure [11]. Thus, Puf might not work alone
in repressing the target mRNA because Puf needs some regulatory protein complexes via
protein–protein interaction.

Phytohormone abscisic acid (ABA) signaling has very important consequences for the
manipulation of abiotic stress responses [12,13]. Some Arabidopsis Puf gene expression
was changed by environmental stresses via bio-array analysis [9]. These plant Puf gene
expression patterns in the environment and phytohormones imply that plant Puf genes
could be involved in abiotic stress and might function to regulate target RNAs. APUM6 and
APUM18 are highly expressed in the stomata in APUM6pro::GUS and APUM18pro::GUS
transgenic plants [14]. The stomata have important roles in the abiotic stress response and
the function of these Pufs might be involved in abiotic stress [15,16]. APUM5 functions as a
negative regulator in the abiotic stress response [17].
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This study discovered the unknown function of the post-translational regulator in
salt tolerance in plants and expanded our knowledge on the molecular complexity of
plant responses to abiotic stress. The transcripts of APUM6 are downregulated by salt
stress and ABA treatment. The APUM6-RNAi transgenic seed germination rate is highly
reduced after salt treatment. APUM6-HD protein has RNA-binding activity for the pumilio
RNA-binding motif in vitro. APUM6 might have a critical role in target mRNA recognition
as a post-translational regulator.

2. Results
2.1. APUM6 Tissue-Specific Expression Pattern

In Genevestigator (http://www.genevestigator.com: 1 September 2022), the APUM6
gene was abundantly expressed in various Arabidopsis tissues [18]. APUM6 was strongly
expressed in rosette leaves but less expressed in flowers (Figure 1A, B).
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Figure 1. Tissue-specific expression and APUM6-RNAi transgenic plant analysis. (A,B) The ex-
pression of APUM6 in the flower, rosette leaf, stem, root, seedling, and cauline leaf determined by
semi-quantitative RT-PCR and qRT-PCR with APUM6-specific primers. Actin was used as an internal
control gene. Error bars indicate SD (n = 3). (C,D) Schematic representation of the RNAi target site.
A 307 bp partial cDNA fragment of APUM6 was chosen as the target for RNA interference. Two
independent T3 RNAi-APUM6-RNAi transgenic plants were analyzed via qRT-PCR. Bars indicate
the standard errors of the mean data (n = 3), and different letters indicate significant differences
(** p < 0.01, *** p < 0.001).

The APUM6 function is still largely unknown. To identify APUM6 functions, APUM6-
RNAi transgenic plants were generated with APUM6-specific regions (Figure 1C). The
transcripts of APUM6 in the T3-generation transgenic plants were verified by qRT-PCR.
The APUM6 expression levels in APUM6-RNAi were significantly reduced compared with
Col-0 (Figure 1D).

2.2. APUM6 Localization in Planta and In Vitro RNA-Binding Activity Analysis

In total, 25 APUMs members were identified in Arabidopsis [19]. Subcellular localiza-
tion of APUM proteins showed diverse compartments [14]. To determine whether APUM6
is located in a distinct structure, 35S::APUM6-GFP was transiently expressed in Nicotiana
benthamiana leaves and infiltrated leaves were stained with FM4-64, which is a marker of the
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vesicle and membrane structure, at 2 dpi [20]. APUM6-GFP was observed in the cytosolic
foci and partially merged with the FM4-64-stained membrane structures (Figure 2A). When
APUM6-GFP was expressed alone, APUM6 was located in the putative stress granule
structure (Figure S1) [21]. Recently, it was observed that APUM6 is located on the surface of
the endoplasmic reticulum (ER), suggesting that APUM6 functions in post-transcriptional
regulation and has diverse functions in different organelles [9].
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detected by LSM 700 confocal microscopy. Membranes were stained with FM4-64 (red signal). The 
resulting fluorescence images were merged (right). Scale bar = 50 µm. (B) Schematic representation 
of the APUM5 and APUM6 pumilio RNA-binding homolog domain for GST fusion. RNA-binding 
amino acid regions are conserved compared with APUM5. (C) Purified GST and GST-APUM6-HD 
proteins were tested using Western blot with GST antibody. Non-specific band is indicated by two 

Figure 2. APUM6 localization of in planta and in vitro RNA-binding activity. (A) Cytosol, plasma
membrane, and foci localization of APUM6-GFP. 35S::APUM6-GFP was transiently expressed in N.
benthamiana leaf cells. After 3 days, the leaf was stained with FM4-64. GFP and FM4-64 signals were
detected by LSM 700 confocal microscopy. Membranes were stained with FM4-64 (red signal). The
resulting fluorescence images were merged (right). Scale bar = 50 µm. (B) Schematic representation
of the APUM5 and APUM6 pumilio RNA-binding homolog domain for GST fusion. RNA-binding
amino acid regions are conserved compared with APUM5. (C) Purified GST and GST-APUM6-HD
proteins were tested using Western blot with GST antibody. Non-specific band is indicated by two
asterisks, and specific band is indicated by one asterisk. (D) Purified GST-APUM6-HD protein has
hbNRE2 RNA-binding activity. GST is used as a negative control of hbNRE2 RNA.

