Role of IAA and Primary Metabolites in Two Rounds of Adventitious Root Formation in Softwood Cuttings of Camellia sinensis (L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Samples
2.2. Metabolite Analysis Based on GC-TOF-MS
2.3. Phytohormone Determination
2.4. RNA Extraction, Sequencing, and Transcriptome Assembly and Annotation
2.5. Co-Expression Network Construction
2.6. Statistical Analysis
3. Results
3.1. Phenotypes and Phytohormones Changes of Different Cutting Nodes
3.2. Global Profiling of Metabolites and Expression of Genes Based on PCA
3.3. Differential Key Metabolites and Expression Profiling of Genes in Different Cutting Nodes
3.4. Comparison of Key Metabolites and Related DEGs among Different Cutting Nodes
3.5. Co-Expression Network Analysis among Different Cutting Nodes
4. Discussion
4.1. Relationship of Endogenous Phytohormone and AR Formation
4.2. Key Metabolites for AR Formation in Tea Softwood Cutting
4.3. Expression of Genes Involved in Phenylpropanoid and Flavonoid Biosynthesis Associated with AR Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zem, L.M.; Weiser, A.H.; Zuffellato-Ribas, K.C.; Radomski, M.I. Herbaceous and semi-hardwood stem cuttings ofDrimys brasiliensis. Revista CiÊncia AgronÔmica 2015, 46, 396–403. [Google Scholar] [CrossRef]
- Vieira, L.M.; Kruchelski, S.; Gomes, E.N.; Zuffellato-Ribas, K.C. Indolebutyric acid on boxwood propagation by stem cuttings. Ornam. Hortic. 2018, 24, 347–352. [Google Scholar] [CrossRef]
- Du, W.; Ban, Y.Y.; Nie, H.; Tang, Z.; Du, X.L.; Cheng, J.L. A Comparative Transcriptome Analysis Leads to New Insights into the Molecular Events Governing Root Formation in Mulberry Softwood Cuttings. Plant Mol. Biol. Report. 2015, 34, 365–373. [Google Scholar] [CrossRef]
- Cao, X.; Du, W.; Shang, C.Q.; Shen, Q.D.; Liu, L.; Cheng, J.L. Comparative transcriptome reveals circadian and hormonal control of adventitious rooting in mulberry hardwood cuttings. Acta Physiol. Plant. 2018, 40, 197. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hirao, T.; Mishima, K.; Ohira, M.; Hiraoka, Y.; Takahashi, M.; Watanabe, A. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. BMC Plant Biol. 2018, 18, 201. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Zhan, C.; Liu, M.; Xia, W.; Wang, N. Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biol. 2019, 19, 99. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Ruan, L.; Wang, L.Y.; Cheng, H. Auxin-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis. Int. J. Mol. Sci. 2019, 20, 4817. [Google Scholar] [CrossRef] [Green Version]
- Druege, U.; Franken, P.; Hajirezaei, M.R. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. Front. Plant Sci. 2016, 7, 381. [Google Scholar] [CrossRef] [Green Version]
- Muday, G.K.; Rahman, A.; Binder, B.M. Auxin and ethylene: Collaborators or competitors? Trends Plant Sci. 2012, 17, 181–195. [Google Scholar] [CrossRef]
- Li, S.W. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. Front. Plant Sci. 2021, 12, 614072. [Google Scholar] [CrossRef]
- Guan, L.; Tayengwa, R.; Cheng, Z.M.; Peer, W.A.; Murphy, A.S.; Zhao, M. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol. 2019, 19, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, W.Q.; Wang, Z.; He, S.L.; He, D.; Liu, Y.P.; Fu, Z.Z. Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. Sci. Hortic. 2017, 224, 53–60. [Google Scholar] [CrossRef]
