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Abstract: Estimation of crop biophysical and biochemical characteristics is the key element for crop
growth monitoring with remote sensing. With the application of unmanned aerial vehicles (UAV) as
a remote sensing platform worldwide, it has become important to develop general estimation models,
which can interpret remote sensing data of crops by different sensors and in different agroclimatic
regions into comprehensible agronomy parameters. Leaf chlorophyll content (LCC), which can be
measured as a soil plant analysis development (SPAD) value using a SPAD-502 Chlorophyll Meter, is
one of the important parameters that are closely related to plant production. This study compared
the estimation of rice (Oryza sativa L.) LCC in two different regions (Ningxia and Shanghai) using
UAV-based spectral images. For Ningxia, images of rice plots with different nitrogen and biochar
application rates were acquired by a 125-band hyperspectral camera from 2016 to 2017, and a total of
180 samples of rice LCC were recorded. For Shanghai, images of rice plots with different nitrogen
application rates, straw returning, and crop rotation systems were acquired by a 5-band multispectral
camera from 2017 to 2018, and a total of 228 samples of rice LCC were recorded. The spectral
features of LCC in each study area were analyzed and the results showed that the rice LCC in both
regions had significant correlations with the reflectance at the green, red, and red-edge bands and
8 vegetation indices such as the normalized difference vegetation index (NDVI). The estimation
models of LCC were built using the partial least squares regression (PLSR), support vector regression
(SVR), and artificial neural network (ANN) methods. The PLSR models tended to be more stable and
accurate than the SVR and ANN models when applied in different regions with R2 values higher
than 0.7 through different validations. The results demonstrated that the rice canopy LCC in different
regions, cultivars, and different types of sensor-based data shared similar spectral features and could
be estimated by general models. The general models can be implied to a wider geographic extent to
accurately quantify rice LCC, which is helpful for growth assessment and production forecasts.

Keywords: UAV; spectral imaging; rice; chlorophyll content

1. Introduction

Remote sensing (RS) with unmanned aerial vehicles (UAV) has been widely used in
crop growth monitoring in the last decade due to its high time and spatial resolution [1–3].
The UAV platform is capable of carrying various types of sensors to acquire multi-source
RS data. Red, green, and blue (RGB), multispectral, and hyperspectral cameras have been
mounted on UAVs to detect agronomic traits, such as chlorophyll content [4–6], leaf area
index [4,7–10], aboveground biomass [10,11], and nitrogen content [12–14], by researchers
around the world.

Spectral cameras can obtain both spectra (usually in the range of visible to near
infrared) and images of targets. Strictly calibrated spectra are closely related to plant
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biophysical and biochemical characteristics [3], which makes spectral cameras very suitable
for crop growth monitoring. There are a variety of types of UAV-based spectral cameras,
which are usually classified as hyperspectral and multispectral cameras and generate dif-
ferent kinds of data. Hyperspectral cameras have high spectral resolution (usually between
1–10 nm) with hundreds of bands and contain rich information, which is very useful for
multiple crop characteristic estimations [15]. But hyperspectral image data are also large in
size and difficult to deal with. In contrast to hyperspectral cameras, multispectral cameras
usually have several or dozens of bands and are easier to obtain, deploy, and analyze. It has
been found that the performances of different multispectral sensors (such as Mini-MCA6,
Micasense RedEdge, Parrot Sequoia, and DJI P4M) and hyperspectral sensors (such as
Senop HSC-2, Cubert UHD185, and OXI VNIR-40) in the same study area matched well
with the field spectrometer measurements on the ground, and the correlation coefficients
of spectral reflectance and several frequently-used vegetation indices for the same targets
between different sensors in the same conditions usually reach 0.9 or higher, indicating
good consistency [1,16–22]. However, the performance of hyperspectral and multispectral
cameras for monitoring the characteristics of the same crop in different conditions still
remains unknown.

The measurement area of UAVs, especially multi-rotor UAVs, is relatively small
because of the limited flight height and battery capacity [23]. Consequentially, studies
on crop monitoring with UAV-based remote sensing were always restricted to a certain
limited geographic region with an area of several hectares. Therefore, questions remain
about whether the spectral responses to the same trait, for example leaf chlorophyll content
(LCC), are consistent on different UAV-based spectral images and in different regions, and
whether the trait can be predicted by a general model.