To verify whether APUM6 has an RNA-binding activity in the usual RNA-binding
motif, PUM-HD was identified in APUM6 (Figure 2B) and purified GST-fused APUM6-
HD. APUM6-HD protein formed sequence-specific RNA interactions in each repeat and
exhibited complete conservation but not in repeat 7 (Figure 2B). Purified GST-APUM6-HD
protein was confirmed by Western blot assay with GST-specific antibody (Figure 2C). As
expected, APUM6-HD protein showed RNA-binding activity for Drosophila maternal hunch-
back (hb) NRE2, which contains the pumilio RNA-binding motif ‘UGUA’ (Figure 2D). How-
ever, APUM6-HD protein showed no RNA-binding activity for CMV 3′ UTR (Figure S3).
These results imply that APUM6 might function as a post-translation regulator and have a
specific target.

2.3. Expression Patterns of APUM6 upon Salt and ABA Treatment

To explore the potential APUM6 functions, the APUM6 promoter was analyzed via
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/: 1 September
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2022). The APUM6 promoter contained at least four MYB-related cis-elements, which were
involved in abiotic stress responses (Figure 3A) [22]. To investigate the APUM6 functions
in the abiotic stress response, its expression profile following salt stress was assessed using
qRT-PCR. The results showed that the transcription levels of APUM6 were significantly
reduced after the 200 mM NaCl treatment (Figure 3B). Moreover, the transcripts of APUM6
in aba2-1 mutant exhibited no changed transcription levels at 0 h and were similarly
downregulated after exposure to salt stress in the 1 h treatment (Figure 3C), suggesting
that APUM6 might be regulated in an ABA-independent manner and involved in the salt
stress response.
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Figure 3. Expression patterns of APUM6 upon salt and ABA treatments. (A) Promoter of APUM6
analysis via PlantCARE. APUM6 promoter contained the MYB-related binding motif, WRKY-binding
motif, and T-box motif. (B) Expression of APUM6 in response to salt stress. The expression patterns
of APUM6 after the 200 mM NaCl treatment in the leaves by qRT-PCR with specific primers as
shown in Supplementary Table S1. Transcript levels were normalized to Actin. RD29A was used
as a positive control. Error bars indicate SD (n = 6). Asterisks indicate significant differences from
the control using the unpaired Student’s t-test (* p < 0.05). (C) Expression of APUM6 in response to
ABA. The expression patterns of APUM6 after 100 µM ABA treatment in the 4-week-old Col-0 and
ABA-deficient aba2-1 mutant background leaves by qRT-PCR. Transcript levels were normalized to
Actin. RD29A was used as a positive control. Error bars indicate SD (n = 6).

2.4. Effect of Salt Stress on Seed Germination in APUM6-RNAi Transgenic Plants

Salt stress severely affects plant growth and crop yields. NaCl treatment results in a
considerable inhibition of the seed germination rate [23]. To test the increased salt tolerance
of APUM6-RNAi transgenic plants, the effect of salinity stress on seed germination was
investigated. When seeds were grown in 1/2MS media plates, there were no significant
differences between the Col-0 and APUM6-RNAi transgenic plants (Figure 4A). The seed
germination rate of APUM6-RNAi decreased by 95% while the rate of WT Col-0 decreased
only by 76% after 7 days of 150 mM NaCl (Figure 4B), suggesting that APUM6 might
affect the salinity tolerance. However, the seed germination rate in 400 mM mannitol
did not differ between the Col-0 and APUM6-RNAi transgenic plants (Figure 4C). ABA
plays an important role in the response to salt stress, and APUM6 gene expression levels



