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Abstract: Pedigree-based best linear unbiased prediction (pBLUP) is an effective method for genetic
evaluation. The objective of this study was to assess the efficacy of pBLUP to develop superior
inbred lines, using field and simulated data. This study was based on the data of 30,986 plants
from six S0 generations and eight inbred progeny trials (S1–S4), performed over eight years. We
measured the grain yield and the expansion volume (EV). We also simulated the EV and grain yield
of 5000 plants (S0–S4) in two in silico populations, assuming 300 and 400 genes distributed across
10 chromosomes of 200 cM, respectively, and 10% of pleiotropic genes. We selected selfed plants
based on the predicted additive value for EV by fitting the individual model in inbred population.
The use of pBLUP provided total genetic gains in EV in the range of 1 to 45%, inversely proportional
to the level of improvement of the population, and indirect changes in grain yield in the range of
−17 to 3%. Only from the analysis of the in silico populations, assuming selection based on the true
additive value and genetic gain computed from the genotypic values, there was evidence that pBLUP
is superior to phenotypic mass selection.

Keywords: genetic evaluation; pedigree-based BLUP; genetic variances; genetic gains

1. Introduction

The best linear unbiased prediction (BLUP) is a statistical approach that allows the
prediction of a non-observable random variable, as the additive genetic value [1]. Its
features make BLUP suitable for genetic evaluation under a wide variety of situations [2].
Advances in computing algorithms have led animal breeders to accept BLUP as a standard
procedure for genetic evaluation in animal breeding, based on frequentist and Bayesian
approaches [3]. The initial and the most significant application of BLUP in plant breeding is
the prediction of non-assessed single crosses [4]. It is impressive that the initial proposition
was based on relationship information from molecular markers. In our opinion, the most
significant aspect of BLUP in animal and plant breeding, as well as in human genetics, is the
prediction of the additive or genotypic values of individuals that cannot be measured for a
sex-limited trait or that are too young to be measured for a trait, or of a subset of individuals
that were not measured for a trait because quantification is too expansive. However, this
remarkable feature depends on a key basic aspect of BLUP: relationship information [5].

The most important models for genetic assessment in animal breeding, such as the
animal, sire, and gametic models, among others, have application in plant breeding, but
denominated individual, half-sib progeny, and full-sib progeny models, respectively [6,7].
The individual model is used for the prediction of individual additive value using individ-
ual phenotype. The half-sib progeny model aims to predict the common parent additive
value using the average phenotypic value of their progeny. The full-sib progeny model is
used for the prediction of the parents’ additive values using the average phenotypic value
of their progeny. Since 2001, when Meuwissen et al. [8] proposed the use of a high number
of single nucleotide polymorphisms (SNPs) and a limited number of phenotypic records to
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predict the genetic merits of a sample of selection candidates (genomic selection), BLUP
allowed animal and plant breeders to reach a higher level of efficacy, permitting fast genetic
gains under a decreasing cost, keeping comparable accuracies relative to previous more
expensive procedures, as progeny test [9,10]. Note, however, that the only innovation in
genomic BLUP (GBLUP) was the use of a genomic relationship matrix (observed) instead of
a pedigree-based relationship matrix (expected) [11]. However, this was a very significant
innovation. The use of SNPs for measuring relationship allows discrimination among
equivalent relatives and prediction of non-relatives based on identity by state and linkage
disequilibrium between SNPs and genes [12].

In recent years, few studies, especially on plant breeding, have published results
from genetic assessment based exclusively on pedigree-based BLUP. In these few papers,
pedigree-based BLUP was regularly compared with a least squares approach. In most
papers using GBLUP, especially in animal breeding, this approach was commonly compared
with pedigree-based BLUP. In a survey based on the results from 50 recently published
papers (2018–2022), in approximately 50% of the studies the authors emphasized that
GBLUP, especially the single-step procedure, provided superior prediction accuracy [13].
Velazco et al. [14] observed in sorghum that a combined pedigree-genomic relationship
matrix provided the largest increases in predictive ability and the largest reductions in
prediction bias. Comparing pedigree-based and genomic BLUP, Suontama et al. [15]
concluded that a significant increment in the breeding value prediction accuracy and genetic
gains was possible by implementing genomic selection for wood properties in E. nitens. On
the contrary, in the study of Kainer et al. [16], pedigree-based BLUP performed best across
eight traits of E. polybractea. Using a simulated dairy cattle population, Seno et al. [17] did
not observe significant differences between pedigree-based and genomic BLUP.

Thus, pedigree-based BLUP is an effective method for genetic evaluation in plant and
animal breeding. To our knowledge, most studies using pedigree-based BLUP in animal
and plant populations focused on the estimation of genetic parameters (components of
genetic variances, heritability, and genetic/genotypic correlation) and assessment of the
selection process efficacy, from the estimation of prediction accuracy and genetic gains.
In plant breeding, these investigations generally involved a single cycle of selection. In
animal breeding, these studies involved a huge amount of data from several generations
of a single population. By using field and simulated datasets over four generations of
selfing, our objective was to assess the efficacy of pedigree-based BLUP to develop superior
inbred lines.

