Development and Application of SNP-KASP Markers Based on Genes Related to Nitrogen Uptake, Assimilation and Allocation in Tea Plant (Camellia sinensis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Collection
2.2. SNP Mining in Genes Related to Nitrogen Utilization and Development of KASP Primer
2.3. Genetic Analysis and DNA Fingerprint Construction
2.4. Determination of Nitrogen Accumulation and Correlation Analysis
3. Results
3.1. Identification of SNP in Genes Related to Nitrogen Uptake, Assimilation, and Allocation
3.2. Development and Polymorphism of KASP Markers
3.3. Genetic Analysis and Construction of DNA Fingerprints
3.4. Correlation Analysis between Phenotypic Traits and SNPs
4. Discussion
4.1. Genetic Variations in Genes Related to Nitrogen Utilization
4.2. Development and Application of SNP-KASP Markers
4.3. Identification of SNPs Associated with Nitrogen Utilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Ye, X.; Zhang, X.; Huang, W.; Zhao, H. Natural Variations and Dynamic Changes of Nitrogen Indices throughout Growing Seasons for Twenty Tea Plant (Camellia sinensis) Varieties. Plants 2020, 9, 1333. [Google Scholar] [CrossRef]
- Hirono, Y.; Sano, T.; Eguchi, S. Changes in the nitrogen footprint of green tea consumption in Japan from 1965 to 2016. Environ. Sci. Pollut. Res. 2021, 28, 44936–44948. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhu, Q.; Zhou, Z.W.; Liao, K.H.; Lai, X.M. Soil nitrate leaching of tea plantation and its responses to seasonal drought and wetness scenarios. Agric. Water Manag. 2022, 260, 107325. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Z.S.; Pan, Z.L.; Wang, R.; Yan, G.X.; Liu, C.Y.; Su, Y.Y.; Zheng, X.H.; Butterbach-Bahl, K. Tea-planted soils as global hotspots for N2O emissions from croplands. Environ. Res. Lett. 2020, 15, 104018. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Ji, L.F.; Ma, L.F.; Ruan, J.Y. Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Sci. Total Environ. 2020, 717, 137248. [Google Scholar] [CrossRef] [PubMed]
- Li, P.B.; Li, Z.; Liu, X.; Zhang, H.; Wang, Q.G.; Li, N.A.; Ding, H.F.; Yao, F.Y. Development and Application of Intragenic Markers for 14 Nitrogen-Use Efficiency Genes in Rice (Oryza sativa L.). Front. Plant Sci. 2022, 13, 891860. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wong, J.L.; Su, T.; Beatty, P.H.; Good, A.G. Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits. Front. Plant Sci. 2016, 7, 1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, M.S.; Sharma, S.S.; Bera, B.; Tripathi, S.B. Assessment of genetic diversity, population structure, and phylogenetic relationships among the Northeast Indian and South Indian commercially released tea cultivars using TE-AFLP markers. Tree Genet. Genomes 2019, 16, 7. [Google Scholar] [CrossRef]
- Chang, Y.; Oh, E.U.; Lee, M.S.; Kim, H.B.; Moon, D.G.; Song, K.J. Construction of a genetic linkage map based on RAPD, AFLP, and SSR markers for tea plant (Camellia sinensis). Euphytica 2017, 213, 190. [Google Scholar] [CrossRef]
- Yogurtcu, B.; Aygun, A. Characterization of Tea (Camellia Sinensisl.) Genotypes Grown in Turkey by Issr Markers. Appl. Ecol. Environ. Res. 2021, 19, 4103–4114. [Google Scholar] [CrossRef]