Agronomy 2022, 12, 2410 5 of 10

were decreased after ABA treatment (Figure 3C). To determine whether APUM6 function
is involved in ABA signaling, the ABA sensitivity was tested during the germination
stages. APUM6-RNAi transgenic seeds germinated at a similar rate to the wild-type
seeds (Figure S3). To test the tolerance of salt stress, 4-week-old APUM6-RNAi transgenic
lines and WT plants were subjected to abiotic stress for 10 days. The APUM6-RNAi
transgenic lines under the 150 mM salt condition exhibited a lesser chlorophyll content
than the WT plant by about 25% (Figure 4D, E). The relative electrolyte leakage of APUM6-
RNAi transgenic plants was 22% higher than WT (Figure 4F). These results suggest that
APUM6-RNAi transgenic plants have suppressed physiological traits associated with
salinity stress tolerance.
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Figure 4. Effect of salt stress on seed germination in APUM6-RNAi transgenic plants. (A) WT
and APUM6-RNAi transgenic seedlings 12 days after seeds were sown on 1/2 MS medium. Each
data point is the mean of 3 replicates of 100 seeds. (B,C) WT and transgenic seedlings 10 days
after seeds were sown on 1/2 MS or 1/2 MS supplemented with 150 mM NaCl and 400 mM
mannitol. Bars indicate the standard errors of the mean data (n = 3), and different letters indicate
significant differences (* p < 0.05, *** p < 0.001). (D) Performance of the Col-0 and APUM6-RNAi#1
transgenic line after salt treatment for 10 days. Pictures were taken 0, 3, and 10 days after salt
treatment. (E) Physiological changes associated with the salt stress response in WT and APUM6-
RNAi transgenic plants. Chlorophyll content was determined Data values represent the means ± SD
from three independent experiments. Asterisks indicate statistical significance of the differences
between transgenic lines and WT plants (* p < 0.05). (F) Relative electrolyte leakage in Col-0 and
APUM6-RNAi#1 transgenic plants after 150 mM salt treatments for 6 h. Data values represent the
means ± SD from three independent experiments. Asterisks indicate statistical significance of the
differences between transgenic lines and control plants (* p < 0.05).

To investigate the possible molecular mechanisms of the involvement of APUM6 as a
transcriptional/translational regulator in salt stress responses, qRT-PCR was performed to
detect the mRNA expression levels of drought- and salt-responsive marker genes, including
DREB2A, RD29A, RAB18, and CBF3, under the 150 mM NaCl treatment condition. These
genes contained a putative pumilio RNA-binding domain in the 3′ UTR (Figure S4). The
qRT-PCR analysis showed no significant differences at the levels of expression of these
genes between APUM6-RNAi and WT (Figure S4). There were no significant differences
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in gene expression, although these genes contained the ‘UGUA’ pumilio RNA-binding
motif (Figure S4), suggesting that APUM6 might have another target for the regulation of
salinity stress.

3. Discussion

Pufs are known as translational repressors by binding sequences in the 3’ UTR of the
target, which is NRE in hunchback mRNA in early embryonic development [24,25]. Similar
to the mammalian system, putative target RNAs were identified by computational analysis
with pumilio RNA-binding motifs in Arabidopsis. Interestingly, APUM1 to APUM6
specifically bind to the 3’ UTR that contains pumilio RNA-binding motifs and these genes
are associated with shoot stem cell maintenance such as WUSCHEL (WUS) and CLAVATA1
(CLV1) [26–28]. The expression patterns of Arabidopsis and rice Puf family genes in
development were analyzed via Genevestigator. The At1g72320 (APUM23) and At3g16810
(APUM24) genes were abundantly expressed at all developmental stages but strongly
at the seed stage (Figure 3). The function of APUM23 is associated with pre-ribosomal
RNA processing in the nucleolus and apum23 mutants exhibit a developmental defeat
phenotype [29]. APUM24 function might be involved in ribosomal RNA processing because
it is also localized similarly to APUM23. Interestingly, 30S ribosomal protein (At5g24490)
was identified by yeast three-hybrid screening and plant Pufs mainly regulate ribosomal
proteins [26]. At3g20250 (APUM5) and At4g25880 (APUM6) were also constitutively
expressed at all stages (Figure 1A, B).

