Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plot
2.2. Agrochemical Inputs and Application Timing
2.3. Weather Conditions and Irrigation Practices
2.4. Soil Parameters
2.5. Sample Preparation and Analysis
2.6. Model Description and Parametrization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, V.; Singh, K. Toxic Effect of Herbicide 2,4-D on the Earthworm Eutyphoeus waltoni Michaelsen. Environ. Process. 2015, 2, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Srinivasulu, M.; Ortiz, D.R. Effect of Pesticides on Bacterial and Fungal Populations in Ecuadorian Tomato Cultivated Soils. Environ. Process. 2017, 4, 93–105. [Google Scholar] [CrossRef]
- Jeyanthi, V.; Paul, J.A.J.; Selvi, B.K.; Karmegam, N. Comparative Study of Biochemical Responses in Three Species of Earthworms Exposed to Pesticide and Metal Contaminated Soil. Environ. Process. 2016, 3, 167–178. [Google Scholar] [CrossRef]
- Solis, M.; Paracampo, A.; Bonetto, C.; Mugni, H. Acute Toxicity of Chlorpyrifos to Hyalella curvispina: Comparison of Species Sensitivity and Assessment of Environmental Risk. Environ. Process. 2019, 6, 107–117. [Google Scholar] [CrossRef]
- Škulcová, L.; Neuwirthová, N.; Šimek, Z.; Trojan, M.; Bielská, L. Enantioselective Behavior of the Fungicide Tebuconazole in Soil. Environ. Process. 2020, 7, 173–188. [Google Scholar] [CrossRef]
- Lutri, V.F.; Blarasin, M.T.; Matteoda, E.M.; Currell, M.; Giacobone, D.B.; Quinodóz, F.B.; Cabrera, A.E. Screening of Atrazine Distribution in Groundwater and Modeling of Leaching Potential to the Unconfined Aquifer in the Pampean Plain of Cordoba, Argentina. Environ. Process. 2022, 9, 25. [Google Scholar] [CrossRef]
- Magna, E.K.; Koranteng, S.S.; Donkor, A.; Gordon, C. Levels of Persistent Organochlorine Compounds in Nile Tilapia (Oreochromis niloticus) from Three Cage Aquaculture Farms on the Volta Basin of Ghana: Implications for Human Health. Environ. Process. 2022, 9, 52. [Google Scholar] [CrossRef]
- Gillette, K.; Malone, R.W.; Kaspar, T.C.; Ma, L.; Parkin, T.B.; Jaynes, D.B.; Fang, Q.X.; Hatfield, J.L.; Feyereisen, G.W.; Kersebaum, K.C. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye. Sci. Total Environ. 2018, 618, 982–997. [Google Scholar] [CrossRef]
- do Rosário Cameira, M.; Li, R.; Fangueiro, D. Integrated modelling to assess N pollution swapping in slurry amended soils. Sci. Total Environ. 2020, 713, 136596. [Google Scholar] [CrossRef]
- European Commission (EC). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ 2000, L327, 1–73. [Google Scholar]
- European Commission (EC). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. OJ 1991, L375, 1–8. [Google Scholar]
- Jesitha, K.; Nimisha, K.M.; Manjusha, C.M.; Harikumar, P.S. Biodegradation of Endosulfan by Pseudomonas fluorescens. Environ. Process. 2015, 2, 225–240. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Zalidis, G. The Use of Typha Latifolia L. in Constructed Wetland Microcosms for the Remediation of Herbicide Terbuthylazine. Environ. Process. 2019, 6, 985–1003. [Google Scholar] [CrossRef]
- Khayati, G.; Ramzani, F. Performance Evaluation of Aqueous Two-Phase Systems as a Green Chemistry Technique for Diazinon Removal from Aqueous Solutions Using Taguchi Approach. Environ. Process. 2020, 7, 861–871. [Google Scholar] [CrossRef]
- Gikas, G.D.; Vryzas, Z.; Koshis, Z. Experiments on Fluometuron Removal from Simulated Agricultural Wastewater in Porous Media Filters. Environ. Process. 2022, 9, 1. [Google Scholar] [CrossRef]
- Peyrelasse, C.; Jacob, M.; Lallement, A. Multicriteria Comparison of Ozonation, Membrane Filtration, and Activated Carbon for the Treatment of Recalcitrant Organics in Industrial Effluent: A Conceptual Study. Environ. Process. 2022, 9, 9. [Google Scholar] [CrossRef]
- Pavlidis, G.; Tsihrintzis, V.A. Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: A review. Water Resour. Manag. 2018, 32, 1–29. [Google Scholar] [CrossRef]
- Liáng, L.L.; Kirschbaum, M.U.; Giltrap, D.L.; Wall, A.M.; Campbell, D.I. Modelling the effects of pasture renewal on the carbon balance of grazed pastures. Sci. Total Environ. 2020, 715, 136917. [Google Scholar] [CrossRef]