2. Materials and Methods
2.1. Populations and Trials

This study was based on data from six S0 generations and eight inbred progeny trials,
performed over the growing seasons 2013/2014 (S1 progeny test) to 2020/2021 (S4 progeny
test) in an experimental area at Federal University of Viçosa, Minas Gerais, Brazil. Due to a
low stand in the flowering time or a reduced number of selfed plants, the S1 and S4 progeny
trials were replicated twice (2013/2014 and 2014/2015, and 2019/2020 and 2020/2021).
Note that the progeny were replicated, not the plants. Distinct groups of S2 and S3 progeny
were assessed over two years (2015/2016 and 2016/2017, and 2017/2018 and 2018/2019,
respectively). The S1 progeny were obtained over the growing seasons 2011/2012 and
2012/2013 from a tropical synthetic and five temperate populations. The synthetic was
generated from the recombination of 30 inbred lines from the tropical populations Viçosa
and Beija-Flor. The other populations (UFV-1 to 5) were obtained from recombining the
single crosses P622, P625, P802, AP2501, and AP4502, developed by the Agricultural
Alumni Seed, Indiana, USA. All trials were designed as completely randomized with
40–70 replicated inbred lines (twice). Each plot corresponded to a 5 m row with an ideal
stand of 25 plants, spaced by 0.2 m. The space between plots was 0.9 m. In each plot, at
least one plant was selfed, if available. The number of progeny assessed per population
ranged from 32 to 840. The number of selfed plants per progeny ranged between 1 and
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47 (four, on average). For each selfed plant (S0 to S4), we measured the grain weight of
the selfed ear (g) and the expansion volume (EV; mL/g), a measure of popcorn quality. To
assess EV, we used a 27 L microwave oven (900 W) and samples of 10 g. The processed
dataset includes information from 30,986 plants with 145 and 1689 missing data for grain
weight and EV, respectively.

Regarding the selection process, over the years we did not process the data and the
criterion for selecting a selfed plant was an EV higher than or equal to 40 mL/g. Because
we accomplished mass selection based on EV, it was possible to compare pedigree-based
BLUP and phenotypic mass selection. To carry out a more accurate assessment on the
relative efficacy of pedigree-based BLUP, compared with phenotypic mass selection, we
included two other populations, generated using simulation. These populations will be
referred to as in silico. We used the software REALbreeding (available upon request),
which has been developed in Xojo (https://www.xojo.com/, accessed on 5 September
2022). REALbreeding has been used to provide simulated data in investigations in the areas
of genomic selection, GWAS, QTL mapping, linkage disequilibrium, population structure,
heterotic grouping/genetic diversity, and quantitative genetics. The current version allows
the inclusion of digenic epistasis, genotype x environment interaction, and multiple traits,
including pleiotropy. Details on the theoretical background and the stages for simulating
individual genotypes for markers and genes and phenotypes can be found in a series of
papers published by the main author (the software’s developer) since 2013, including Viana
and Garcia [18]. REALbreeding can also be used for research on human genetics, animal
genetics and breeding, population genetics, and evolution.

We simulated EV (mL/g) and grain yield (g/0.18 m2) assuming 300 and 400 genes dis-
tributed across 10 chromosomes of 200 cM, respectively, 10% of pleiotropic genes (30 genes),
and no epistasis. The minimum and maximum genotypic values for EV and grain yield
were 60 and 15, and 90 and 20, respectively. The minimum and maximum phenotypic
values were 70 and 5, and 100 and 10. The non-inbred populations were defined assum-
ing 0.4 and 0.6 as the average frequency of the favorable genes for EV in the in silico
tropical (low EV) and in silico temperate (high EV). Concerning grain yield, for both in
silico populations, we assumed 0.3 as the average frequency of the favorable genes. We
assumed bidirectional dominance (average degree of dominance: 0.01) for EV and positive
dominance (average degree of dominance: 0.57) for grain yield. The sample size from
S0 to S4 was 1000 plants, assuming 0 to 10 selfed plants per progeny, with an average of
four. We maximized the linkage disequilibrium (LD) in the populations and the number of
positive (in silico tropical) and negative (in silico temperate) LD values (for D, r2, and D’).
This led to significant positive and negative genotypic correlations between the traits. The
heritabilities at the individual level for EV and grain yield were 30 and 20%, respectively.

