Effect of Different Cover Crops, Mass-Trapping Systems and Environmental Factors on Invertebrate Activity in Table Olive Orchards—Results from Field Experiments in Crete, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Orchard Used
2.2. Experimental Design of the Cover Crop Comparison Trial
2.3. Invertebrate Activity in Olive Tree Plots with Different Winter Ground Cover Crops
2.4. Experimental Design of the Olive Fly Mass-Trapping System Comparison Trial
2.5. Monitoring of Environmental Background Conditions
2.6. Olive Fly and Invertebrate Activity Monitoring
2.7. Olive Fly Fruit Infestation Estimation
2.8. Invertebrates Caught by Bottle-Based Mass-Trapping Systems
2.9. Statistical Analyses
3. Results
3.1. Effect of Cover Crops on Invertebrate Activity in the Cover Crop and Olive Tree Canopy
3.2. Effect of Mass-Trapping Systems on Invertebrate Activity in Olive Orchards
3.3. Effect of Environmental Background Conditions on Invertebrate Activity
4. Discussion
4.1. Effect of Different Cover Crops on Olive Fly and Non-Target Invertebrate Activity
4.2. Effect of Mass-Trapping Systems of Olive Fly and Non-Target Invertebrate Activity
4.3. Effect of Environmental Background Conditions on Invertebrate Activity
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olive Oil Source. Olive Fly Control. Available online: www.oliveoilsource.com/page/olive-fly-control (accessed on 23 August 2022).
- Skouras, P.J.; Margaritopoulos, J.T.; Seraphides, N.A.; Ioannides, I.M.; Kakani, E.G.; Mathiopoulos, K.D.; Tsitsipis, J.A. Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. Pest Manag. Sci. 2007, 63, 42–48. [Google Scholar] [CrossRef]
- Kampouraki, A.; Stavrakaki, M.; Karataraki, A.; Katsikogiannis, G.; Pitika, E.; Varikou, K.; Vlachaki, A.; Chrysargyris, A.; Malandraki, E.; Sidiropoulos, N.; et al. Recent evolution and operational impact of insecticide resistance in olive fruit fly Bactrocera oleae populations from Greece. J. Pest Sci. 2018, 91, 1429–1439. [Google Scholar] [CrossRef]
- Daane, K.M.; Johnson, M.W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.M.; Mamolos, A.M.; Tsatsarelis, C.A.; Nanos, G.D.; Kalburtjia, K.L. Energy budgets in organic and conventional olive groves. Agric. Ecosyst. Environ. 2007, 122, 243–251. [Google Scholar] [CrossRef]
- ArtemiCerdà, A.; Terol, E.; Daliakopoulos, I.N. Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar]
- Volakakis, N.; Emmanouil Kabourakis, E.; Rempelos, L.; Kiritsakis, A.; Leifert, C. Effect of different cover crops on suppression of the weed Oxalis pes-caprae L., soil nutrient availability, and the performance of table olive trees Kalamon cv.; results from a 3-year field trial in Crete, Greece. Agronomy 2022, 12, 2523. [Google Scholar] [CrossRef]
- Huqi, B.; Dhima, K.; Vasilakoglou, I.; Keco, R.; Salaku, F. Weed flora and weed management in established olive groves in Albania. Weed Biol. Manag. 2009, 9, 274–285. [Google Scholar] [CrossRef]
- Lentza Rizos, C.; Avramides, E.J. Organophosphorous insecticide residues in virgin Greek olive oil, 1988–1990. Pestic. Sci. 2009, 32, 161–171. [Google Scholar] [CrossRef]
- Tsatsakis, A.M.; Tsakiris, I.N.; Tzatzarakis, M.N.; Agourakis, Z.B.; Tutudaki, M.; Alegakis, A.K. Three-year study of fenthion and dimethoate pesticides in olive oil from organic and conventional cultivation. Food Addit. Contam. 2003, 20, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Ruano, F.; Lozano, C.; Garcia, P.; Pena, A.; Tinaut, A.; Pascual, F.; Campos, M. Use of arthropods for the evaluation of the olive-orchard management regimes. Agric. For. Entomol. 2004, 6, 111–120. [Google Scholar] [CrossRef]
- Santos, S.A.P.; Pereira, J.A.; Torres, L.M.; Nogueira, A.J.A. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 2007, 67, 131–139. [Google Scholar] [CrossRef]