- De Klerk, G.-J.; Guan, H.Y.; Huisman, P.; Marinova, S. Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul. 2011, 63, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Kikowska, M.; Thiem, B.; Sliwinska, E.; Rewers, M.; Kowalczyk, M.; Stochmal, A.; Oleszek, W. The Effect of Nutritional Factors and Plant Growth Regulators on Micropropagation and Production of Phenolic Acids and Saponins from Plantlets and Adventitious Root Cultures of Eryngium maritimum L. J. Plant Growth Regul. 2014, 33, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, C.T.; de Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 133. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ma, L.L.; Li, Y.; Wang, S.A.; Li, L.F.; Yang, R.T.; Ma, Y.Z.; Wang, Q. Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genom. 2015, 38, 145–162. [Google Scholar] [CrossRef]
- Tahir, M.M.; Chen, S.; Ma, X.; Li, S.; Zhang, X.; Shao, Y.; Shalmani, A.; Zhao, C.; Bao, L.; Zhang, D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiol. Biochem. 2021, 165, 123–136. [Google Scholar] [CrossRef]
- Li, G.; Ma, J.; Tan, M.; Mao, J.; An, N.; Sha, G.; Zhang, D.; Zhao, C.; Han, M. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genom. 2016, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Zhu, Q.S.; Wang, W. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling1. Plant Physiol. 2001, 127, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.M.; Xu, C.N.; Wang, B.M.; Jia, J.Z. Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul. 2001, 35, 233–237. [Google Scholar]
- Zhao, J.; Li, G.; Yi, G.X.; Wang, B.M.; Deng, A.X.; Nan, T.G.; Li, Z.H.; Li, Q.X. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal. Chim. Acta 2006, 571, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Research 2004, 32, D277–D280. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Gotz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Aversano, R.; Bradeen, J.; D’Amelia, V.; Villano, C.; Carputo, D. Coexpression gene network analysis of cold-tolerant Solanum commersonii reveals new insights in response to low temperatures. Crop Sci. 2021, 61, 3538–3550. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [Green Version]
- Druege, U.; Hilo, A.; Perez-Perez, J.M.; Klopotek, Y.; Acosta, M.; Shahinnia, F.; Zerche, S.; Franken, P.; Hajirezaei, M.R. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Ann. Bot. 2019, 123, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Gonin, M.; Bergougnoux, V.; Nguyen, T.D.; Gantet, P.; Champion, A. What Makes Adventitious Roots? Plants 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Pacurar, D.I.; Perrone, I.; Bellini, C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant. 2014, 151, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Lakehal, A.; Bellini, C. Control of adventitious root formation: Insights into synergistic and antagonistic hormonal interactions. Physiol. Plant. 2019, 165, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Zhang, Y.H.; Zhang, L.; Li, Y.; Sun, Y.D.; Li, Z.Y. Changes in the distribution of endogenous hormones in Phyllostachys edulis ‘Pachyloen’ during bamboo shooting. PLoS ONE 2020, 15, e0241806. [Google Scholar] [CrossRef]
- Fan, K.; Shi, Y.J.; Luo, D.N.; Qian, W.J.; Shen, J.Z.; Ding, S.B.; Ding, Z.T.; Wang, Y. Comparative Transcriptome and Hormone Analysis of Mature Leaves and New Shoots in Tea Cuttings (Camellia sinensis) among Three Cultivars with Different Rooting Abilities. J. Plant Growth Regul. 2021, 41, 2833–2845. [Google Scholar] [CrossRef]
- Villacorta-Martin, C.; Sanchez-Garcia, A.B.; Villanova, J.; Cano, A.; van de Rhee, M.; de Haan, J.; Acosta, M.; Passarinho, P.; Perez-Perez, J.M. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genom. 2015, 16, 789. [Google Scholar] [CrossRef] [Green Version]
- Pacholczak, A.; Szydło, W.; Łukaszewska, A. The effect of etiolation and shading of stock plants on rhizogenesis in stem cuttings of Cotinus coggygria. Acta Physiol. Plant. 2005, 27, 417–428. [Google Scholar] [CrossRef]
- Notaguchi, M.; Wolf, S.; Lucas, W.J. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J. Integr. Plant Biol. 2012, 54, 760–772. [Google Scholar] [CrossRef]