- Taniguchi, F.; Kimura, K.; Saba, T.; Ogino, A.; Yamaguchi, S.; Tanaka, J. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet. Genomes 2014, 10, 1555–1565. [Google Scholar] [CrossRef]
- Ma, J.Q.; Yao, M.Z.; Ma, C.L.; Wang, X.C.; Jin, J.Q.; Wang, X.M.; Chen, L. Construction of a SSR-Based Genetic Map and Identification of QTLs for Catechins Content in Tea Plant (Camellia sinensis). PLoS ONE 2014, 9, e93131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.R.; Liu, H.W.; Wu, A.L.; Hou, Y.; An, Y.L.; Wei, C.L. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Mol. Breeding 2017, 37, 93. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, W.T.; Zhou, L.; Fan, X.J.; Wang, F.Q.; Wang, P.J.; Fang, W.P.; Cai, C.P.; Ye, N.X. Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers. Tree Genet. Genomes 2020, 16, 3. [Google Scholar] [CrossRef]
- Fang, W.P.; Meinhardt, L.W.; Tan, H.W.; Zhou, L.; Mischke, S.; Zhang, D.P. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hortic. Res.-Engl. 2014, 1, 14035. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Y.; Wang, L.Y.; Wei, K.; Tan, L.Q.; Su, J.J.; Cheng, H. High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genom. 2018, 19, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, K.; Wang, X.C.; Hao, X.Y.; Qian, Y.H.; Li, X.; Xu, L.Y.; Ruan, L.; Wang, Y.X.; Zhang, Y.Z.; Bai, P.X.; et al. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol. J. 2022, 20, 414–416. [Google Scholar] [CrossRef]
- Huang, R.; Wang, J.-Y.; Yao, M.-Z.; Ma, C.-L.; Chen, L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Hortic. Res.-Engl. 2022, 9, uhab029. [Google Scholar] [CrossRef]
- Yamashita, H.; Uchida, T.; Tanaka, Y.; Katai, H.; Nagano, A.J.; Morita, A.; Ikka, T. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Sci. Rep.-UK 2020, 10, 17480. [Google Scholar] [CrossRef]
- Tan, L.; Cui, D.; Wang, L.; Liu, Q.; Zhang, D.; Hu, X.; Fu, Y.; Chen, S.; Zou, Y.; Chen, W.; et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring. Hortic. Res. 2022, 9, uhac086. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.J.; Gao, X.F.; Yang, J.; Kong, X.R. Genome-Wide Association Study to Identify Favorable SNP Allelic Variations and Candidate Genes That Control the Timing of Spring Bud Flush of Tea (Camellia sinensis) Using SLAF-seq. J. Agric. Food Chem. 2019, 67, 10380–10391. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, H.; Wang, X.; Zhao, Y.; Yao, X.; Xiong, B.; Deng, Y.; Zhao, D. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. Hortic. Res.-Engl. 2021, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breeding 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Singh, H.; Singh, J.; Ade, P.A.; Raigar, O.P.; Kaur, R.; Khanna, R.; Mangat, G.S.; Sandhu, N. Genetic Evaluation of a Diverse Rice Panel for Direct Seeded Adapted Traits Using Kompetitive Allele Specific Primer Assay. Agronomy 2022, 12, 2083. [Google Scholar] [CrossRef]