LCC, which is closely related to plant production, is one of the most important agron-
omy parameters in crop growth monitoring with remote sensing [24,25]. The SPAD value, a
dimensionless quantity, is the reading of the SPAD chlorophyll meter (Minolta corporation,
Ltd., Osaka, Japan) that is used to measure the relative chlorophyll content of leaves [26,27].
LCC have been proved to be proportional to the amount of chlorophyll and nitrogen in
the crop leaf and widely used by researchers and farmers to determine chlorophyll content
and fertilizer management [28–30]. The greatest advantage of the SPAD chlorophyll meter
is that it can nondestructively measure in situ leaf chlorophyll content in real time, which
makes it ideal for the correspondence with UAV measurements. However, ground mea-
surements using handheld SPAD chlorophyll meters can only provide the LCC of crops
within a limited part of the field.

UAV-based remote sensing retrieval of LCC helps to draw the distribution map of LCC
in a large-scale field investigation and has been studied by various academic groups on dif-
ferent crops using different sensors such as multispectral cameras, hyperspectral imagers,
and RGB cameras. Spectral reflectance at green, red, red-edge, and near-infrared bands and
vegetation indices such as normalized difference vegetation index (NDVI), difference vege-
tation index (DVI), ratio vegetation index (RVI), green normalized difference vegetation
index (GNDVI), MERIS terrestrial chlorophyll index (MTCI), and excess green index (ExG)
were used to build LCC estimation models for wheat, maize, and barley via different regres-
sion methods like multiple linear regression (MLR), partial least squares regression (PLSR),
support vector regression (SVR), random forest regression (RFR), and back propagation neu-
ral network (BP-NN). Most of the models achieved high accuracy [1,24,31–34]. However,
as far as we are aware, there is a lack of studies on the estimation of rice (Oryza sativa L.)
LCC using UAV-based remote sensing in different regions and by different sensors.

Rice, as an important food crop, is widely grown all over the world. Efficient monitor-
ing of LCC plays an important role in the cultivation and management of rice. In this paper,
the estimation of rice LCC using UAV hyperspectral and multispectral images in Ningxia
and Shanghai, China, was studied to (1) investigate the spectral response characteristics of
rice LCC in different geographic regions and by different sensors, and (2) establish general
estimation models of rice LCC for different geographic regions and sensors.
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2. Materials and Methods
2.1. Field Design and Plant Material

The field experiments were conducted in Yesheng, Qingtongxia, Ningxia (38◦07′28′′ N,
106◦11′37′′ E) and Zhuanghang, Fengxian District, Shanghai (30◦33′25′′ N, 121◦23′17′′ E),
China, respectively (Figure 1a).
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Figure 1. Location and UAV images of the two study areas: (a) Location of the two study areas,
(b) UAV false color image of the rice plots in Ningxia, (c) UAV false color image of the rice plots
in Shanghai.

Yesheng, Ningxia has a temperate arid climate, which is denoted by BSk in the Köppen
climate classification system. The average annual temperature is about 8.5 ◦C, the annual
precipitation is about 220 mm, and the annual sunshine hours are between 2800 to 3000 h.
The landform type is the Yellow River alluvial plain, and the soil type is anthropogenic
alluvial soil. The Yellow River water is introduced for irrigation. The land is fertile and
suitable for rice growth. The rice variety planted in the experimental field of Ningxia was
Ningjing No.37. The rice was grown under three nitrogen (N) regimes in combination
with 4 biochar (B) levels. Nitrogen regimes were: (i) 0 kg ha−1 (N0), (ii) 240 kg ha−1 (N1),
and (iii) 300 kg ha−1 (N2). Biochar levels were: (i) 0 kg ha−1 (B0), (ii) 4500 kg ha−1 (B1),
(iii) 9000 kg ha−1 (B2), and (iv) 13,500 kg ha−1 (B3). The phosphate and potash fertilizers,
which were applied equally to all plots were P2O5 (90 kg ha−1) and K2O (90 kg ha−1),
respectively. Treatments were arranged in a split-plot experimental design with three
replicates. The size of each plot was 14 m × 5 m.