- Youssef, A.I.; Nasr, F.N.; Stefanos, S.S.; Elkhair, S.S.A.; Shehata, W.A.; Agamy, E.; Herz, A.; Hassan, S.A. The side-effects of plant protection products used in olive cultivation on the hymenopterous egg parasitoid Trichogramma cacoeciae Marchal. J. Appl. Entomol. 2004, 128, 593–599. [Google Scholar] [CrossRef]
- Kyriaki Varikou, K.; Kasiotis, K.M.; Bempelou, E.; Manea-Karga, E.; Anagnostopoulos, C.; Charalampous, A.; Garantonakis, N.; Birouraki, A.; Hatjina, F.; Machera, K. A Pesticide residues insight on honeybees, bumblebees and olive oil after pesticidal applications against the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Insects 2020, 11, 855. [Google Scholar] [CrossRef]
- Ruano, F.; Lozano, C.; Tinaut, A.; Peña, A.; Pascual, F.; García, P.; Campos, M. Impact of pesticides on beneficial arthropod fauna of olive groves. IOBC/WPRS Bull. 2001, 24, 113–120. [Google Scholar]
- Pinheiro, L.A.; Dáder, B.; Wanumen, A.C.; Pereira, J.A.; Santos, S.A.P.; Medina, P. Side effects of pesticides on the olive fruit fly parasitoid Psyttalia concolor (Szépligeti): A Review. Agronomy 2020, 10, 1755. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Volakakis, N.; Kabourakis, E.; Kiritsakis, A.; Rempelos, L.; Leifert, C. Effect of Production System (Organic versus Conventional) on Olive Fruit and Oil Yields and Oil Quality Parameters in the Messara Valley, Crete, Greece; Results from a 3-Year Farm Survey. Agronomy 2022, 12, 1484. [Google Scholar] [CrossRef]
- Volakakis, N. Development of Strategies to Improve the Quality and Productivity of Organic and ‘Low Input’ Olive Production Systems in Semi-Arid Mediterranean Regions. Ph.D. Thesis, Newcastle University, Newcastle Upon Tyne, UK, 2010. [Google Scholar]
- Broumas, T.; Haniotakis, G.; Liaropoulos, C.; Tomazou, T.; Ragoussis, N. The efficacy of an improved form of the mass-trapping method, for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): Pilot-scale feasibility studies. J. Appl. Entomol. 2002, 126, 217–223. [Google Scholar] [CrossRef]
- Petacchi, R.; Rizzi, I.; Guidotti, D. The ‘lure and kill’ technique in Bactrocera oleae (Gmel.) control: Effectiveness indices and suitability of the technique in area-wide experimental trials. Int. J. Pest Manag. 2003, 49, 305–311. [Google Scholar] [CrossRef]
- Hepdurgun, B.; Turanli, T.; Zumreoglu, A. Control of the olive fruit fly, Bactrocera oleae, (Diptera: Tephritidae) through mass trapping and mass releases of the parasitoid Psyttalia concolor (Hymenoptera: Braconidae) reared on irradiated Mediterranean fruit fly. Biocontrol Sci. Technol. 2009, 19, 211–224. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Caramia, D.; Lasorella, C.; Montemurro, P. Ground cover management strategies in an Apulian oil-producing olive grove: Agronomic and ecological assessment proposals. Adv. Hortic. Sci. 2013, 27, 44–54. [Google Scholar]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Schmidt-Jeffris, R.A.; Moretti, A.; Bergeron, P.E.; Zilnik, G. Nontarget Impacts of Herbicides on Spiders in Orchards. J. Econ. Entomol. 2022, 115, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F. Indirect Effect of Pesticides on Insects and Other Arthropods. Toxics 2021, 9, 177. [Google Scholar] [CrossRef]
- Underwood, T.; McCullum-Gomez, C.; Harmon, A.; Roberts, S. Organic agriculture supports biodiversity and sustainable food production. J. Hunger. Environ. Nutr. 2011, 6, 398–423. [Google Scholar] [CrossRef]
- Monier-Dilhan, S.; Bergès, F. Consumers’ motivations driving organic demand: Between self-interest and sustainability. Agric. Resour. Econ. Rev. 2016, 45, 522–538. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.J.A.; Wright, A.F. A new inexpensive suction apparatus for sampling arthropods in grassland. Ecol. Entomol. 1995, 20, 98–102. [Google Scholar] [CrossRef]
- IAEA. Trapping Guidelines for Area-Wide Fruit Fly Programmes; International Atomic Energy Agency: Vienna, Austria, 2003; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TG-FFP_web.pdf (accessed on 22 August 2022).