- Shahadha, S.S.; Wendroth, O.; Zhu, J.; Walton, J. Can measured soil hydraulic properties simulate field water dynamics and crop production? Agric. Water Manag. 2019, 223, 105661. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Andrianarisoa, K.; Dufour, L.; Bienaime, S.; Zeller, B.; Dupraz, C. The Introduction of Hybrid Walnut Trees (Juglans Nigra x Regia cv. NG23) into Cropland Reduces Soil Mineral N Content in Autumn in Southern France. Agrofor. Syst. 2016, 90, 193–205. [Google Scholar] [CrossRef]
- Nerlich, K.; Graeff-Honninger, S.; Claupein, W. Agroforestry in Europe: A Review of the Disappearance of Traditional Systems and Development of Modern Agroforestry Practices, with Emphasis on Experiences in Germany. Agrofor. Syst. 2013, 87, 475–492. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple Functions of Buffer Strips in Farming Areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A.; Sykas, D. Effect of Trees on the Reduction of Nutrient Concentrations in the Soils of Cultivated Areas. Environ. Monit. Assess. 2016, 188, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ding, X.; Liu, X.; Li, P.; Eneji, A.E. Impacts of Long-Term Jujube Tree/Winter Wheat–Summer Maize Intercropping on Soil Fertility and Economic Efficiency—A Case Study in the Lower North China Plain. Eur. J. Agron. 2016, 75, 105–117. [Google Scholar] [CrossRef]
- Coussement, T.; Janssens, P.; Elsen, A.; Pardon, P.; Nelissen, V.; Reubens, B.; Vandendriessche, H. Impact of trees on soil nitrogen dynamics in temperate silvoarable agroforestry systems. In Proceedings of the 4th European Agroforestry Conference, Agroforestry as Sustainable Land Use, Nijmegen, The Netherlands, 28–30 May 2018. [Google Scholar]
- Pavlidis, G.; Tsihrintzis, V.A.; Karasali, H.; Alexakis, D. Tree uptake of excess nutrients and herbicides in a maize-olive tree cultivation system. J. Environ. Sci. Health A 2018, 53, 1–12. [Google Scholar] [CrossRef]
- Pavlidis, G.; Karasali, H.; Tsihrintzis, V.A. Pesticide and fertilizer pollution reduction in two alley cropping agroforestry cultivating systems. Water Air Soil Pollut. 2020, 231, 1–23. [Google Scholar] [CrossRef]
- Pavlidis, G.; Karasali, H.; Tsihrintzis, V.A. Dynamics of changes in the concentrations of herbicides and nutrients in the soils of a combined wheat-poplar tree cultivation: A field experimental model during the growing season. Agrofor. Syst. 2021, 95, 321–338. [Google Scholar] [CrossRef]
- Ma, L.; Ahuja, L.R.; Nolan, B.T.; Malone, R.W.; Trout, T.J.; Qi, Z. Root zone water quality model (RZWQM2): Model use, calibration, and validation. Trans. ASABE 2012, 55, 1425–1446. [Google Scholar] [CrossRef]
- Qi, Z.; Helmers, M.J.; Malone, R.W.; Thorp, K.R. Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system. Trans. ASABE 2011, 54, 1575–1588. [Google Scholar] [CrossRef]
- Hellenic Ministry of Rural Development and Food. Available online: http://wwww.minagric.gr/greek/agro_pol/Maps/Kalaboki1.htm (accessed on 5 October 2022).
- USDA Website. RZWQM—Root Zone Water Quality Model. Model Information and Description. Available online: https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-agricultural-resources-research/rangeland-resources-systems-research/docs/system/rzwqm/ (accessed on 1 September 2022).
- Fang, Q.X.; Ma, L.; Halvorson, A.D.; Malone, R.W.; Ahuja, L.R.; Del Grosso, S.J.; Hatfield, J.L. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field. Environ. Model. Softw. 2015, 72, 56–70. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Qi, Z.; Zhang, T.Q.; Tan, C.S.; Ma, L. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P. J. Environ. Qual. 2019, 48, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Malone, R.W.; Ma, L.; Kaspar, T.C.; Jaynes, D.B.; Saseendran, S.A.; Thorp, K.R.; Yu, Q.; Ahuja, L.R. Winter cover crop effects on nitrate leaching in subsurface drainage as simulated by RZWQM-DSSAT. Trans. ASABE 2008, 51, 1575–1583. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Yu, Q.; Malone, R.W.; Saseendran, S.A.; Ahuja, L.R. Modeling nitrogen and water management effects in a wheat maize double-cropping system. J. Environ. Qual. 2008, 37, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.K.; Shukla, M.K.; Mexal, J.G. Simulating deep percolation in flood-irrigated mature pecan orchards with RZWQM2. Trans. ASABE 2012, 55, 2089–2100. [Google Scholar] [CrossRef]
- Hellenic National Meteorological Service (EMY). Meteorological data for Koropi area for year 2015. Acquired after specific request to the authority (unpublished data, available on request).