Zhuanghang, Shanghai is located in the alluvial plain of the Yangtze River Delta with
a flat terrain and intersecting river networks and has a subtropical marine monsoon climate
(Cfa in Köppen-Geiger classification). The average annual temperature is about 15.8 ◦C, the
annual precipitation is about 1221 mm, and the annual sunshine hours is about 1920 h. The
soil type is paddy soil. These climatic and soil conditions make it a traditional rice-growing
area. The rice variety planted in the experimental field in Shanghai was Huhan No.61. There
were 36 split plots. The size of each plot was 7 m × 8 m. Three different experiments were
designed in these plots. For 18 plots, 6 N fertilizer treatments were set up with 3 replicates
as follows: (i) no N fertilizer (N0), chemical N fertilizer at the rate of (ii) 100 kg ha−1 (N100),
(iii) 200 kg ha−1 (N200), (iv) 300 kg ha−1 (N300), and combinations of chemical and organic
N fertilizers at the rates of (v) 200 kg ha−1 (ON200), and (vi) 300 kg ha−1 (ON300). For
the other 12 plots, treatments were performed in triplicate as follows: (i) no fertilizer
application (CK), (ii) conventional inorganic fertilizer application with 200 kg N ha −1(CF),
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(iii) the same total pure nitrogen application as in CF plus 3000 kg ha−1 straw returning to
the field (CS), and (iv) the same total pure nitrogen application as in CF plus 1000 kg ha−1

straw-derived biochar returning to the field (CB). For the rest 6 plots and 3 CF plots,
3 different crop rotation systems were applied with 3 replicates: (i) single rice rotation (R),
(ii) rice-Chinese milk vetch rotation (RC), and (iii) rice-winter wheat rotation (RW), which
were applied in 3 CF plots, and 200 kg N ha−1 were applied to the rice. The definitions of
acronyms used here are listed in Table 1.

Table 1. Definition of acronyms used in the experimental design in Shanghai.

Acronym Definition

N Nitrogen
ON combinations of chemical and organic N fertilizers
CK no fertilizer application
CF conventional inorganic fertilizer
CS conventional inorganic fertilizer plus straw returning
CB conventional inorganic fertilizer plus straw-derived biochar returning
R rice

RC rice-Chinese milk vetch rotation
RW rice-winter wheat rotation

2.2. Field Data Acquisition and Processing
2.2.1. Spectral Image Acquisition and Processing

The hyperspectral images of the rice canopy were captured in Ningxia. The sensor used
here was a Cubert S185 hyperspectral imager (Cubert GmbH, Ulm, Germany) mounted
on an octocopter UAV. The spectral range of S185 is 450–950 nm with 125 bands, and
the spectral sampling interval is 4 nm. It acquires a hyperspectral image with 50 by
50 pixels for each band. The flight height was 70 m, resulting in a spatial resolution
of 0.53 m. The forward and side overlaps were set at 85% and 80%, respectively. One
frame of hyperspectral image was captured every second for about 12 min in each flight
mission. Five flight missions were conducted in the rice field at different growth stages on
19 July 2016, 16 August 2016, 9 July 2017, 10 August 2017 and 11 September 2017. All flight
missions were performed between 11:00 and 13:00 in cloudless weather.

The multispectral images of the rice canopy were captured in Shanghai. The sensor used
here was a Micasense RedEdge 3 multispectral camera (Micasense Inc., Seattle, WA, USA)
mounted on a DJI M600 Pro UAV (SZ DJI Technology Co., Shenzhen, China). RedEdge
3 acquires five-band images with 1280 by 960 pixels at five discrete wavelength ranges:
blue (475 ± 20 nm), green (560 ± 20 nm), red (668 ± 20 nm), red-edge (−717 ± 10 nm),
and near infrared (NIR) (840 ± 40 nm). The flight height was 100 m, yielding a spatial
resolution of 0.06 m. The forward and side overlaps were set at 85% and 80%, respec-
tively. One multispectral image was captured every second for about 15 min in each
flight mission. Eight flight missions were conducted in the rice field at different growth
stages on 4 August 2017, 11 August 2017, 8 September 2017, 10 October 2017, 19 July 2018,
23 August 2018, 29 September 2018, and 15 October 2018. All flight missions were per-
formed between 11:00 and 13:00 in cloudless weather.