- Dimou, I.; Koutsikopoulos, C.; Economopoulos, A.; Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 2003, 31, 124–131. [Google Scholar] [CrossRef]
- Burrack, H.J.; Connell, J.H.; Zalom, F.G. Comparison of olive fruit fly (Bactrocera oleae (Gmelin)) (Diptera: Tephritidae) captures in several commercial traps in California. Int. J. Pest Manag. 2008, 54, 227–234. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018; Available online: www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 22 August 2022).
- Ter Braak, C.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination 768, version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Paredes, D.; Cayuela, L.; Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 2013, 173, 72–80. [Google Scholar] [CrossRef]
- De Pedro, L.; Perera-Fernández, L.G.; López-Gallego, E.; Pérez-Marcos, M.; Sanchez, J.A. The Effect of Cover Crops on the Biodiversity and Abundance of Ground-Dwelling Arthropods in a Mediterranean Pear Orchar. Agronomy 2020, 10, 580. [Google Scholar] [CrossRef] [Green Version]
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thiéry, D.; Rusch, A. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Karamaouna, F.; Jaques, J.A.; Kati, V. Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects 2021, 12, 31. [Google Scholar] [CrossRef]
- Volakakis, N.; Eyre, M.; Kiritsakis, A.; Leifert, C.; Kabourakis, E. Monitoring οlive fly Bactrocera oleae (Diptera: Tephritidae) activity in an organic table olive orchard in Crete, Greece. IOBC/WPRS Bull. 2012, 79, 135–146. [Google Scholar]
- Volakakis, N.G.; Eyre, M.D.; Kabourakis, E.M. Olive fly Bactrocera oleae (Diptera, Tephritidae) activity and fruit infestation under mass trapping in an organic table olive orchard in Crete, Greece. J. Sustain. Agric. 2012, 36, 683–698. [Google Scholar] [CrossRef]
- Wang, X.; Johnson, M.W.; Daane, K.; Nagel, H. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environ. Entomol. 2009, 38, 1496–1504. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; Cossu, Q.A. Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim. Chang. 2009, 95, 195–217. [Google Scholar] [CrossRef]
- Broufas, G.D.; Pappas, M.D.; Koveos, D.S. Effect of Relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (Diptera: Tephritidae). Ecol. Popul. Biol. 2009, 102, 70–75. [Google Scholar]
- Ordano, M.; Engelhard, I.; Rempoulakis, P.; Nemny-Lavy, E.; Blum, M.; Yasin, S.; Lensky, I.M.; Papadopoulos, N.T.; Nestel, D. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect. PLoS ONE 2015, 10, e0127798. [Google Scholar] [CrossRef]
- Economopoulos, A.P.; Haniotakis, G.E.; Mathioudis, J.; Missis, N.; Kinigakis, P. Long-distance flight of wild and artificially reared Dacus oleae (Gmelin) (Diptera, Tephritidae). Z. Für Angew. Entomol. 1978, 87, 101–108. [Google Scholar] [CrossRef]
- Yokoyama, V.Y. Olive Fruit Fly (Diptera: Tephritidae) in California Table Olives, USA: Invasion, Distribution, and Management Implications. J. Integr. Pest Manag. 2015, 6, 14. [Google Scholar] [CrossRef]
- Miranda, M.Á.; Barceló, C.; Valdés, F.; Feliu, J.F.; Nestel, D.; Papadopoulos, N.; Sciarretta, A.; Maurici Ruiz, M.; Alorda, B. Developing and Implementation of Decision Support System (DSS) for the Control of Olive Fruit Fly, Bactrocera Oleae, in Mediterranean Olive Orchards. Agronomy 2019, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Maish, S.C. Lepidopterous pests, biology and its effect on vegetable crops. J. Entomol. Zool. Stud. 2019, 7, 593–597. [Google Scholar]
- Vioryl. Eco-Trap: Olive Fruit Fly Control Trap with Pheromone. Available online: http://www.viorylagro.gr/index.php?option=com_content&view=article&id=57&Itemid=8&lang=en (accessed on 1 August 2022).