- European Soil Data Centre (ESDAC) Database. (non-public data, formally received in 2018). Available online: http://esdac.jrc.ec.europa.eu/ (accessed on 5 September 2022).
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Loveland, P.J.; Montanarella, L. Topsoil organic carbon in Europe. In Proceedings of the 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy, 17–20 June 2003. [Google Scholar]
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Loveland, P.J.; Montanarella, L. Estimating organic carbon in the soils of Europe for policy support. Eur. J. Soil Sci. 2005, 56, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Del Grosso, S.J.; Halvorson, A.D.; Parton, W.J. Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. J. Environ. Qual. 2008, 37, 1383–1389. [Google Scholar] [CrossRef]
Meteorological Parameter | Minimum | Maximum | Mean |
---|---|---|---|
Temperature (°C) | −2.8 | 40.4 | 17.4 |
Wind Run (km/d) | 4.8 | 552 | 82.1 |
Relative Humidity (%) | 19.0 | 98.0 | 53.3 |
Daily rain (mm) | 0 | 43.2 | 478.6 annual total |
Model Parameter | Description | Input: Crops Only | Input: Tree–Crop | Input Type |
---|---|---|---|---|
General | ||||
Elevation | Field elevation (m) | 90 | 90 | Defined |
Slope | degrees | 0 | 0 | Defined |
Climate zone | Based on annual precipitation | 2 | 2 | Estimated |
Horizon description (min-max presented, intermediate values also defined per soil horizon) | ||||
Bulk density max | 0–5 cm | 1420 kg/m3 | 1420 kg/m3 | Defined |
Bulk density min | 35–55 cm and below | 1280 kg/m3 | 1280 kg/m3 | Defined |
Porosity min | 0-5 cm | 0.464 | 0.464 | Estimated |
Porosity max | 35–55 cm and below | 0.517 | 0.517 | Estimated |
Soil type fractions | 0–5 cm | 40% sand/31% silt/29% clay | 40% sand/31% silt/29% clay | Defined |
Soil type fractions | 35–55 cm and below | 18% sand/40% silt/42% clay | 18% sand/40% silt/42% clay | Defined |
Soil hydraulics: Aquifer not constrained; the rest of parameters automatically estimated by the model. | ||||
Hydraulic conductivity (Ksat) | 0.23 cm/h | Estimated | ||
Hydraulic control: Crusting surface: No, Drains present: No, High water table: No | ||||
Management options | ||||
Crop selection | Crop(s) selected for simulation | 7000 maize IB0033 Pio 3780 | 9506 Olive and 7000 maize IB0033 Pio 3780 | Defined |
Crop planting | Date of planting | 13 June 2015 | 13 June 2015 (Trees ca. 5/2000) | Defined |
Crop planting density | #seeds/ha | 76,000 | 76,000 | Defined |
Row spacing | cm | 45 | 45 | Defined |
Irrigation | Fixed int./Sprinkler | 2 cm every 2 d | 2 cm every 2 d | Defined |
Fertilization | Preplant (0 days) | 30-10-10 at rate 70 kg/1000 m2 | 30-10-10 at rate 70 kg/1000 m2 | Defined |
Post emergence (47 days) | 33-0-0 at a rate 40 kg/1000 m2 | 33-0-0 at a rate 40 kg/1000 m2 | Defined | |
Pesticides | Pendimethalin (0 days) | 1.6 kg/ha | 1.6 kg/ha | Defined |
Nicosulfuron (47 days) | 0.06 kg/ha | 0.06 kg/ha | Defined | |
Evapotranspiration parameters: Default calculation method (Shuttleworth-Wallace), Albedo values estimated by the model for the climatic zone based on the coordinates and field elevation. | ||||
Field Hydraulic control: No crusting surface, No drains presence, No high-water table presence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlidis, G.; Tsihrintzis, V.A. Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements. Agronomy 2022, 12, 2579. https://doi.org/10.3390/agronomy12102579
Pavlidis G, Tsihrintzis VA. Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements. Agronomy. 2022; 12(10):2579. https://doi.org/10.3390/agronomy12102579
Chicago/Turabian StylePavlidis, George, and Vassilios A. Tsihrintzis. 2022. "Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements" Agronomy 12, no. 10: 2579. https://doi.org/10.3390/agronomy12102579
APA StylePavlidis, G., & Tsihrintzis, V. A. (2022). Modeling the Ability of a Maize–Olive Agroforestry System in Nitrogen and Herbicide Pollution Reduction Using RZWQM2 and Comparison with Field Measurements. Agronomy, 12(10), 2579. https://doi.org/10.3390/agronomy12102579