Spectral images were radiometrically calibrated according to the reflectance of the
reference panels on the ground. The reference panel of S185 (Cubert GmbH, Ulm, Germany)
is a white board with 100% reflectance by the size of 50 cm × 50 cm. The reference panel of
RedEdge 3 (Micasense Inc., Seattle, WA, USA) is a gray board with 50% reflectance and a
size of 15.5 cm × 15.5 cm. The hyperspectral images of the whole rice field in Ningxia were
generated by mosaicking the images within the aerial survey area using Agisoft PhotoScan
Professional (Agisoft LLC, St. Petersburg, Russia). The multispectral image of the whole
rice field in Shanghai was generated by mosaicking the images within the aerial survey
area using Pix4DmapperPro (PIX4D, Lausanne, Switzerland). Geometric correction and
projection transformation were applied to the mosaicked image according to the ground
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control points (GCPs) using ArcGIS (ESRI, Redlands, CA, USA), as shown in Figure 1b,c.
The number of GCPs was eight in Ningxia and ten in Shanghai. The plot boundaries were
drawn according to the images in ArcGIS and buffered by 0.5 m to create the plot boundary
files for spectra extraction. The mean spectra of all pixels inside the buffered plot boundary
were calculated for each plot using ENVI 5.6 software (Harris Geospatial Solutions, Inc.,
Broomfield, CO, America).

Vegetation indices are usually calculated by linear or nonlinear combination of re-
flectance data at different bands and designed to maximize sensitivity to the vegetation char-
acteristics while minimizing confounding factors such as soil background reflectance, direc-
tional, or atmospheric effects, which will cause fluctuation and noise in reflectance [35,36].
In this study, we tested dozens of broad-band vegetation indices that were commonly used
for LCC estimation. Eight of them, which are applicable for both the hyperspectral imager
(S185) and multispectral camera (RedEdge 3), were selected for this study (Table 2). In
the calculation of vegetation indices for the hyperspectral images by S185, we chose the
spectral reflectance at the wavelength of 475 nm for the blue band, 560 nm for the green
band, 668 nm for the red band, 717 nm for the red-edge band, and 840 nm for the NIR band.

Table 2. Vegetation indices used in this study.

Vegetation Index Acronym Equation Reference

Normalized difference vegetation index NDVI (R840 − R668)/(R840 + R668) [37]
Ratio vegetation index RVI R840/R668 [38]

Green normalized difference vegetation index GNDVI (R840 − R560)/(R840 + R560) [39]
Green ratio vegetation index GRVI R840/R560 [40]

Red-edge normalized difference vegetation index RENDVI (R840 − R717)/(R840 + R717) [41]
Red-edge ratio vegetation index RERVI R840/R717 [40]

Normalized pigment/chlorophyll index NPCI (R668 − R475)/(R668 + R475) [42]
MERIS terrestrial chlorophyll index MTCI (R840 − R717)/(R717 − R668) [43]

R represents the reflectance value in specified bands.

2.2.2. Rice LCC Measurement

Twenty flag leaves of rice away from the edge were selected randomly in each plot
for LCC measurment by the SPAD-502 (Minolta Camera Co., Osaka, Japan) right after
the flight mission on the day of every UAV survey. The average SPAD value of the 20
leaves was calculated as the LCC of a given plot, and the SPAD value of each plot was
recorded as a sample. Finally, a total of 180 samples in Ningxia and 228 samples in Shanghai
were recorded.

2.3. Statistical Analysis
2.3.1. Correlational Analysis

Correlational analysis was employed to investigate the response of spectral reflectance
and vegetation indices to rice LCC. The Pearson’s correlation coefficients (r) between LCC
and the spectral parameters (reflectance and vegetation indices) in Ningxia and Shanghai
was calculated using Equation (1):

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(1)

where n is the sample size, xi and yi are the individual sample i, xi is the mean value of
all x samples, and analogously for yi. An absolute value of r closer to 1 indicates a better
correlation between x and y.