- Can, E.; Çeliktaş, N.; Hatpoğlu, R.; Avci, S. Breaking seed dormancy of some annual Medicago and Trifolium species by different treatments. Turk. J. Field Crops 2009, 14, 72–78. [Google Scholar]
- Zinsmeister, J.; Berriri, S.; Basso, D.P.; Ly-Vu, B.; Dang, T.-T.; Lalanne, D.; da Silva, E.A.A.; Leprince, O.; Buitink, J. The seed-specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signalling. Plant Cell Environ. 2020, 43, 2508–2522. [Google Scholar] [CrossRef]
- Ramírez-Suero, M.; Khanshour, A.; Martinez, Y.; Rickauer, M. A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Eur. J. Plant Pathol. 2010, 126, 517–530. [Google Scholar] [CrossRef]
Pseudo- Scorpiones | Hymenoptera | ||||||
---|---|---|---|---|---|---|---|
Factor | Diptera (Flies) | Hemiptera (True Bugs) | Araneae (Spiders) | (Pseudo- Scorpions) | Cole- optera (Beetles) | Formi- cidae (Ants) | Parasitic Wasp Families 1 |
Year | |||||||
2007 (n = 32) | 39 ± 4 | 1.2 ± 0.3 | 2.2 ± 0.4 | 2.2 ± 0.6 | 9.9 ± 1.1 | 5.7 ± 1.3 | 7.5 ± 1.4 |
2008 (n = 32) | 27 ± 3 | 17.4 ± 3.6 | 5.6 ± 1.2 | 0.1 ± 0.1 | 2.1 ± 0.6 | 2.8 ± 0.4 | 8.7 ± 1.2 |
Cover crop | |||||||
vetch +Rhizobium 1 (n = 16) | 36 ± 8 | 13.8 ± 7.2 | 4.9 ± 1.9 | 1.3 ± 0.7 | 6.0 ± 1.6 | 5.0 ± 2.0 | 9.2 ± 2.1 ab |
vetch -Rhizobium 2 (n = 16) | 31 ± 4 | 8.4 ± 3.0 | 3.2 ± 1.0 | 0.8 ± 0.4 | 5.8 ± 1.4 | 4.0 ± 1.1 | 7.1 ± 1.3 bc |
vetch/pea/barley 3 (n = 16) | 39 ± 6 | 7.9 ± 2.4 | 3.8 ± 1.4 | 0.9 ± 0.7 | 6.3 ± 2.0 | 4.0 ± 1.2 | 12.0 ± 2.2 a |
Medicago 4 (n = 16) | 27 ± 3 | 7.1 ± 1.8 | 3.6 ± 0.7 | 1.5 ± 0.8 | 6.0 ± 1.5 | 3.9 ± 1.1 | 4.0 ± 1.0 c |
Sampling position | |||||||
cover crop (n = 32) | 44 ± 4 | 11.7 ± 3.9 | 6.4 ± 1.1 | 2.2 ± 0.6 | 6.7 ± 1.1 | 7.8 ± 1.0 | 12.0 ± 1.5 |
olive tree (n = 32) | 23 ± 2 | 7.0 ± 1.3 | 1.4 ± 0.3 | 0.0 ± 0.0 | 5.4 ± 1.2 | 0.7 ± 0.1 | 4.1 ± 0.5 |
ANOVA results (p-value) | |||||||
Main effects | |||||||
Year (YR) | 0.0076 | 0.0001 | 0.0009 | 0.0001 | <0.0001 | 0.0027 | NS |
Cover crop (CC) | NS | NS | NS | NS | NS | NS | 0.0023 |
Sampling position (SP) | <0.0001 | NS | <0.0001 | <0.0001 | NS | <0.0001 | <0.0001 |
Interactions | |||||||
YR × CC | NS | NS | NS | NS | NS | NS | NS |
YR × SP | NS | NS | 0.0003 | 0.0001 | T | 0.0009 | NS |
CC × SP | NS | NS | NS | NS | NS | NS | NS |