Plant Pufs have a diversity of subcellular localization patterns such as the nucleus, nu-
cleolus, cytoplasm, vacuole, and plasma membrane [29–31]. This localization is important
to the function of Pufs because Pufs need to meet their target RNAs. For instance, APUM9
contains a putative transmembrane and exhibits cytoplasmic punctuated structures in
subcellular localization in onion cells [31]. APUM9 showed some dynamic subcellular
localizations and was affected by these localizations after exposure to the actin destabiliz-
ing agent [31]. However, some APUM family proteins that did not contain TM domains
exhibited similar localization such as APUM9 [31]. This localization of APUM family
proteins might be regulated by putative leucine-rich nuclear export signal (NES). Dynamic
localization of APUM proteins shows the possibility that plant Pufs could shuttle between
the cytoplasm and the nucleus. This was further analyzed to understand the NES function
in localization. APUM5 also has a putative transmembrane domain and localizes to the
membrane structure, vacuolar structure, and cytosolic foci structure, and exhibits a cyto-
plasmic punctuated structure in tobacco epidermal cells [11,30]. Additionally, APUM23
localizes to nucleolar-like structures in Arabidopsis and onion cells [29,31]. In this study,
APUM6 was found in cytoplasmic foci such as a stress granule-like structure (Figure 2A and
Figure S1). However, the identified localization of APUM6 might be the ER membrane [9].
These dynamic localization data imply that most of the plant Pufs might be associated with
the ER membrane or nuclear shuttling. This could be involved in translational control of
target mRNA, mRNA localization, and mRNA decay.

PUM-HD contains 8 alpha-helical repeats of about 36 amino acids, but some Pufs
have fewer Puf repeats in their PUM-HD, containing about 4 to 7 repeats. PUM-HD could
confer the recognition and binding affinity of target RNA [32]. In Arabidopsis Pufs, these
class I Pufs were analyzed by electrophoretic mobility shift assays (EMSAs) and yeast
three hybrid using Nanos Response Element (NRE) [26,31]. However, other Pufs containing
fewer alpha-helical repeats of PUM-HD were not confirmed to have RNA-binding activity.
Also, there have been several attempts to make PUM-HD with binding specificity for
novel target RNAs [33–37]. Yeast Puf3, 4, and 5 have over 200 putative targets via whole
transcriptome analysis and binding activity to the conserved ‘UGUX3-5UA’ motif [38,39].
GST-APUM6-HD protein showed NRE binding activity but no binding activity for CMV
3’ UTR (Figures 2D and S2). These observations imply that the APUM6 targets might be
different from APUM5 in abiotic stress responses.
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Recently, the salt hypersensitive mutant 9 (sahy9) was identified as the apum23 mutant
that is essential for salt sensitivity in response to salt stress [40]. Mutation of APUM23
altered salt-stress-responsive and ABA-reconceive genes such as RD26, PP2CA, RD29A,
RD29B, RD20, COR15A, and NCED3 via regulation of ribosome biogenesis-related gene
expression [40]. Knockdown of APUM6 transgenic plants also showed reduced salinity
tolerance and seed germination rates (Figure 4). However, APUM6 target genes were
not found in this study (Figure S4), although RAB18, DREB2A, and RD29A contained the
putative pumilio RNA-binding motif in 3’ UTR. Furthermore, APUM6-overexpressed trans-
genic plants were not obtained because of its lethality (data not shown). Overexpression of
APUM6 might play a negative role in the development stages. This suggests that inducible
APUM6-transgenic plants are useful for the identification of APUM6 target genes in the
ER membrane.

4. Material and Methods
4.1. Plant Materials, Growth Conditions, and Transgenic Plants

Arabidopsis thaliana (Col-0) was used as a wild-type background and was grown in soil
under a 16-h-light/8-h-dark photoperiod at 23 ◦C. For knock-down of APUM6 expression in
Arabidopsis, the RNAi vector pHANNIBAL system was used for the vector construct [41].
The specific fragment of the 307 bp target region was amplified and then the pHANNIBAL
cassette containing the APUM6-RNAi construct was cloned into the pART27 binary vector.
To prepare the 35S::APUM6-GFP construct, the APUM6 ORF region was used and then
cloned into a pGWB5 GATEWAY binary vector [42].

4.2. RT-PCR and qRT-PCR Analysis

The Arabidopsis total RNA was isolated using a phenol extraction protocol [43]. For
tissue-specific analysis, total RNA was extracted from the flower, rosette leaf, stem, root, and
seedling tissues to perform reverse transcription (RT)-PCR and observe the transcription
levels of APUM6. For the salt stress response experiments, the total RNA extracted from
4-week-old Arabidopsis plants was used for qRT-PCR analysis under the 100 mM NaCl
treatment. All qRT-PCRs were performed with SYBR Green (KAPABIOSYSTEMS). The
primers are provided in Supplementary Table S1.

4.3. Subcellular Localization Analysis

For infiltration of the N. benthamiana leaves, Agrobacterium tumefaciens GV3101 was
infiltrated into the leaves of 4-week-old plants. Agro-cells were cultivated overnight at
28 ◦C. The agro-cells were harvested by centrifugation, and the cells were resuspended
in infiltration buffer to a final optical density at OD600 = 1.0. After 2 days of agro-
infiltration, infiltrated leaves were stained with FM4-64 and detected by LSM 700 confocal
microscopy (Zeiss).