2.3.2. Regression Analysis

Three groups of datasets were established from the collected data: Ningxia, Shanghai,
and Ningxia-Shanghai. The Ningxia group contained 180 samples. The Shanghai group
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contained 228 samples. The Ningxia-Shanghai group, which was the combination of the
Ningxia and Shanghai groups, contained 408 samples. Each dataset was split into two
parts of sub-datasets, with 2/3 for model calibration (Cal) and the rest, 1/3 for validation
(Val). The Ningxia-Shanghai calibration (Ningxia-Shanghai_Cal, 272 samples) sub-dataset
consisted of the Ningxia calibration (Ningxia_Cal, 120 samples) and Shanghai calibration
(Shanghai_Cal, 152 samples) sub-datasets. The Ningxia-Shanghai validation (Ningxia-
Shanghai_Val, 136 samples) sub-dataset consisted of the Ningxia validation (Ningxia_Val,
60 samples) and Shanghai validation (Shanghai_Val, 76 samples) sub-datasets.

For each of the three groups of datasets, rice LCC estimation models were established
by taking the vegetation indices as independent variables and using three methods: PLSR,
SVR, and Artificial Neural Network (ANN). PLSR is a multiple linear regression method
integrating principal component analysis, correlation analysis, and canonical correlation
analysis. PLSR helps to build stable models by effectively eliminating multiple correlations
between the independent variables and extracting the composite variables, which are most
explanatory of the dependent variables [44–47]. SVR is a machine-learning regression
algorithm based on statistical learning theory. By using kernel functions, the input data
is mapped into a higher-dimensional space, in which the optimal regression models are
constructed [48]. ANN is a nonlinear machine learning algorithm that mimics the structure
and function of biological neural networks [49].

In this study, the number of components for the PLSR model was determined when
the overall mean predicted R2, calculated based on the predicted residual sum of squares
(PRESS) reached a maximum in the LeaveOne-Out Cross Validation (LOOCV) scheme.
For SVR models, the Gaussian function was adopted as the kernel, and the grid search
method and cross validation were used to determine the parameters. For ANN models,
the multilayer feedforward neural network (including the input layer, hidden layer, and
output layer) was used to build the SPAD estimation models, and the training algorithm
was chosen as Levenberg-Marquardt and the hidden layer number was set as 5.

The coefficient of determination (R2), root mean square error (RMSE), and mean
absolute percentage error (MAPE) were used to evaluate the predictive performance of
each model. The equations of R2, RMSE, and MRE are presented in Equations (2)–(4):

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)2 (2)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(3)

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4)

where n is the number of samples, yi and ŷi is the measured and predicted value of sample
i, yi is the average value of all samples. A higher R2 value (close to 1) with a lower RMSE
and MAPE (close to 0) indicate a better model accuracy.

Two kinds of validation were applied to test the prediction accuracy and generalization
ability of the different models. First, the models were validated within the groups in which
they were built. Second, the models were validated interactively, that is to say, validating
the models built based on the Ningxia (Shanghai) group using data from the Shanghai
(Ningxia) group, by which the most stable modelling method could be revealed. All these
statistical analyses were performed using the MATLAB R2018a software (MathWorks,
Natick, MA, USA).
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3. Results
3.1. Statistics of LCC

Table 3 shows the summary statistics for the measured LCC of rice leaves in Ningxia
and Shanghai. The statistical characteristics of rice LCC showed similar tendencies in these
two study areas.

Table 3. Statistical characteristics of rice LCC in Ningxia and Shanghai.

Study Area Sample Number Maximum Minimum Mean Median Standard Deviation

Ningxia 180 49.4 12.5 34.8 37.6 8.9
Shanghai 228 48.6 15.7 39.1 40.7 6.2

3.2. Response of Spectral Reflectance and Vegetation Indices to Rice LCC

The correlation between the spectral reflectance at each band and rice LCC in Ningxia
and Shanghai showed a similar pattern in the wavelength range of 450–720 nm with
significant negative correlations (|r| > 0.4), as shown in Figure 2. The highest correlations
appeared in the red bands in both Ningxia and Shanghai, with r = −0.88 at 670 nm for
Ningxia and r = −0.80 at 668 nm for Shanghai. At the NIR range, the correlations between
spectral reflectance and LCC were slightly positive for the rice in Ningxia and significantly
positive for the rice in Shanghai with r = 0.44.
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and Shanghai.