YR × CC × SP | NS | NS | NS | NS | NS | NS | NS |
Coleoptera (Beetles) | Hymenoptera (Parasitoid Wasp Families) | |||||
---|---|---|---|---|---|---|
Factor | Staphylinidae (Rove Beetles) | Cantharidae (Soldier Beetles) | Coccinelidae (Ladybirds) | Braconidae | Ichneu -monidae | Ptero- malidae |
Year | ||||||
2007 (n = 32) | 1.2 ± 0.4 | 1.9 ± 1.1 | 0.3 ± 0.1 | 3.0 ± 0.7 | 2.4 ± 0.4 | 1.3 ± 0.3 |
2008 (n = 32) | 0.6 ± 0.3 | 3.3 ± 0.9 | 0.4 ± 0.1 | 3.3 ± 0.5 | 3.2 ± 0.6 | 2.0 ± 0.4 |
Cover crop | ||||||
vetch +Rhizobium 1 (n = 16) | 0.5 ± 0.3 | 5.2 ± 2.7 | 0.5 ± 0.2 | 3.4 ± 0.8 ab | 3.7 ± 1.0 ab | 1.4 ± 0.7 bc |
vetch -Rhizobium 2 (n = 16) | 0.3 ± 0.2 | 2.9 ± 0.9 | 0.4 ± 0.2 | 2.8 ± 0.6 ab | 2.3 ± 0.5 ab | 1.8 ± 0.4 ab |
vetch/pea/barley 3 (n = 16) | 1.2 ± 0.6 | 1.4 ± 0.6 | 0.3 ± 0.1 | 4.8 ± 1.3 a | 3.8 ± 0.9 a | 2.9 ± 0.6 a |
Medicago 4 (n = 16) | 1.7 ± 0.6 | 0.8 ± 0.3 | 0.3 ± 0.1 | 1.8 ± 0.6 b | 1.7 ± 0.5 b | 0.3 ± 0.2 c |
Sampling position | ||||||
cover crop (n = 32) | 1.8 ± 0.4 | 3.7 ± 1.4 | 0.6 ± 0.1 | 4.9 ± 0.7 | 4.3 ± 0.6 | 2.2 ± 0.5 |
olive tree (n = 32) | 0.0 ± 0.0 | 1.5 ± 0.4 | 0.1 ± 0.1 | 1.4 ± 0.2 | 1.3 ± 0.2 | 1.0 ± 0.2 |
ANOVA results (p-value) | ||||||
Main effects | ||||||
Year (YR) | NS | NS | NS | NS | NS | NS |
Cover crop (CC) | T | NS | NS | 0.0355 | 0.0369 | 0.0054 |
Sampling position (SP) | <0.0001 | NS | 0.0007 | <0.0001 | <0.0001 | 0.0149 |
Interactions | ||||||
YR × CC | NS | NS | NS | NS | NS | NS |
YR × SP | NS | NS | NS | T | 0.0067 | NS |
CC × SP | T | NS | NS | 0.0399 | NS | NS |
YR × CC × SP | NS | NS | NS | NS | NS | NS |
Diptera (Flies) | Lepi- doptera | Hymenop- tera 1 | |||||
---|---|---|---|---|---|---|---|
Factor | Bactrocera oleae (Olive Fly) | Ceratitis capitata (MFF) | Other Diptera | Neuroptera (Net-winged Insects) | Coleoptera (Beetles) | (Butterflies and Moths) | Formicidae (Ants) |
Year | |||||||
2006 | 207 ± 31 | 0 ± 0 | 221 ± 46 b | 21 ± 4 | 7 ± 2 ab | 43 ± 14 | 9 ± 5 b |
2007 | 166 ± 18 | 21 ± 5 | 711 ± 150 a | 53 ± 14 | 5 ± 2 b | 54 ± 12 | 104 ± 33 a |
2008 | 102 ± 11 | 9 ± 3 | 163 ± 21 b | 24 ± 3 | 11 ± 2 a | 64 ± 12 | 16 ± 6 b |
Trap type | |||||||
Pepito | 162 ± 22 | 15 ± 4 | 575 ± 110 | 46 ± 10 | 4 ± 1 | 64 ± 12 | 70 ± 24 |