- Zhang, S.W.; Li, C.H.; Cao, J.; Zhang, Y.C.; Zhang, S.Q.; Xia, Y.F.; Sun, D.Y.; Sun, Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol. 2009, 151, 1889–1901. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wang, Y.; Feng, C.; Wei, Y.; Peng, X.; Guo, X.; Guo, X.; Zhai, Z.; Li, J.; Shen, X.; et al. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Plant J. Cell Mol. Biol. 2020, 103, 166–183. [Google Scholar] [CrossRef]
- Kong, Y.; Zhu, Y.; Gao, C.; She, W.; Lin, W.; Chen, Y.; Han, N.; Bian, H.; Zhu, M.; Wang, J. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol. 2013, 54, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Mignolli, F.; Mariotti, L.; Picciarelli, P.; Vidoz, M.L. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). J. Plant Physiol. 2017, 213, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, M.; Wu, X.H.; Li, D.; Borthakur, D.; Ye, J.H.; Zheng, X.Q.; Lu, J.L. Analysis of Differentially Expressed Genes in Tissues of Camellia sinensis during Dedifferentiation and Root Redifferentiation. Sci. Rep. 2019, 9, 2935. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, L.d.R.; Paim, D.C.; Schwambach, J.; Fett-Neto, A.G. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul. 2005, 45, 63–73. [Google Scholar] [CrossRef]
- Druege, U.; Kadner, R. Response of post-storage carbohydrate levels in pelargonium cuttings to reduced air temperature during rooting and the relationship with leaf senescence and adventitious root formation. Postharvest Biol. Technol. 2008, 47, 126–135. [Google Scholar] [CrossRef]
- Ruedell, C.M.; de Almeida, M.R.; Schwambach, J.; Posenato, C.F.; Fett-Neto, A.G. Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting adventitious rooting of two Eucalyptus species of contrasting recalcitrance. Plant Growth Regul. 2012, 69, 235–245. [Google Scholar] [CrossRef]
- Ghazijahani, N.; Hadavi, E.; Son, M.S.; Jeong, B.R. Foliar application of citric and malic acid to stock plants of rose alters the rooting of stem cuttings. Chem. Biol. Technol. Agric. 2018, 5, 11. [Google Scholar] [CrossRef]
- Dawson, J.H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988, 240, 433–439. [Google Scholar] [CrossRef]
- Zanardo, D.I.L.; Lima, R.B.; Ferrarese, M.d.L.L.; Bubna, G.A.; Ferrarese-Filho, O. Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ. Exp. Bot. 2009, 66, 25–30. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; Dantas dos Santos, W.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Maria de Lourdes Lucio, F.; Ferrarese-Filho, O. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS ONE 2013, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Trobec, M.; Stampar, F.; Veberic, R.; Osterc, G. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. J. Plant Physiol. 2005, 162, 589–597. [Google Scholar] [CrossRef]
- Rout, G.R. Effect of Auxins on Adventitious Root Development from Single Node Cuttings of Camellia sinensis (L.) Kuntze and Associated Biochemical Changes. Plant Growth Regul. 2006, 48, 111–117. [Google Scholar] [CrossRef]
- Assunção, M.; Canas, S.; Cruz, S.; Brazão, J.; Zanol, G.C.; Eiras-Dias, J.E. Graft compatibility of Vitis spp.: The role of phenolic acids and flavanols. Sci. Hortic. 2016, 207, 140–145. [Google Scholar] [CrossRef]
- Musacchi, S.; Pagliuca, G.; Kindt, M.; Pirtti, M.V.; Sansavini, S. Flavonoids as markers for pear-quince graft incompatibility. J. Appl. Bot. -Angew. Bot. 2000, 74, 206–211. [Google Scholar]
- Schmitt, D.; Pakusch, A.E.; Matern, U. Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. J. Biol. Chem. 1991, 266, 17416–17423. [Google Scholar] [CrossRef]
- Hu, Y.; Gai, Y.; Yin, L.; Wang, X.; Feng, C.; Feng, L.; Li, D.; Jiang, X.N.; Wang, D.C. Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Plant Cell 2010, 22, 3093–3104. [Google Scholar] [CrossRef] [Green Version]