As shown in Table 4, all of the eight vegetation indices were significantly correlated
with rice LCC with an absolute r value higher than 0.4 in both Ningxia and Shanghai.
NPCI had a high negative correlation with LCC. The other seven vegetation indices had
positive correlations with LCC. NDVI and NPCI both responded to LCC better than the
other vegetation indices in Ningxia with an r value of 0.75 and −0.81, respectively. The
r values of RVI, GNDVI, and RENDVI were between 0.6 and 0.7, while those of GRVI, REVI,
and MTCI were below 0.6. For rice in Shanghai, the r values were all above 0.7, which
indicated a good response of all of the vegetation indices to LCC.
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Table 4. Correlation coefficients between vegetation indices and rice LCC in Ningxia and Shanghai.

Vegetation Index
Correlation Coefficient

Ningxia Shanghai

NDVI 0.75 ** 0.85 **
RVI 0.67 ** 0.78 **

GNDVI 0.61 ** 0.78 **
GRVI 0.59 ** 0.75 **

RENDVI 0.64 ** 0.84 **
RERVI 0.58 ** 0.82 **
NPCI −0.81 ** −0.71 **
MTCI 0.47 ** 0.79 **

** denotes significant correlation at the 0.01 level.

3.3. Estimation Models of Rice LCC

Estimation models of rice LCC were constructed based on the calibration sub-datasets
using PLSR, SVR, and ANN methods for Ningxia, Shanghai, and Ningxia-Shanghai, respec-
tively. As shown in Table 5, all models yielded good performances, with R2 values higher
than 0.8, RMSE lower than 3.5, and MAPE lower than 10%. The models of the Shanghai
group performed better than those of the Ningxia and Ningxia-Shanghai groups, with
RMSE values lower than 2.2 and a MAPE below 5.4%. The models of Ningxia, in which the
RMSE was higher than 2.8 and MAPE was above 8.2%, were less accurate compared with
the other two groups. The performances of Ningxia-Shanghai models were at moderate
levels. Two machine learning methods, SVR and ANN, were superior to PLSR, with an R2

value between 0.88 and 0.90 and a smaller RMSE and MAPE.

Table 5. Performance of rice LCC estimation models for Ningxia, Shanghai, and Ningxia-Shanghai
combination calibration datasets based on all the eight vegetation indices.

Calibration Dataset Method R2 RMSE MAPE (%)

Ningxia_Cal
PLSR 0.84 3.41 8.91
SVR 0.89 2.88 8.40

ANN 0.90 2.84 8.27

Shanghai_Cal
PLSR 0.82 2.14 5.36
SVR 0.90 1.63 4.13

ANN 0.88 1.76 4.48

Ningxia-Shanghai_Cal
PLSR 0.81 3.33 8.9
SVR 0.88 2.57 6.91

ANN 0.89 2.47 6.66

3.4. Validation of Rice LCC Estimation Models
3.4.1. Validation of Models within the Group

Validation sub-datasets for each group were used to evaluate the prediction accuracy
of the LCC estimation models for their group. As shown in Table 6 and Figure 3, the models
for Shanghai yielded the highest prediction accuracy, with an RMSE between 2.08 and
2.24 and MAPE between 5.11% to 5.72%. The models of Ningxia turned out to be lower in
prediction accuracy, with an RMSE between 3.45 and 4.00 and MAPE larger than 10.1%. In
terms of modeling methods, SVR and ANN models had better predictive ability than the
PLSR model in each group, with an R2 value between 0.84 and 0.86 and lower values of
RMSE and MAPE. Scatter plots between measured and predicted LCC along the 1:1 line
indicated a trend that lower LCC were overestimated by all the models in the Ningxia and
Ningxia-Shanghai groups (Figure 3).
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Table 6. Validation of rice leaf LCC estimation models for the same group.