4.4. Determination of Electrolyte Leakage and Chlorophyll Content

The electrolyte leakage assay was performed with Col-0 and APUM6-RNAi plant
leaves after 150 mM NaCl treatment for 6 h. Five leaf disks were taken from each plant and
washed with 5 mL of ddH2O. The leaf disks were transferred to the new tubes with 5 mL
of ddH2O. The ion leakage was measured using a portable conductivity meter.

For chlorophyll content analysis, about 0.02 g of fresh leaf samples was placed in 2 mL
of 100% ethanol and incubated at 4 ◦C. At 665 and 649 nm, the absorbance was measured
using a spectrophotometer.

4.5. Western Blotting

GST and GST-APUM6-HD protein were added to sodium-dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) loading buffer (100 mM Tris-HCl, pH 6.8; 9% β-mercaptoethanol,
40% glycerol, 0.2% bromophenol blue, 4% SDS) and subjected to protein gel electrophoresis.
GST-fused proteins were detected by an anti-GST-peroxidase high-affinity antibody.
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4.6. Germination Rate and Root Growth Assays

Surface-sterilized Arabidopsis seeds were grown on plates containing 1/2 Murashige
and Skoog Medium Basal Salt Mixture (Duchefa), 1.5% sucrose, and 0.8% phytoagar with
or without 150 mM NaCl and 0.7 µM ABA. The germination rate of the seeds was scored in
three independent experiments (100 seeds per experiment).

4.7. Salinity Stress Treatment in Soil

For the high-salinity treatment, 4-week-old Col-0 and APUM6-RNAi plants were
irrigated with 150 mM NaCl every 3 days and allowed to grow for 10 days. The electrical
conductivity (EC) in 150 mM salt solution was about 12 dSm−1. Almost 100 mL of salt solu-
tion was added to each pot to provide similar salt stress. Three independent measurements
of about 30 to 40 plants were averaged.

4.8. Gel Mobility Shift Assay

Synthetic RNA oligonucleotides were ordered from Bio Basic Inc. (Markham). An
RNA probe was radiolabeled with 32P using T4 polynucleotide kinase (NEB). Purified
proteins were incubated with the RNA probe for 30 min in a binding solution (20 mM
Tris at pH 7.4, 50 mM KCl, 3 mM MgCl2, 2 mM dithiothreitol, 5% glycerol) at room
temperature. Electrophoresis was performed with 4% native gel containing 5% glycerol in
0.5 X TBE buffer.

5. Conclusions

These findings suggest that APUM6 may be important in the salt stress defense re-
sponse by targeting mRNA as a post-translational regulator. Analysis of the gene expression
of APUM6 was performed in the present study to characterize the possible function of the
ER membrane protein APUM6 in response to salt stress. Among these phenotypes, the salt
hypersensitivity of APUM6-RNAi might be associated with the ABA-independent manner
but is involved in salt stress-responsive genes. However, it has not yet been determined
whether APUM6 functions in the ER membrane and targets.

Funding: This research received no external funding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12102410/s1, Figure S1. Putative stress granules local-
ization of APUM6-GFP. Stress granules localization of GFP fused to APUM6. Green fluorescence from
GFP was simultaneously monitored by transient expression of APUM6-GFP proteins in N. benthami-
ana leaves. GFP signals were detected by LSM 700 confocal microscopy. Figure S2. No RNA-binding
activity of APUM6-HD protein for the CMV 3′UTR motif. Indicated 32P-labeled hbNRE2 RNA probes
were incubated with recombinant GST, GST-APUM5-HD, and GST-APUM6-HD for 30 min in 20 µL
of RNA-binding buffer at room temperature. RNA-protein complexes were separated in 5% native
gel and analyzed by autoradiography. GST protein was used as a negative control. Recombinant
GST-APUM5-HD was used as a positive control of binding. Figure S3. ABA sensitive assay in Col-0
and APUM6-RNAi. Seed germination rate in the presence of 0.7 µM ABA. Approximately 100 seeds
of each genotype were sown on each plate and scored for germination. Values are the averages ± SD
for three independent experiments. Figure S4. Abiotic stress response gene expression in Col-0 and
APUM6-RNAi under the salt stress condition. Expression levels of RAB18, RD29A, DREB2A, and
CBF3 in the wild-type and APUM6-RNAi transgenic lines in response to salt stress. Four-week-old
plants were treated with 100 mM NaCl for 3 h. Total RNA was isolated from various samples and
subjected to qRT-PCR analysis. Actin gene was used as the reference gene. Error bars indicate SD
(n = 3). Table S1. RT-PCR and qRT-PCR primers.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
authors. Informed consent was obtained from all subjects involved in the study.