2.2. Efficacy of Pedigree-Based BLUP and Statistical Analysis

Assume a single biallelic gene (A/a) and a non-inbred population in Hardy–Weinberg
equilibrium. The genotype probabilities are p2 AA: 2pq Aa: q2 aa, where p and q are the
allele frequencies. The population mean is M = m + (p − q)a + 2pqd. The parameters m,
a, and d are the mean of the genotypic values of the homozygotes, the deviation between
the genotypic value of the homozygote of greater expression and m, and the dominance
deviation, respectively [19]. After n− 1 generations of selfing under selection, the genotype
probabilities in generation n can be defined as p2 + pqF + ∆AA AA: 2pq(1 − F) + ∆Aa Aa:
q2 + pqF + ∆aa aa, where ∆ is the change in the genotype probability due to selection and F
is the inbreeding coefficient. Note that ∆AA + ∆Aa + ∆aa = 0. Assuming no selection (∆AA
= ∆Aa = ∆aa = 0), the inbred population mean is MF = M − 2Fpqd, where −2Fpqd is the
change in the non-inbred population mean due to inbreeding. If the selection changed the
allelic frequencies, the mean of the generation n is MFs = MF + ∆AA(m + a) + ∆Aa(m + d)
+ ∆aa(m − a) = MF + [(∆AA − ∆aa)a + ∆Aad] = MF + ∆g, where ∆g = MFs −MF is the true
genetic gain. Using phenotypic values, we have a predicted genetic gain of Dg = (avPFs −

https://www.xojo.com/
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avPF)·h2, where avP stand for the average phenotypic value and h2 is the heritability. This
is a standard function for the estimated genetic gain: selection differential times heritability.

We adopted a selection process based on the predicted additive value by fitting the in-
dividual model in inbred population [20]. The percentages of selected plants by phenotypic
mass selection were approximately 60, 50, 60, and 90, from S1 to S4. However, in this study,
we assumed 50, 45 and 40% of selected S1, S2, and S3 plants for both selection processes
(Figure 1). Because there was selection based on EV, we computed the increment in the
genetic gain due to pedigree-based BLUP, relative to the gain attributable to phenotypic
mass selection, given by iDg = (avPFsb − avPFsp)·h2, where the first mean refers to the
individuals selected by pedigree-based BLUP and the second mean refers to the individuals
selected by phenotypic mass selection. Because REALbreeding provides the parametric
population means and genetic variances and covariances, and the true additive and dom-
inance genetic values per generation, in the in silico populations the relative efficacy of
pedigree-based BLUP selection was based on the parametric genotypic values (i∆g = avGsb
− avGsp), where avGsb and avGsp are the average genotypic values of the selected plants
under pedigree-based BLUP and phenotypic mass selection, respectively.
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The covariance between relatives in inbred populations, assuming linkage equilibrium
and no epistasis, was derived by Cockerham [21]. Assuming biallelic genes, the covariance
between relatives with self-fertilization depends on the additive (σ2

A) and dominance
(σ2

D) variances, the covariance between the a and d deviations (D1), and the variance
of the dominance deviations (D2). Ignoring the components D1 and D2, the diagonal
and off-diagonal elements of the additive and dominance relationship matrices were
computed from the covariances cggg =

(
1 + Fg

)
σ2

A +
(

1− F2
g

)
σ2

D and ctgg′ = (1 + Ft)σ2
A +[

(1 + Ft)
(
1− Fg

)(
1− Fg′

)
/(1− Ft)

]
σ2

D, respectively, where t, g, and g’ are the generations.
We used t as the first common ancestor (S0 plant). Thus, for example, c011 is the covariance
between two S1 plants derived from the same S0 plant and c012 is the covariance between a
S1 and a S2 plant derived from the same S0 plant. Although the elements of the additive
and dominance relationship matrices are easy to compute, since they are a function of the
inbreeding coefficient, the process is not available in known R packages such as AGHmatrix,
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ggroups, pedigree, and pedigreemm. We used a REALbreeding tool (Relationship) to
compute the additive and dominance relationship matrices.

We performed the statistical analyses fitting the linear mixed model y = µ1 + Xβ +
Zu + ε using ASReml-R v.4 [22], where y is the vector of phenotypes, µ is the general mean,
β is the matrix of fixed effects of years and generations, u is the vector of additive values
within generations, with u ∼ N

(
0, Σg

)
, and ε is the error vector, with ε ∼ N

(
0, Iσ2

ε

)
. Σg

is a diagonal matrix with an additive variance for each generation. 1 is a vector of ones
and X and Z are incidence matrices. We estimated the components of variance using the
Residual Maximum Likelihood (REML) [23].

3. Results

The in silico tropical population shows similar means for EV and grain yield with
Synthetic UFV. The in silico temperate population shows an EV comparable to the tem-
perate populations. However, both in silico populations show much lower phenotypic
variability relative to all other populations (Table 1). In the in silico populations, because of
bidirectional dominance, the inbreeding had no significant effect on the EV mean of the
inbred generations. Due to positive dominance, the grain yield decreased by 16% with
inbreeding, on average. The inbreeding increased the genotypic variability for both traits.
Note also that the inbreeding did not significantly affect the genotypic correlation between
the traits. The values were significantly negative and positive for the temperate and tropical
in silico populations, respectively. These results are consistent with no selection.