Validation Dataset Model R2 RMSE MAPE (%)

Ningxia_Val
Ningxia_PLSR 0.81 4.00 11.87
Ningxia_SVR 0.86 3.48 10.23

Ningxia_ANN 0.86 3.45 10.15

Shanghai_Val
Shanghai_PLSR 0.79 2.24 5.72
Shanghai_SVR 0.86 2.00 5.11

Shanghai_ANN 0.84 2.08 5.31

Ningxia-Shanghai_Val
Ningxia-Shanghai_PLSR 0.76 3.69 10.03
Ningxia-Shanghai_SVR 0.84 2.93 7.94

Ningxia-Shanghai_ANN 0.84 3.01 8.11
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3.4.2. Interactive Validation of Models

In order to test whether the UAV-based rice LCC estimation models built in one study
area could be used in another region with a different sensor, here we use all the data in
the Ningxia group (Ningxia_All) to validate the rice LCC estimation models built based
on the Shanghai group and all the data in the Shanghai group (Shanghai_All) to validate
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the models constructed based on the Ningxia group. The results are given in Table 7 and
Figure 4. For both Ningxia and Shanghai, the PLSR models outperformed the SVR and
ANN models in predictive accuracy and stability, with R2 values of 0.74 and 0.71, RMSE
values of 5.45 and 6.21, and MAPE values of 15.95% and 15.84%, respectively. The predicted
rice LCC of Ningxia using the Shanghai_ANN model and those of Shanghai using the
Ningxia_SVR model were less accurate, with an R2 vaue of 0.69, RMSE values of 5.80 and
6.76, and MAPE values of 17.00% and 16.14%. However, as can be observed from Figure 4,
the predicted rice LCCs of Ningxia using the Shanghai_SVR model and those of Shanghai
using the Ningxia_ANN model greatly deviated from the measured values with very low
R2 values of 0.14 and 0.12, high RMSE values of 15.38 and 13.38, and large MAPE of values
45.3% and 34.11%, respectively.

Table 7. Interactive validation of rice LCC estimation models of Ningxia and Shanghai.

Validation Dataset Model R2 RMSE MAPE (%)

Ningxia_All
Shanghai_PLSR 0.74 5.45 15.95
Shanghai_SVR 0.14 15.38 45.03

Shanghai_ANN 0.69 5.80 17.00

Shanghai_All
Ningxia_PLSR 0.71 6.21 15.84
Ningxia_SVR 0.69 6.76 16.14

Ningxia_ANN 0.12 13.38 34.11
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4. Discussion

In this study, we found that despite the differencse in the region, variety, and sensor,
the correlation between rice LCC, spectral reflectance, and vegetation indices in Ningxia
and Shanghai had similarities. This result was in accordance with the previous findings by
researchers on the spectral characteristics of rice LCC or chlorophyll content using visible
and near-infrared spectrometers [50–53], which indicated that the spectral responses of rice
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LCC or chlorophyll content shared the same pattern, that is, the spectral reflectance and rice
LCC had significant negative correlations at the wavelength range of 450–720 nm. The eight
vegetation indices were found to be closely related to rice LCC, which was in accordance
with the findings by Xie [50]. On the other side, differences in spectral reflectance in the
NIR range between Ningxia and Shanghai can be observed. The most possible reason
was that the Shanghai group contained more data collected in the maturation stage, when
the correlation between LCC and spectral reflectance in the NIR range was higher than
at other growth stages [54]. Similar phenomena were also found in other crops such as
wheat, maize, and potatoes [25,55,56]. Since the field remote sensing data collection largely
depended on weather conditions, the growth stages when the field campaigns were carried
out were not unified in different study areas and years. The difference between Ningxia
and Shanghai groups in growth stage also affected the response of vegetation indices and
model accuracy.

Theoretically, the reflectance of the same target measured under standard conditions
by different spectral sensors, which are strictly calibrated should be coincident. However,
in the actual measurement operation, the spectral reflectance value is affected by band-
response functions, spatial resolution, and environmental factors such as atmospheric
transmissivity, solar zenith angle, solar declination angle, and soil background, which
would cause a systematic difference [1,57]. Vegetation indices, which are designed to be
particularly sensitive to vegetative covers, are less affected by those factors [58,59]. The rice
fields in Ningxia and Shanghai are at different latitudes, with different soil backgrounds
and solar illumination geometry. The spectral response functions and spatial resolution of
S185 and Redege 3 also vary. In order to minimize the error in spectral reflectance caused
by the environment and sensor type and make the variables available for both regions,
vegetation indices rather than spectral reflectance were chosen as independent variables in
the rice leaf SPAD estimation models.