https://www.mdpi.com/article/10.3390/agronomy12102410/s1
https://www.mdpi.com/article/10.3390/agronomy12102410/s1


Agronomy 2022, 12, 2410 9 of 10

Acknowledgments: The author would like to thank Kyung-Hee Paek (Korea University, Seoul,
Republic of Korea) for critical comments and materials.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hentze, M.; Castello, A.; Schwarzl, T.; Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 2018, 19,

327–341. [CrossRef]
2. Marondedze, C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc. Biol. Sci. 2020,

287, 20201397. [CrossRef]
3. Köster, T.; Marondedze, C.; Meyer, K.; Staiger, D. RNA-Binding Proteins Revisited—The Emerging Arabidopsis mRNA Interac-

tome. Trends Plant Sci. 2017, 22, 512–526. [CrossRef]
4. Gleghorn, M.L.; Gong, C.; Kielkopf, C.L.; Maquat, L.E. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-

binding domain to promote mRNA decay. Nat. Struct. Mol. Biol. 2013, 20, 515–524. [CrossRef]
5. Gu, W.; Deng, Y.; Zenklusen, D.; Singer, R.H. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is

required for its localization. Genes Dev. 2004, 18, 1452–1465. [CrossRef]
6. A Schweers, B.; Walters, K.J.; Stern, M. The Drosophila melanogaster Translational Repressor Pumilio Regulates Neuronal Excitability.

Genetics 2002, 161, 1177–1185. [CrossRef]
7. Gerber, A.P.; Luschnig, S.; Krasnow, M.A.; Brown, P.O.; Herschlag, D. Genome-wide identification of mRNAs associated with the

translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2006, 103, 4487–4492. [CrossRef]
8. Wang, X.; Voronina, E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front. Cell

Dev. Biol. 2020, 8, 29. [CrossRef]
9. Joshna, C.R.; Saha, P.; Atugala, D.; Chua, G.; Muench, D.G. Plant PUF RNA-binding proteins: A wealth of diversity for

post-transcriptional gene regulation. Plant Sci. 2020, 297, 110505. [CrossRef]
10. Wilinski, D.; Qiu, C.; Lapointe, C.P.; Nevil, M.; Campbell, Z.T.; Hall, T.M.T.; Wickens, M. RNA regulatory networks diversified

through curvature of the PUF protein scaffold. Nat. Commun. 2015, 6, 8213. [CrossRef]
11. Arae, T.; Morita, K.; Imahori, R.; Suzuki, Y.; Yasuda, S.; Sato, T.; Yamaguchi, J.; Chiba, Y. Identification of Arabidopsis CCR4-NOT

Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2. Plant Cell Physiol. 2019, 60, 2015–2025. [CrossRef]
12. Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.;

Pandey, M.; et al. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future
Prospects. Front. Plant Sci. 2017, 8, 161. [CrossRef]

13. Hewage, K.A.H.; Yang, J.; Wang, D.; Hao, G.; Yang, G.; Zhu, J. Chemical Manipulation of Abscisic Acid Signaling: A New
Approach to Abiotic and Biotic Stress Management in Agriculture. Adv. Sci. 2020, 7, 2001265. [CrossRef]

14. Abbasi, N.; Park, Y.-I.; Choi, S.-B. Pumilio Puf domain RNA-binding proteins in Arabidopsis. Plant Signal. Behav. 2011, 6, 364–368.
[CrossRef]

15. Jung, C.; Seo, J.S.; Han, S.W.; Koo, Y.J.; Kim, C.H.; Song, S.I.; Nahm, B.H.; Choi, Y.D.; Cheong, J.-J. Overexpression of AtMYB44
Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis. Plant Physiol. 2007, 146, 323–324.
[CrossRef]

16. Kim, J.S.; Jung, H.J.; Lee, H.J.; Kim, K.A.; Goh, C.-H.; Woo, Y.; Oh, S.H.; Han, Y.S.; Kang, H. Glycine-rich RNA-binding protein7
affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 2008, 55, 455–466.
[CrossRef]

17. Huh, S.U.; Paek, K.-H. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene
expression. BMC Plant Biol. 2014, 14, 75. [CrossRef]

18. Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis Microarray Database and
Analysis Toolbox. Plant Physiol. 2004, 136, 2621–2632. [CrossRef]