- Chander, S.; Garcia-Oliveira, A.L.; Gedil, M.; Shah, T.; Otusanya, G.O.; Asiedu, R.; Chigeza, G. Genetic Diversity and Population Structure of Soybean Lines Adapted to Sub-Saharan Africa Using Single Nucleotide Polymorphism (SNP) Markers. Agronomy 2021, 11, 604. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Zhang, Y.; Mohd Saad, N.S.; Yang, H.; Sheedy, E.; Elliott, C.E.; Batley, J. Molecular Markers for Identifying Resistance Genes in Brassica napus. Agronomy 2022, 12, 985. [Google Scholar] [CrossRef]
- Jiang, C.K.; Ma, J.Q.; Liu, Y.F.; Chen, J.D.; Ni, D.J.; Chen, L. Identification and distribution of a single nucleotide polymorphism responsible for the catechin content in tea plants. Hortic. Res.-Engl. 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Graves, H.; Rayburn, A.L.; Gonzalez-Hernandez, J.L.; Nah, G.; Kim, D.S.; Lee, D.K. Validating DNA Polymorphisms Using KASP Assay in Prairie Cordgrass (Spartina pectinata Link) Populations in the US. Front. Plant Sci. 2016, 6, 1271. [Google Scholar] [CrossRef] [Green Version]
- Kejun, L.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar]
- Wang, X.C.; Feng, H.; Chang, Y.X.; Ma, C.L.; Wang, L.Y.; Hao, X.Y.; Li, A.L.; Cheng, H.; Wang, L.; Cui, P.; et al. Population sequencing enhances understanding of tea plant evolution. Nat. Commun. 2020, 11, 4447. [Google Scholar] [CrossRef]
- Xia, E.H.; Tong, W.; Hou, Y.; An, Y.L.; Chen, L.B.; Wu, Q.; Liu, Y.L.; Yu, J.; Li, F.D.; Li, R.P.; et al. The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Mol. Plant 2020, 13, 1013–1026. [Google Scholar] [CrossRef]
- Liu, S.R.; An, Y.L.; Tong, W.; Qin, X.J.; Samarina, L.; Guo, R.; Xia, X.B.; Wei, C.L. Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genom. 2019, 20, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Cao, H.; Zhao, J.; Bai, S.; Peng, W.; Li, J.; Sun, L.; Chen, L.; Lin, Z.; Shi, C.; et al. A natural uORF variant confers phosphorus acquisition diversity in soybean. Nat. Commun. 2022, 13, 3796. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.Q.; Liu, Y.F.; Ma, C.L.; Ma, J.Q.; Hao, W.J.; Xu, Y.X.; Yao, M.Z.; Chen, L. A Novel F3′5′H Allele with 14 bp Deletion Is Associated with High Catechin Index Trait of Wild Tea Plants and Has Potential Use in Enhancing Tea Quality. J. Agric. Food Chem. 2018, 66, 10470–10478. [Google Scholar] [CrossRef]
- Zhang, X.T.; Chen, S.; Shi, L.Q.; Gong, D.P.; Zhang, S.C.; Zhao, Q.; Zhan, D.L.; Vasseur, L.; Wang, Y.B.; Yu, J.X.; et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 2021, 53, 1250–1259. [Google Scholar] [CrossRef]
- Wang, F.F.; Sun, X.; Liu, B.H.; Kong, F.J.; Pan, X.W.; Zhang, H.Y. A polygalacturonase gene PG031 regulates seed coat permeability with a pleiotropic effect on seed weight in soybean. Theor. Appl. Genet. 2022, 135, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Wu, K.; Wang, B.; Liu, H.H.; Guo, S.Y.; Guo, X.Y.; Luo, W.; Sun, S.Y.; Ouyang, Y.D.; Fu, X.D.; et al. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Mol. Plant 2021, 14, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, T.; Taniguchi, F.; Tanaka, J.-i.; Hayashi, N. Development of Expressed Sequence Tag (EST)-Based Cleaved Amplified Polymorphic Sequence (CAPS) Markers of Tea Plant and Their Application to Cultivar Identification. J. Agric. Food Chem. 2011, 59, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.L.; Chen, S.P.; Chen, L.K.; Gao, W.W.; Huang, Y.T.; Huang, C.H.; Zhou, D.H.; Wang, J.F.; Liu, Y.Z.; Huang, M.; et al. Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding. Euphytica 2019, 215, 66. [Google Scholar] [CrossRef]