The validation of rice LCC estimation models for the Ningxia-Shanghai group indi-
cated that the models were capable of predicting LCC of rice in both Ningxia and Shanghai
with relatively low errors, which answered the question of whether a certain crop trait
could be predicted by a general model for different regions and sensors. In addition, the
interaction validation of PLSR models of Ningxia and Shanghai in Section 3.4.2 also yielded
good predicting results with MAPE less than 20%, which indicated that, based on the same
spectral response pattern, a model of the same crop trait constructed for one region and
spectral sensor using the PLSR method was still available for another region and sensor. It
is impossible to build new models for every new region in the application of remote sensing
monitoring of crop growth. In cases where no prior data is available, models transplanted
from another region and sensors could be used to provide informative results.

The performances of models using different regression methods varied in validation
steps. Models using two machine learning methods, SVR and ANN, achieved high ac-
curacy when validated by the validation sub-dataset from the same group of the dataset
(Section 3.4.1). However, the LCC prediction accuracy decreased dramatically when SVR
or ANN models for one region were applied to the other, implying limited generalization
ability (Section 3.4.2). PLSR models showed better prediction accuracy and stability in
the interactive validation. Although machine learning is effective in data mining, the lack
of interpretability may increase the uncertainty of the model [60]. Previous studies have
suggested that the training data has a strong influence on the performance of machine
learning methods, and extreme attention should be paid when applying regression models
with machine learning algorithms to data collected under different conditions from the
training data [61]. There are several possible explanations, as follows: The data from the
two study areas had global features in common (for example, the same spectral response
pattern as LCC), as well as local features of their own that were caused by the difference
in location, cultivar, and sensor. Two machine learning methods, SVR and ANN, would
make the most of both global and local features within the training dataset in the modeling
procress to minimize prediction error. However, the difference in local features would lower
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the prediction accuracy when applying the machine learning-based models to another
dataset. In contrast, the PLSR method mainly used global features in model construction,
thus resulting in better generalization ability than SVR and ANN.

5. Conclusions

The application of UAV-based remote sensing to crop growth monitoring has gradually
entered the practical stage. Therefore, it is of great importance to develop remote sensing
models for crop monitoring, which are suitable for multiple regions and types of sensors. In
this study, images of rice fields in two different regions were acquired by multispectral and
hyperspectral cameras mounted on UAV platforms. Analysis of the spectral response of
rice LCC in different regions showed a similar pattern: spectral reflectance at the green and
red bands, as well as two vegetation indices (NDVI and NPCI), were highly correlated with
the LCC. All the estimation models of rice LCC yielded good accuracy within the group
where the training data came from. Models built with PLSR rather than SVR and ANN,
which achieved outstanding performance in the interactive validation, had the potential to
be used as general estimation models of rice LCC.

As far as we know, this was the first approach to building models based on UAV-based
remote sensing data from different regions and sensors. It demonstrates that it is feasible to
study general models for UAV-based retrieval of agronomic parameters. The outcomes of
this study could be used by practitioners and organizations to develop sensors that can
directly produce LCC or chlorophyll content distribution maps based on spectral images of
rice fields, which is very intuitive and helpful for farmers.

This study involved two independent experiments, the conditions of which varied in
many aspects. It is difficult to analyze the influence of specific factors on the LCC estimation.
Therefore, this paper focused on finding the common points in the spectral response and
estimation models of the two experiments. In the future, experiments with carefully
controlled conditions should be designed for more in-depth studies on the influence of
specific factors such as flight height, time, and weather.
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Abbreviations and Nomenclatures

RS remote sensing
UAV unmanned aerial vehicle
RGB red, green, and blue
LCC leaf chlorophyll content
SPAD soil plant analysis development
PLSR partial least-squares regression
SVR support vector regression
ANN artificial neural network
Cal calibration
Val validation
r correlation coefficient
R2 coefficient of determination
RMSE root mean square error
MAPE mean absolute percentage error
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