Table 1. Number of progeny, sample size, mean (M/MF), phenotypic (σ2
P), additive (σ2

A), dominance
(σ2

D), and error (σ2
E) variances, covariance between additive and dominance values (σA,D), and

genotypic correlation (σg), per generation, in the popcorn (estimates) and in silico (estimates in the
2nd row) populations, relative to EV (mL/g) and grain yield (g/0.18 m2).

Pop. Gen. Prog. Size EV Grain Yield σg

M/MF σ2
P σ2

A σ2
D σA,D σ2

E M/MF σ2
P σ2

A σ2
D σA,D σ2

E

Synthetic S0 - 417 30.8 60.1 44.25 - - 11.34 52.9 309.5 155.13 - - 148.16 −0.05
S1 32 165 41.0 79.3 97.42 - - 11.34 40.6 228.2 50.93 - - 148.16 −0.21
S2 59 290 39.3 51.0 43.91 - - 11.34 32.3 209.8 36.10 - - 148.16 0.57
S3 75 360 39.0 23.8 10.82 - - 11.34 30.4 201.3 39.29 - - 148.16 −0.11
S4 76 367 43.3 11.8 0.50 - - 11.34 36.9 168.2 11.86 - - 148.16 0.11

UFV-1 S0 - 378 40.8 76.2 32.11 - - 17.90 42.8 195.2 52.92 - - 141.26 −0.25
S1 215 804 43.9 73.0 69.59 - - 17.90 39.3 186.0 30.61 - - 141.26 −0.40
S2 317 1130 40.7 54.0 37.82 - - 17.90 35.9 225.7 46.58 - - 141.26 0.02
S3 276 1134 39.6 25.4 3.85 - - 17.90 29.8 166.6 15.68 - - 141.26 −0.58
S4 427 1981 43.1 17.3 0.26 - - 17.90 36.2 177.0 17.62 - - 141.26 −1.00

UFV-2 S0 - 391 42.0 74.5 34.96 - - 20.21 37.9 215.8 44.68 - - 142.84 −0.17
S1 168 490 45.2 67.0 47.00 - - 20.21 37.6 194.0 29.96 - - 142.84 −0.13
S2 169 617 41.2 48.2 24.72 - - 20.21 36.6 219.6 30.72 - - 142.84 −0.16
S3 183 706 39.2 24.9 2.30 - - 20.21 29.5 177.1 17.08 - - 142.84 −0.20
S4 315 1468 42.7 20.3 0.70 - - 20.21 36.7 173.8 17.23 - - 142.84 0.03

UFV-3 S0 - 530 42.0 48.4 26.06 - - 16.82 37.1 145.9 0.00 - - 146.75 -
S1 310 946 44.7 59.8 46.83 - - 16.82 41.0 214.8 42.22 - - 146.75 −0.23
S2 357 1330 40.4 55.9 36.47 - - 16.82 35.4 225.7 28.09 - - 146.75 0.13
S3 337 1421 39.3 27.7 7.18 - - 16.82 29.9 167.1 14.45 - - 146.75 −0.44
S4 502 2433 42.9 17.1 0.80 - - 16.82 36.4 183.5 19.15 - - 146.75 −0.02

UFV-4 S0 - 252 40.7 56.8 24.13 - - 20.84 37.5 205.1 71.60 - - 133.33 −0.10
S1 101 369 43.5 72.2 53.12 - - 20.84 41.5 206.3 47.47 - - 133.33 −0.03
S2 116 517 40.6 61.6 38.44 - - 20.84 35.5 218.1 32.94 - - 133.33 0.12
S3 144 603 39.0 30.3 5.32 - - 20.84 30.6 170.0 17.74 - - 133.33 −0.29
S4 218 1107 42.6 20.2 0.50 - - 20.84 36.2 154.5 12.18 - - 133.33 −0.41

UFV-5 S0 - 753 42.4 52.8 35.73 - - 12.11 40.6 168.4 39.58 - - 126.92 −0.53
S1 546 2037 43.9 67.5 78.68 - - 12.11 36.6 132.6 9.63 - - 126.92 −1.00
S2 600 1913 40.7 51.7 41.12 - - 12.11 35.1 231.3 50.00 - - 126.92 −0.26
S3 533 2163 39.8 29.8 13.21 - - 12.11 28.8 151.6 15.92 - - 126.92 −0.63
S4 840 3914 43.2 12.6 0.59 - - 12.11 37.0 191.3 46.52 - - 126.92 −1.00
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Table 1. Cont.