Elkofon | 159 ± 16 | 15 ± 4 | 172 ± 29 | 20 ± 2 | 10 ± 2 | 19 ± 3 | 18 ± 4 |
ANOVA results (p-value) | |||||||
Main effects | |||||||
Year (YR) | NS | T | <0.001 | NS | 0.001 | NS | <0.001 |
Trap type (TT) | NS | NS | <0.001 | NS | <0.001 | 0.003 | NS |
Interaction (YR × TT) | NS | T | T | NS | 0.013 | NS | NS |
Mass-Trapping System | |||||
---|---|---|---|---|---|
Harvest Year (Sampling Month) | Control (No Trap) | Vioryl Green Plasticised Paper Envelope (Insecticide 1; NH4 Attractant) | Pepito 1.5 L Water Bottle (Torula Yeast Attractant) | Elkofon Commercial Bottle (NH4 Attractant) | ANOVA Results (p-Values) |
2006 | |||||
July | 2.3 ± 0.9 | 1.4 ± 0.6 | 1.5 ± 0.4 | 0.9 ± 0.3 | NS |
August | 1.9 ± 0.4 | 3.6 ± 0.5 | 3.0 ± 0.2 | 2.3 ± 0.5 | T |
September | 1.9 ± 1.1 | 1.9 ± 0.9 | 2.5 ± 1.0 | 1.3 ± 0.2 | NS |
October | 3.8 ± 0.9 | 4.2 ± 0.7 | 3.6 ± 1.5 | 2.8 ± 1.1 | NS |
November | 3.8 ± 1.1 | 4.0 ± 0.9 | 4.0 ± 1.6 | 3.3 ± 1.2 | NS |
Mean | 2.7 ± 0.7 | 3.0 ± 0.4 | 2.9 ± 0.8 | 2.1 ± 0.3 | NS |
2008 | |||||
July | 0.9 ± 0.3 | 0.6 ± 0.3 | 0.3 ± 0.3 | 0.4 ± 0.2 | NS |
August | 0.7 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.4 | 0.3 ± 0.1 | NS |
September | 1.4 ± 0.4 | 0.5 ± 0.3 | 0.7 ± 0.4 | 0.7 ± 0.3 | NS |
October | 1.5 ± 0.5 | 0.6 ± 0.3 | 1.2 ± 0.3 | 0.8 ± 0.2 | NS |
November | 1.9 ± 0.9 | 2.1 ± 0.2 | 3.1 ± 1.1 | 1.5 ± 0.2 | NS |
Mean | 1.3 ± 0.3 | 0.9 ± 0.2 | 1.2 ± 0.3 | 0.8 ± 0.1 | NS |
Factor | Bactrocera oleae (Olive Fly) | Lepidoptera (Butterflies and Moths) | Coleoptera (Beetles) | Hymenoptera (Parasitic Wasp Families 1) | Neuroptera (Net-Winged Insects) |
---|---|---|---|---|---|
Year | |||||
2006 | 13.2 ± 1.1 b | 7.4 ± 1.5 a | 6.7 ± 2.1 | 7.0 ± 1.4 | 2.3 ± 0.5 |
2007 | 32.8 ± 2.3 a | 6.9 ± 1.2 a | 7.6 ± 2.2 | 10.8 ± 2.2 | 1.3 ± 0.3 |
2008 | 17.0 ± 1.8 b | 2.6 ± 0.5 b | 6.1 ± 1.7 | 5.3 ± 1.1 | 2.3 ± 0.5 |
8-week period | |||||
mid Feb. to mid Apr. | 18.7 ± 1.3 | 0.2 ± 0.1 | 0.2 ± 0.1 | 1.9 ± 0.5 | 0.2 ± 0.1 |
mid Apr. to early Jun | 23.3 ± 2.3 | 11.1 ± 0.9 | 13.5 ± 1.9 | 13.5 ± 1.4 | 3.7 ± 0.3 |
Mass trap | |||||
Control (no traps) | 22.8 ± 2.9 | 4.7 ± 1.1 | 5.2 ± 1.8 | 5.5 ± 1.1 | 1.4 ± 0.3 |
Vioryl | 21.5 ± 2.7 | 6.4 ± 1.6 | 9.0 ± 3.5 | 9.2 ± 2.9 | 2.3 ± 0.6 |