19. Huh, S.U. The Role of Pumilio RNA Binding Protein in Plants. Biomolecules 2021, 11, 1851. [CrossRef]
20. Goto-Yamada, S.; Oikawa, K.; Bizan, J.; Shigenobu, S.; Yamaguchi, K.; Mano, S.; Hayashi, M.; Ueda, H.; Hara-Nishimura, I.;

Nishimura, M.; et al. Sucrose Starvation Induces Microautophagy in Plant Root Cells. Front. Plant Sci. 2019, 10, 1604. [CrossRef]
21. Dubiel, M.; De De Coninck, T.; Osterne, V.J.S.; Verbeke, I.; Van Van Damme, D.; Smagghe, G.; Van Van Damme, E.J.M. The

ArathEULS3 Lectin Ends up in Stress Granules and Can Follow an Unconventional Route for Secretion. Int. J. Mol. Sci. 2020,
21, 1659. [CrossRef]

22. Sheshadri, S.A.; Nishanth, M.J.; Simon, B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary
and Specialized Metabolism in planta. Front. Plant Sci. 2016, 7, 1725. [CrossRef]

23. Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop
Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [CrossRef]

24. Wreden, C.; Verrotti, A.; Schisa, J.; Lieberfarb, M.; Strickland, S. Nanos and pumilio establish embryonic polarity in Drosophila by
promoting posterior deadenylation of hunchback mRNA. Development 1997, 124, 3015–3023. [CrossRef]

25. Sonoda, J.; Wharton, R.P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 1999, 13, 2704–2712. [CrossRef]

http://doi.org/10.1038/nrm.2017.130
http://doi.org/10.1098/rspb.2020.1397
http://doi.org/10.1016/j.tplants.2017.03.009
http://doi.org/10.1038/nsmb.2528
http://doi.org/10.1101/gad.1189004
http://doi.org/10.1093/genetics/161.3.1177
http://doi.org/10.1073/pnas.0509260103
http://doi.org/10.3389/fcell.2020.00029
http://doi.org/10.1016/j.plantsci.2020.110505
http://doi.org/10.1038/ncomms9213
http://doi.org/10.1093/pcp/pcz089
http://doi.org/10.3389/fpls.2017.00161
http://doi.org/10.1002/advs.202001265
http://doi.org/10.4161/psb.6.3.14380
http://doi.org/10.1104/pp.107.110981
http://doi.org/10.1111/j.1365-313X.2008.03518.x
http://doi.org/10.1186/1471-2229-14-75
http://doi.org/10.1104/pp.104.046367
http://doi.org/10.3390/biom11121851
http://doi.org/10.3389/fpls.2019.01604
http://doi.org/10.3390/ijms21051659
http://doi.org/10.3389/fpls.2016.01725
http://doi.org/10.3389/fpls.2017.01147
http://doi.org/10.1242/dev.124.15.3015
http://doi.org/10.1101/gad.13.20.2704


Agronomy 2022, 12, 2410 10 of 10

26. Francischini, C.W.; Quaggio, R.B. Molecular characterization of Arabidopsis thaliana PUF proteins—Binding specificity and target
candidates. FEBS J. 2009, 276, 5456–5470. [CrossRef]

27. Bouchabké-Coussa, O.; Obellianne, M.; Linderme, D.; Montes, E.; Maia-Grondard, A.; Vilaine, F.; Pannetier, C. Wuschel
overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured
in vitro. Plant Cell Rep. 2013, 32, 675–686. [CrossRef]

28. Williams, E.L.; De Smet, I. Development: CLAVATA1 Joins the Club of Root Stem Cell Regulators. Curr. Biol. 2013, 23, R245–R247.
[CrossRef]

29. Abbasi, N.; Kim, H.B.; Park, N.-I.; Kim, H.-S.; Kim, Y.-K.; Park, Y.-I.; Choi, S.-B. APUM23, a nucleolar Puf domain protein, is
involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. Plant J. 2010, 64, 960–976. [CrossRef]

30. Huh, S.U.; Paek, K.-H. Role ofArabidopsisPumilio RNA binding protein 5 in virus infection. Plant Signal. Behav. 2013, 8, e23975.
[CrossRef]

31. Tam, P.P.; Barrette-Ng, I.H.; Simon, D.M.; Tam, M.W.; Ang, A.L.; Muench, D.G. The Puf family of RNA-binding proteins in plants:
Phylogeny, structural modeling, activity and subcellular localization. BMC Plant Biol. 2010, 10, 44. [CrossRef]

32. Miller, M.T.; Higgin, J.J.; Hall, T.M.T. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of
yeast Puf4p. Nat. Struct. Mol. Biol. 2008, 15, 397–402. [CrossRef]

33. Ryder, S.P. Pumilio RNA Recognition: The Consequence of Promiscuity. Structure 2011, 19, 277–279. [CrossRef]
34. Cooke, A.; Prigge, A.; Opperman, L.; Wickens, M. Targeted translational regulation using the PUF protein family scaffold. Proc.