Pop. Gen. Prog. Size EV Grain Yield σg

M/MF σ2
P σ2

A σ2
D σA,D σ2

E M/MF σ2
P σ2

A σ2
D σA,D σ2

E

In silico S0 1000 42.9 14.0 4.04 0.17 0.00 9.84 48.2 26.5 4.40 0.30 0.00 18.82 −0.65
temperate 42.8 13.4 1.11 - - 12.32 48.4 23.2 0.09 - - 23.16 −1.00

S1 247 1000 42.5 18.4 5.38 0.16 −0.01 12.87 44.9 30.2 6.01 0.54 −0.28 23.93 −0.61
42.5 16.3 3.13 - - 12.32 44.5 16.74 3.44 - - 23.16 −0.74

S2 250 1000 42.3 20.0 5.91 0.12 −0.02 13.96 43.2 31.8 6.69 0.44 −0.43 25.09 −0.65
42.1 16.6 4.05 - - 12.32 43.3 16.32 3.60 - - 23.16 −0.60

S3 220 1000 42.2 20.6 6.13 0.09 −0.03 14.40 42.4 32.2 7.00 0.35 −0.50 25.39 −0.65
42.0 16.5 3.36 - - 12.32 42.1 17.37 5.16 - - 23.16 −0.59

S4 243 1000 42.1 20.9 6.23 0.08 −0.03 14.58 42.0 32.4 7.14 0.30 −0.53 25.49 −0.52
41.6 16.4 3.57 - - 12.32 42.1 16.88 4.00 - - 23.16 −0.36

In silico S0 - 1000 33.9 14.8 4.31 0.12 0.00 10.33 49.2 32.2 6.08 0.36 0.00 25.76 0.78
tropical 34.0 15.3 2.77 - - 12.49 49.0 32.9 2.04 - - 30.87 1.00

S1 243 1000 33.8 19.3 5.71 0.11 −0.01 13.51 45.5 41.6 8.19 0.64 −0.28 33.06 0.75
34.1 20.4 5.34 - - 12.49 45.9 41.0 6.28 - - 30.87 1.00

S2 227 1000 33.7 21.0 6.25 0.08 −0.02 14.68 43.6 43.9 9.06 0.49 −0.43 34.76 0.80
33.9 21.0 4.87 - - 12.49 43.9 44.9 8.29 - - 30.87 0.75

S3 237 1000 33.9 21.7 6.48 0.06 −0.02 15.15 42.7 44.5 9.43 0.37 −0.50 35.20 0.81
33.9 22.5 5.15 - - 12.49 42.6 43.3 6.74 - - 30.87 0.67

S4 217 1000 33.6 22.0 6.58 0.05 −0.02 15.36 42.2 44.7 9.60 0.30 −0.53 35.34 0.82
34.0 23.7 5.45 - - 12.49 42.9 42.4 6.11 - - 30.87 0.62

In regard to the popcorn populations, there is some evidence that the phenotypic mass
selection improved EV, with a significant EV increase in Synthetic UFV and a substantial
decrease in the phenotypic variability over the selfing generations (Table 1). This is also
supported by the considerable decrease in the estimates of the additive variances for EV
over the selfing generations. However, there is, in general, no evidence of significant
indirect changes in grain yield. The results for grain yield are, in general, those expected
with inbreeding. However, changes occurred in the estimated genetic correlations over the
selfed generations. Because only BLUP provided the estimates of the additive variances
for EV and grain yield, the accuracies for phenotypic mass selection and pedigree-based
BLUP are very similar (Table 2). Thus, the experimental evidence is that both processes
are equally efficient. Based on the same two accuracies, this is also true for the in silico
populations. Comparing the accuracies in the tropical and temperate in silico populations,
the general conclusion is that both selection processes have similar efficiencies.

Table 2. Accuracies 1 of phenotypic mass selection and pedigree-based BLUP based on EV, percent of
selected plants (%S), and increments of direct (iDgd; mL/g) and indirect (iDgi; g/plant) genetic gains
per generation with pedigree-based BLUP, relative to phenotypic mass selection, in the popcorn and
in silico populations.

Pop. Gen. Ac1 Ac2 Ac3 Ac4 Ac5 %S iDgd iDgi

Synthetic S0 - 0.89 - - 0.88 0 - -
S1 - 0.95 - - 0.92 50 0.00 0.00
S2 - 0.89 - - 0.85 45 −0.58 0.16
S3 - 0.70 - - 0.55 40 0.45 −0.17
S4 - 0.20 - - - 2 - - -

UFV-1 S0 - 0.80 - - - 2 0 - -
S1 - 0.89 - - 0.62 50 0.13 −0.08
S2 - 0.82 - - - 2 45 −0.20 −0.38
S3 - 0.42 - - - 2 40 0.06 0.10
S4 - 0.12 - - - 2 - - -
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Table 2. Cont.