- Imberty, A.; Goldberg, R.; Catesson, A.-M. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 1985, 164, 221–226. [Google Scholar] [CrossRef]
- McDonald, M.S.; Wynne, J. Adventitious root formation in woody tissue: Peroxidase—A predictive marker of root induction in Betula pendula. Vitr. Cell. Dev. Biol. -Plant 2003, 39, 234–235. [Google Scholar] [CrossRef]
- Li, P.; Ruan, Z.; Fei, Z.; Yan, J.; Tang, G. Integrated Transcriptome and Metabolome Analysis Revealed That Flavonoid Biosynthesis May Dominate the Resistance of Zanthoxylum bungeanum against Stem Canker. J. Agric. Food Chem. 2021, 69, 6360–6378. [Google Scholar] [CrossRef]
- Sun, L.; Yu, D.; Wu, Z.; Wang, C.; Yu, L.; Wei, A.; Wang, D. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Zanthoxylum bungeanum Leaves. J. Agric. Food Chem. 2019, 67, 13258–13268. [Google Scholar] [CrossRef]
#ID | NM vs. NL | NM vs. NU | NU vs. NL | NR Annotation | |||
---|---|---|---|---|---|---|---|
p Value | log2FC | p Value | log2FC | p Value | log2FC | ||
CSS0005262 | 0.35 | 0.35 | 0.62 | −0.13 | 0.14 | 0.60 | DELLA protein 1 |
CSS0006056 | 8.55 × 10−4 | 1.10 | 0.53 | 0.18 | 4.15 × 10−3 | 0.92 | pathogenesis related protein |
CSS0008648 | 0.97 | −0.01 | 0.32 | −0.28 | 0.37 | 0.37 | two-component response regulator ARR12 |
CSS0015005 | 1.19 × 10−5 | 1.24 | 0.89 | 0.04 | 6.77 × 10−5 | 1.20 | auxin early response protein AUX/IAA7 |
CSS0017030 | 2.17 × 10−1 | 0.43 | 0.25 | −0.33 | 0.01 | 0.88 | auxin early response protein AUX/IAA4 |
CSS0017736 | 1.56 × 10−3 | 0.88 | 3.51 × 10−3 | −0.74 | 1.77 × 10−9 | 1.75 | PREDICTED: abscisic acid receptor PYL4-like |
CSS0019988 | 0.59 | 0.20 | 0.17 | −0.37 | 0.05 | 0.79 | auxin early response protein AUX/IAA29 |
CSS0024392 | 0.12 | 0.59 | 0.47 | −0.16 | 0.03 | 0.90 | cyclin D3-1 |
CSS0033521 | 0.74 | 0.12 | 0.23 | −0.23 | 0.10 | 0.60 | auxin influx carrier component |
CSS0047272 | 1.96 × 10−5 | 1.17 | 0.91 | −0.03 | 1.96 × 10−5 | 1.23 | abscisic acid receptor PYL4-like |
CSS0050405 | 0.15 | 0.55 | 0.76 | −0.08 | 0.09 | 0.69 | regulatory protein NPR5-like isoform X1 |
ONT.5469 | 0.08 | 0.66 | 0.91 | 0.03 | 0.10 | 0.66 | auxin-responsive protein IAA1-like |
ONT.6169 | 4.15 × 10−3 | 1.03 | 0.58 | 0.16 | 0.02 | 0.85 | PREDICTED: auxin-responsive protein SAUR40 |
CSS0030334 | 0.76 | 0.12 | 0.01 | 0.76 | 0.02 | −0.87 | auxin-responsive protein SAUR32-like |
CSS0046696 | 0.92 | −0.04 | 0.85 | 0.05 | 0.77 | −0.12 | auxin transport carrier |
CSS0050314 | 0.25 | −0.44 | 0.83 | −0.06 | 0.34 | −0.39 | two-component response regulator ARR9-like |
ONT.18362 | 0.21 | 0.47 | 0.04 | −0.52 | 9.25 × 10−4 | 1.36 | auxin-responsive protein IAA1-like |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, G.; Luo, Y.; Qian, W.; Fan, K.; Ding, Z.; Hu, J. Role of IAA and Primary Metabolites in Two Rounds of Adventitious Root Formation in Softwood Cuttings of Camellia sinensis (L.). Agronomy 2022, 12, 2486. https://doi.org/10.3390/agronomy12102486
Wang S, Sun G, Luo Y, Qian W, Fan K, Ding Z, Hu J. Role of IAA and Primary Metabolites in Two Rounds of Adventitious Root Formation in Softwood Cuttings of Camellia sinensis (L.). Agronomy. 2022; 12(10):2486. https://doi.org/10.3390/agronomy12102486
Chicago/Turabian StyleWang, Shuting, Guodong Sun, Ying Luo, Wenjun Qian, Kai Fan, Zhaotang Ding, and Jianhui Hu. 2022. "Role of IAA and Primary Metabolites in Two Rounds of Adventitious Root Formation in Softwood Cuttings of Camellia sinensis (L.)" Agronomy 12, no. 10: 2486. https://doi.org/10.3390/agronomy12102486
APA StyleWang, S., Sun, G., Luo, Y., Qian, W., Fan, K., Ding, Z., & Hu, J. (2022). Role of IAA and Primary Metabolites in Two Rounds of Adventitious Root Formation in Softwood Cuttings of Camellia sinensis (L.). Agronomy, 12(10), 2486. https://doi.org/10.3390/agronomy12102486