Pepito | 19.6 ± 2.3 | 5.4 ± 1.4 | 6.0 ± 1.7 | 7.4 ± 1.4 | 1.8 ± 0.5 |
Elkofon | 20.1 ± 2.9 | 6.1 ± 1.6 | 7.0 ± 1.9 | 8.6 ± 1.7 | 2.3 ± 0.6 |
ANOVA results (p-value) | |||||
Main effects | |||||
Year (YR) | 0.0001 | 0.0068 | NS | NS | T |
8-week period (8WP) | 0.0076 | <0.0001 | 0.0001 | <0.0001 | <0.0001 |
Mass trap (MT) | NS | NS | NS | NS | T |
Interactions | |||||
YR × 8WP | <0.0001 | 0.0030 | NS | NS | 0.0058 |
YR × MT | NS | NS | NS | NS | NS |
8WP × MT | NS | NS | NS | NS | NS |
YR × 8WP × MT | NS | NS | NS | NS | NS |
Factor | Bactrocera oleae (Olive Fly) | Lepidoptera (Butterflies and Moths) | Coleoptera (Beetles) | Hymenoptera (Parasitic Wasp Families 1) | Neuroptera (Net-Winged Insects) |
---|---|---|---|---|---|
Year | |||||
2006 | 11.3 ± 2.2 a | 6.7 ± 1.4 a | 0.17 ± 0.04 | 0.59 ± 0.11 | 2.3 ± 0.4 a |
2007 | 6.2 ± 0.6 b | 1.6 ± 0.2 b | 0.37 ± 0.11 | 0.68 ± 0.13 | 3.2 ± 0.4 a |
2008 | 3.4 ± 0.3 b | 1.2 ± 0.2 b | 0.27 ± 0.09 | 0.69 ± 0.17 | 1.1 ± 0.2 b |
8-week period | |||||
early Jun. to early Aug. | 13.7 ± 2.0 a | 7.9 ± 1.3 a | 0.77 ± 0.12 a | 1.43 ± 0.18 a | 3.9 ± 0.4 a |
early Aug to late Sep. | 3.0 ± 0.3 b | 1.3 ± 0.1 b | 0.11 ± 0.01 b | 0.39 ± 0.07 b | 2.2 ± 0.4 b |
late Sep. to late Nov | 4.2 ± 0.6 b | 0.3 ± 0.1 b | 0.01 ± 0.01 b | 0.15 ± 0.03 b | 0.6 ± 0.2 c |
Mass trap | |||||
Control (no traps) | 6.5 ± 1.2 a 1 | 2.8 ± 0.9 | 0.36 ± 0.13 | 0.55 ± 0.15 | 2.0 ± 0.3 |
Vioryl | 5.9 ± 1.5 a 1 | 3.0 ± 1.0 | 0.17 ± 0.05 | 0.60 ± 0.13 | 2.3 ± 0.4 |
Pepito | 8.6 ± 2.2 a 1 | 3.2 ± 1.1 | 0.29 ± 0.11 | 0.59 ± 0.12 | 2.0 ± 0.4 |
Elkofon | 6.8 ± 1.4 a 1 | 3.5 ± 1.2 | 0.26 ± 0.08 | 0.87 ± 0.22 | 2.5 ± 0.5 |
ANOVA results (p-value) | |||||
Main effects | |||||
Year (YR) | 0.0153 | 0.0005 | NS | NS | 0.0025 |
8-week period (8WP) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Mass trap (MT) | 0.0080 | NS | NS | NS | NS |
Interactions | |||||
YR × 8WP | <0.0001 | <0.0001 | NS | NS | T |
YR × MT | NS | NS | NS | NS | NS |
8WP × MT | NS | NS | NS | NS | T |
YR × 8WP × MT | 0.0448 | NS | NS | NS | NS |
Factor 1 | Factor 2 | Factor 3. Mass-Trapping System | |||
---|---|---|---|---|---|
Year | 8-Week Period | Control | Vioryl | Pepito | Elkofon |
2006 | early June to early August | 22.0 ± 5.0 b A | 28.3 ± 5.4 b A | 38.3 ± 11.4 a A | 27.9 ± 3.8 b A |