- Kiba, T.; Feria-Bourrellier, A.B.; Lafouge, F.; Lezhneva, L.; Boutet-Mercey, S.; Orsel, M.; Brehaut, V.; Miller, A.; Daniel-Vedele, F.; Sakakibara, H.; et al. The Arabidopsis Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Straved Plants. Plant Cell 2012, 24, 245–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, E.; Gattolin, S.; Newbury, H.J.; Bale, J.S.; Tseng, H.M.; Barrett, D.A.; Pritchard, J. A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J. Exp. Bot. 2010, 61, 55–64. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, Q.; Tang, D.; Shi, Y.; Ma, L.; Liu, M.; Ruan, J. Dynamics of nitrogen translocation from mature leaves to new shoots and related gene expression during spring shoots development in tea plants (Camellia sinensis L.). J. Plant Nutr. Soil Sci. 2020, 183, 180–191. [Google Scholar] [CrossRef]
Gene Name | Gene ID | CDS | Intron | UTR | Total |
---|---|---|---|---|---|
AMT | CSS0012200 | 17 | 13 | 0 | 30 |
CSS0021429 | 28 | 196 | 0 | 224 | |
CSS0030613 | 12 | 3 | 0 | 15 | |
CSS0035111 | 20 | 11 | 1 | 32 | |
NRT | CSS0001304 | 22 | 20 | 0 | 42 |
CSS0001748 | 7 | 83 | 7 | 97 | |
CSS0035628 | 15 | 59 | 4 | 78 | |
CSS0041711 | 13 | 177 | 11 | 201 | |
CSS0042472 | 23 | 99 | 0 | 122 | |
GDH | CSS0002543 | 12 | 11 | 45 | 68 |
CSS0021774 | 10 | 248 | 8 | 266 | |
GOGAT | CSS0050330 | 57 | 65 | 14 | 136 |
CSS0050084 | 15 | 135 | 0 | 150 | |
CSS0007758 | 85 | 96 | 9 | 190 | |
CSS0039913 | 3 | 118 | 0 | 121 | |
GS | CSS0007310 | 16 | 24 | 33 | 73 |
CSS0049154 | 30 | 171 | 8 | 209 | |
AAP | CSS0000990 | 8 | 1 | 10 | 19 |
CSS0034324 | 21 | 27 | 25 | 73 | |
CSS0008958 | 11 | 12 | 0 | 23 | |
CSS0035405 | 9 | 80 | 21 | 110 | |
CSS0013258 | 21 | 46 | 0 | 67 | |
CSS0050011 | 30 | 39 | 53 | 122 | |
CSS0048049 | 23 | 57 | 6 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, K.; Zhang, J.; Wang, M.; Qian, W.; Sun, L.; Shen, J.; Ding, Z.; Wang, Y. Development and Application of SNP-KASP Markers Based on Genes Related to Nitrogen Uptake, Assimilation and Allocation in Tea Plant (Camellia sinensis L.). Agronomy 2022, 12, 2534. https://doi.org/10.3390/agronomy12102534
Fan K, Zhang J, Wang M, Qian W, Sun L, Shen J, Ding Z, Wang Y. Development and Application of SNP-KASP Markers Based on Genes Related to Nitrogen Uptake, Assimilation and Allocation in Tea Plant (Camellia sinensis L.). Agronomy. 2022; 12(10):2534. https://doi.org/10.3390/agronomy12102534
Chicago/Turabian StyleFan, Kai, Jie Zhang, Min Wang, Wenjun Qian, Litao Sun, Jiazhi Shen, Zhaotang Ding, and Yu Wang. 2022. "Development and Application of SNP-KASP Markers Based on Genes Related to Nitrogen Uptake, Assimilation and Allocation in Tea Plant (Camellia sinensis L.)" Agronomy 12, no. 10: 2534. https://doi.org/10.3390/agronomy12102534
APA StyleFan, K., Zhang, J., Wang, M., Qian, W., Sun, L., Shen, J., Ding, Z., & Wang, Y. (2022). Development and Application of SNP-KASP Markers Based on Genes Related to Nitrogen Uptake, Assimilation and Allocation in Tea Plant (Camellia sinensis L.). Agronomy, 12(10), 2534. https://doi.org/10.3390/agronomy12102534