Pop. Gen. Ac1 Ac2 Ac3 Ac4 Ac5 %S iDgd iDgi

UFV-2 S0 - 0.80 - - 0.75 0 - -
S1 - 0.84 - - 0.85 50 −0.01 0.03
S2 - 0.74 - - 0.69 45 −0.04 −0.05
S3 - 0.32 - - - 2 40 0.02 0.46
S4 - 0.18 - - - 2 - - -

UFV-3 S0 - 0.78 - - 0.76 0 - -
S1 - 0.86 - - 0.86 50 0.00 −0.01
S2 - 0.83 - - 0.83 45 0.05 −0.01
S3 - 0.55 - - - 2 40 0.00 0.18
S4 - 0.21 - - - 2 - - -

UFV-4 S0 - 0.73 - - 0.68 0 - -
S1 - 0.85 - - 0.86 50 −0.25 −0.10
S2 - 0.80 - - 0.80 45 0.06 −0.07
S3 - 0.45 - - - 2 40 0.05 −0.04
S4 - 0.15 - - - 2 - - -

UFV-5 S0 - 0.86 - - 0.84 0 - -
S1 - 0.93 - - 0.94 50 −0.01 0.00
S2 - 0.88 - - 0.87 45 −0.04 0.00
S3 - 0.72 - - 0.49 40 0.15 −0.01
S4 - 0.21 - - - 2 - - -

In silico S0 0.54 0.29 0.52 0.52 0.28 0 - -
temperate S1 0.54 0.45 0.52 0.67 0.42 50 0.07 −0.04

0.46 3 −0.31 3

1.16 4 −0.68 4

S2 0.54 0.50 0.49 0.72 0.45 45 0.14 −0.04
0.41 3 −0.16 3

0.32 4 −0.27 4

S3 0.54 0.46 0.51 0.78 0.34 40 0.29 −0.20
0.83 3 −0.96 3

2.05 4 −1.74 4

S4 0.55 0.47 0.48 0.78 0.34 - - -

In silico S0 0.54 0.43 0.56 0.56 0.42 0 - -
tropical S1 0.54 0.55 0.53 0.71 0.58 50 0.02 0.02

0.15 3 0.23 3

0.75 4 0.48 4

S2 0.55 0.53 0.54 0.79 0.49 45 0.03 −0.01
0.15 3 −0.06 3

0.54 4 0.30 4

S3 0.55 0.54 0.56 0.82 0.48 40 0.26 0.31
0.96 3 0.86 3

1.25 4 0.81 4

S4 0.55 0.55 0.57 0.83 0.48 - - -
1 Ac1: root square of the parametric narrow sense heritability; Ac2: root square of the estimated narrow sense
heritability; Ac3: correlation between the parametric additive value and the phenotypic value; Ac4: correlation

between the predicted and parametric additive values; Ac5 =
√

1−
(

PEV/σ̂2
A
)
, where PEV is the prediction error

variance [24]. 2 PEV/σ̂2
A > 1. 3 Increment due to selection based on predicted additive value and gains computed

using the genotypic value. 4 Increment due to selection based on true additive value and gains computed using
the genotypic value.

In complete agreement with the accuracy analysis, the estimated increments in the
genetic gain for EV with pedigree-based BLUP selection, relative to phenotypic mass
selection, indicate a similar efficacy for the popcorn populations. The total increments were
close to zero, in the range of−0.14 to 0.10 mL/g. However, slightly higher efficacy occurred
in the in silico populations. The total increments were 0.30 and 0.50 mL/g (Table 2). The
true total increments were 1.26 and 1.70 mL/g for the tropical and temperate populations,
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respectively. These values are associated with correlations between the predicted and
parametric additive values of approximately 0.7, 0.7–0.8, and 0.8 in the generations S1,
S2, and S3, respectively. However, selecting based on the parametric additive values
instead of the predicted additive values, the true total increments were 2.54 and 3.53 mL/g,
respectively.

In regard to the indirect increments for grain yield, we observed small values in the
popcorn populations, in the range of −0.36 to 0.44 g/0.18 m2 (Table 2). In the in silico
populations, the true indirect increments were 0.47 and −0.29 g/0.18 m2 for the tropical
and temperate populations, respectively. The true changes due to inbreeding were 1.59 and
−2.69 g/0.18 m2, respectively. To confirm a higher efficacy of pedigree-based BLUP, relative
to phenotypic mass selection, observed from a single simulation, we also computed the
true increments in other nine simulations of the in silico temperate population, assuming
selection based on the predicted and true additive values (Table 3). The average direct
total increments, 0.34 and 1.74 mL/g for selection based on the predicted and true additive
values, confirm that pedigree-based BLUP is superior to phenotypic mass selection. The
average total indirect increments in grain yield are also negative with small magnitude,
indicating that pedigree-based BLUP provides slightly different indirect changes in grain
yield, relative to phenotypic mass selection. It is important to emphasize that the average
true direct increments with pedigree-based BLUP selection in the S1, S2, and S3 generations
are proportional to the correlation between the predicted and parametric additive values.
In S3, the accuracy was 26% lower than the maximum value and the true direct increment
was 54% lower relative to the maximum value.