early August to late September | 4.0 ± 0.8 a B | 3.5 ± 0.9 a B | 4.8 ± 2.0 a BC | 5.2 ± 0.9 a BC | |
late September to late November | 0.8 ± 0.1 a C | 0.4 ± 0.1 a B | 0.5 ± 0.2 a C | 0.3 ± 0.2 a C | |
2007 | early June to early August | 9.6 ± 1.3 a B | 5.8 ± 0.4 a B | 9.2 ± 0.9 a BC | 8.3 ± 1.0 a B |
early August to late September | 2.5 ± 0.8 a C | 1.3 ± 0.4 a B | 2.2 ± 0.5 a C | 1.8 ± 0.4 a BC | |
late September to late November | 8.5 ± 1.1 a B | 6.9 ± 1.6 a B | 10.6 ± 2.8 a B | 7.2 ± 3.4 a BC | |
2008 | early June to early August | 3.9 ± 0.6 a B | 3.1 ± 0.8 a B | 4.6 ± 1.3 a BC | 3.3 ± 0.6 a BC |
early August to late September | 2.8 ± 0.4 a BC | 1.8 ± 0.5 a B | 3.2 ± 0.4 a BC | 2.8 ± 0.8 a BC | |
late September to late November | 4.3 ± 0.5 a B | 2.1 ± 0.7 a B | 4.3 ± 0.8 a BC | 4.3 ± 1.8 a BC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volakakis, N.; Kabourakis, E.; Rempelos, L.; Kiritsakis, A.; Leifert, C. Effect of Different Cover Crops, Mass-Trapping Systems and Environmental Factors on Invertebrate Activity in Table Olive Orchards—Results from Field Experiments in Crete, Greece. Agronomy 2022, 12, 2576. https://doi.org/10.3390/agronomy12102576
Volakakis N, Kabourakis E, Rempelos L, Kiritsakis A, Leifert C. Effect of Different Cover Crops, Mass-Trapping Systems and Environmental Factors on Invertebrate Activity in Table Olive Orchards—Results from Field Experiments in Crete, Greece. Agronomy. 2022; 12(10):2576. https://doi.org/10.3390/agronomy12102576
Chicago/Turabian StyleVolakakis, Nikolaos, Emmanouil Kabourakis, Leonidas Rempelos, Apostolos Kiritsakis, and Carlo Leifert. 2022. "Effect of Different Cover Crops, Mass-Trapping Systems and Environmental Factors on Invertebrate Activity in Table Olive Orchards—Results from Field Experiments in Crete, Greece" Agronomy 12, no. 10: 2576. https://doi.org/10.3390/agronomy12102576
APA StyleVolakakis, N., Kabourakis, E., Rempelos, L., Kiritsakis, A., & Leifert, C. (2022). Effect of Different Cover Crops, Mass-Trapping Systems and Environmental Factors on Invertebrate Activity in Table Olive Orchards—Results from Field Experiments in Crete, Greece. Agronomy, 12(10), 2576. https://doi.org/10.3390/agronomy12102576