Natl. Acad. Sci. USA 2011, 108, 15870–15875. [CrossRef]
35. Cheong, C.-G.; Hall, T.M.T. Engineering RNA sequence specificity of Pumilio repeats. Proc. Natl. Acad. Sci. USA 2006, 103,

13635–13639. [CrossRef]
36. Choudhury, R.; Tsai, Y.S.; Domínguez, D.; Wang, Y.; Wang, Z. Engineering RNA endonucleases with customized sequence

specificities. Nat. Commun. 2012, 3, 1147. [CrossRef]
37. Wang, Y.; Wang, Z.; Hall, T.M.T. Engineered proteins with PUF scaffold to manipulate RNA metabolism. FEBS J. 2013, 280,

3755–3767. [CrossRef]
38. Saint-Georges, Y.; Garcia, M.; Delaveau, T.; Jourdren, L.; Le Crom, S.; Lemoine, S.; Tanty, V.; Devaux, F.; Jacq, C. Yeast Mitochondrial

Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization. PLoS ONE 2008, 3, e2293. [CrossRef]
39. Gerber, A.P.; Herschlag, D.; O Brown, P. Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family

RNA-Binding Proteins in Yeast. PLoS Biol. 2004, 2, e79. [CrossRef]
40. Huang, K.-C.; Lin, W.-C.; Cheng, W.-H. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity

in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biol. 2018, 18, 40. [CrossRef]
41. Wesley, S.V.; Helliwell, C.; Smith, N.A.; Wang, M.-B.; Rouse, D.T.; Liu, Q.; Gooding, P.S.; Singh, S.; Abbott, D.; Stoutjesdijk, P.A.; et al.

Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001, 27, 581–590. [CrossRef]
[PubMed]

42. Nakagawa, T.; Kurose, T.; Hino, T.; Tanaka, K.; Kawamukai, M.; Niwa, Y.; Toyooka, K.; Matsuoka, K.; Jinbo, T.; Kimura, T. Devel-
opment of series of Gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation.
J. Biosci. Bioeng. 2007, 104, 34–41. [CrossRef] [PubMed]

43. Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA by SDS Solubilization and Phenol Extraction. Cold Spring Harb.
Protoc. 2010, 2010, pdb.prot5438. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1742-4658.2009.07230.x
http://doi.org/10.1007/s00299-013-1402-9
http://doi.org/10.1016/j.cub.2013.01.069
http://doi.org/10.1111/j.1365-313X.2010.04393.x
http://doi.org/10.4161/psb.23975
http://doi.org/10.1186/1471-2229-10-44
http://doi.org/10.1038/nsmb.1390
http://doi.org/10.1016/j.str.2011.02.006
http://doi.org/10.1073/pnas.1105151108
http://doi.org/10.1073/pnas.0606294103
http://doi.org/10.1038/ncomms2154
http://doi.org/10.1111/febs.12367
http://doi.org/10.1371/journal.pone.0002293
http://doi.org/10.1371/journal.pbio.0020079
http://doi.org/10.1186/s12870-018-1255-z
http://doi.org/10.1046/j.1365-313X.2001.01105.x
http://www.ncbi.nlm.nih.gov/pubmed/11576441
http://doi.org/10.1263/jbb.104.34
http://www.ncbi.nlm.nih.gov/pubmed/17697981
http://doi.org/10.1101/pdb.prot5438
http://www.ncbi.nlm.nih.gov/pubmed/20516176

	Introduction 
	Results 
	APUM6 Tissue-Specific Expression Pattern 
	APUM6 Localization in Planta and In Vitro RNA-Binding Activity Analysis 
	Expression Patterns of APUM6 upon Salt and ABA Treatment 
	Effect of Salt Stress on Seed Germination in APUM6-RNAi Transgenic Plants 

	Discussion 
	Material and Methods 
	Plant Materials, Growth Conditions, and Transgenic Plants 
	RT-PCR and qRT-PCR Analysis 
	Subcellular Localization Analysis 
	Determination of Electrolyte Leakage and Chlorophyll Content 
	Western Blotting 
	Germination Rate and Root Growth Assays 
	Salinity Stress Treatment in Soil 
	Gel Mobility Shift Assay 

	Conclusions 
	References