Table 3. Average additive and error variances per generation for EV, percent of selected plants
(%S), accuracy 1, and increments in the direct (mL/g) and indirect genetic gains (g/0.18 m2) with
pedigree-based BLUP based on EV, relative to phenotypic mass selection, in the in silico temperate
population (minimum and maximum values between brackets).

Gen. σ2
A σ2

E Ac %S iDgd iDgi

S0 1.99 [0.83, 3.42] 11.80 [10.71, 12.94] 0.54 [0.52, 0.58] - - -
S1 4.29 [3.06, 5.37] 11.80 [10.71, 12.94] 0.71 [0.63, 0.75] 50 −0.48 [−0.93, 0.59] 2 0.25 [−0.37, 0.74]

0.08 [−0.28, 1.16] 3 −0.03 [−0.68, 0.35]
S2 4.36 [3.16, 5.35] 11.80 [10.71, 12.94] 0.75 [0.71, 0.81] 45 0.32 [−0.04, 1.03] 2 −0.23 [−0.77, 0.11]

0.33 [0.06, 0.66] 3 −0.28 [−0.71, 0.04]
S3 4.57 [3.15, 6.76] 11.80 [10.71, 12.94] 0.78 [0.72, 0.82] 40 0.50 [−0.40, 0.93] 2 −0.33 [−1.12, 0.59]

1.33 [0.80, 2.21] 3 −0.76 [−1.74, 0.18]
S4 4.32 [3.03, 5.87] 11.80 [10.71, 12.94] 0.80 [0.73, 0.83] - - -

1 Ac: correlation between the predicted and parametric additive values. 2 Increment due to selection based on
predicted additive value and gains computed using the genotypic value. 3 Increment due to selection based on
true additive value and gains computed using the genotypic value.

Only in Synthetic UFV we observed a significant estimated genetic gain for EV, with
pedigree-based BLUP selection (approximately 14 mL/g) (Figure 2). The genetic gains
in the other populations ranged from approximately 0.5 to 4.6 mL/g. This cannot be
solely due to the reduced S4 size (76 plants), since the number of S4 plants in the in silico
temperate population was only 53. Remember that the proportion of selected plants was
kept constant in each population. Note that, as theoretically expected, higher gains were
observed in the tropical populations (less improved). As expected, the selection process
decreased the variability in the populations in similar proportions, between −58 and −92%.
The selection for EV in Synthetic UFV also provided the highest indirect change in grain
yield, of approximately −18 g/0.18 m2. This is surprising since the genotypic correlations
ranged between −0.1 and 0.2, approximately. In the in silico populations, with significant
positive and negative genotypic correlations, the indirect changes were also negative. The
change in the variability for grain yield was not consistent, varying from −67 to 28%.
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pedigree-based BLUP, using the predicted or true additive (for the in silico populations) values in the
generations S1, S2, and S3, relative to EV ((a,c); mL/g) and grain yield ((b,d); g/0.18 m2).

4. Discussion

In a vast amount of studies on animal and plant breeding, distinct statistical ap-
proaches were compared, such as least squares (no relationship information), pedigree-
based BLUP, and GBLUP, especially single-step GBLUP in recent years. Based on the results,
it cannot be definitely stated that pedigree-based BLUP is superior to least squares and
that GBLUP is superior to pedigree-based BLUP, in any situation [25–28]. However, taking
into account the BLUP principles, the theoretical advantages of including relationship
information, and the huge amount of favorable field results from genetic assessment in
plant and animal breeding [5], there is no reason to not use BLUP for genetic evaluation
and for the prediction of complex traits. Using a simulated population, Seno, Guidolin,
Aspilcueta-Borquis, do Nascimento, da Silva, de Oliveira and Munari [17] investigated
the efficacy of phenotypic selection, pedigree-based BLUP, and GBLUP over 25 years of
selection. They observed equivalence for the two BLUP approaches concerning the rates of
gain and average inbreeding coefficient. However, both methods yielded superior genetic
gains relative to phenotypic selection.

When pedigree-based BLUP was applied to the recurrent genetic assessment of inbred
lines, it was not possible to fit the additive-dominance model. This occurred not because of
a problem with the additive and dominance relationship matrices (both well-conditioned)
but due to singularities in the average information matrix. Theoretically, fitting the complete
model would be advantageous since in inbred populations additive and dominance genetic
values are correlated [19]. However, as shown from the analysis of the simulated data,
even ignoring dominance, the correlation between the predicted and true additive values
ranged from 0.5 (S0) to 0.8 (S4), proportional to the amount of relationship information.
Velazco, Malosetti, Hunt, Mace, Jordan and van Eeuwijk [14] observed that the impact
of including genealogy information to improve predictions was stronger for the lower
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heritability traits, such as grain yield and stay green. The analysis of the simulated data
also showed comparable estimated and true values for the genotypic correlation between
EV and grain yield.

For the popcorn and the in silico populations, we generally observed equivalence
between the prediction accuracies based on estimated heritability and on prediction error
variance [24]. However, only in the third selection cycle did we observe a positive correla-
tion between the prediction accuracy and the genetic gain with pedigree-based BLUP (0.48).
This does not mean that estimating accuracy is useless, since it is an appropriate measure
for assessing and comparing selection processes and statistical approaches. Viana et al. [29]
observed that the efficacy for identifying the superior 9% untested single crosses achieved
0.71 under a prediction accuracy of 0.92. In the study of Viana et al. [30], the efficacy
of identification of the superior 6–9% of the untested testcrosses reached 0.76 when the
prediction accuracy was 0.94. Note that, because recurrent selection provides theoretically
lower genetic gains over selection cycles, only with a decrease in the prediction accuracy
due to a decline in the genetic variability, under similar environmental conditions, will
the correlation be positive. In the in silico populations, the prediction accuracies showed
comparable or higher values for the correlation between the predicted and parametric
additive values over the selection cycles, associated with decreasing true genetic gains.
The genetic gains due to pedigree-based BLUP in S1 to S3 were 1.8, 1.4, and 1.3 mL/g for
the tropical population and 1.5, 1.3, and 0.9 mL/g for the temperate population. Using
simulation, Jibrila et al. [31] observed a slight decrease in the genetic gains in subsequent
generations by increasing the intensity of preselection. They assumed genetic gain as the
difference between the average true breeding values of the selected individuals in two
subsequent generations.

Probably due to sampling, the analysis of the increments in the genetic gain with
pedigree-based BLUP using the predicted additive value, relative to phenotypic mass
selection, showed that the procedures were equivalent. However, the analysis of the
increments in the non-replicated tropical and the replicated temperate in silico populations,
assuming selection based on the predicted and true additive values, clearly showed that
pedigree-based BLUP was superior to mass phenotypic selection. The breeders should
not be disappointed with the magnitude of the genetic gains with pedigree-based BLUP
because they are proportional to the percentage of selected plants. Note that even assuming
50, 45, and 40% of selected plants, there was a significant decrease in the genetic variability
for EV in the populations. Using pedigree-based BLUP, Suontama, Klapste, Telfer, Graham,
Stovold, Low, McKinley and Dungey [15] observed genetic gains for several growth, form,
and wood quality traits across two E. nitens orchards. For most traits, the genetic gains
were comparable (at least 80%) to those obtained with GBLUP.

Concerning the indirect changes in grain yield, the analysis of the alterations in the
in silico population means due to inbreeding under no selection and inbreeding under
indirect selection shows that inbreeding and indirect selection induced comparable changes.
Because negative correlation in the in silico temperate population, the decrease in grain
yield due to inbreeding and indirect selection was 1.9 times greater than the decrease due
to inbreeding. On the contrary, because of the positive correlation in the in silico tropical
population, the decrease in grain yield due to inbreeding was 2.1 times greater than the
decrease due to inbreeding and indirect selection. El-Attrouny et al. [32] investigated
the effects of pedigree-based selection for Japanese quail bodyweight at four weeks on
bodyweight and bodyweight gain across four generations and observed significant indirect
genetic gains. Because of moderate heritabilities, the strong positive genotypic correlation
between spawn weight and number of eggs in the spawn and individual egg size traits, and
the lack of correlation between the number of eggs in the spawn with egg size traits and
female body weight, D’Ambrosio et al. [33] concluded that selection for growth will not
induce indirect improvements in female reproduction traits. In the study of Cobo et al. [34]
with rainbow trout, the genetic progress curves of the index MAT and litter weight (LW)
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indicated that the selection based on MAT gave a positive correlated response on LW. This
occurred due to a high correlation between the traits (0.85).

Concluding, the use of pedigree-based BLUP in eight populations, over four gener-
ations of selfing, provided total genetic gains in EV in the range of 1 to 45%, inversely
proportional to the level of improvement of the reference population, and indirect changes
in grain yield in the range of−17 to 3%, values that correspond to approximately half of the
values assuming inbreeding and indirect selection. The analysis of the in silico populations,
assuming selection based on the true additive value and genetic gain computed from the
genotypic values, proved that pedigree-based BLUP is superior to the phenotypic mass
selection. The average direct total increments were 0.34 and 1.74 mL/g for selection based
on the predicted and true additive values, respectively. The equivalence between both selec-
tion processes observed in the popcorn populations are due to sampling, as observed in the
replications of the in silico temperate population. Based on our results, then, we strongly
recommend the use of pedigree-based BLUP for genetic evaluation of inbred progeny.
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