ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Priming/Overpriming Treatments
2.2. Germination Tests and Biometrical Analyses
2.3. Relative Water Content (RWC) Measurement
2.4. ROS Detection by 2′,7′-Dichlorofluorescin Diacetate (DCF-DA) Assay
2.5. H2O2 Detection by 3,3′-Diaminobenzidine (DAB) Staining
2.6. Statistical Analyses
3. Results
3.1. Hydropriming and Hormopriming Improve Germination Performances in M. truncatula
3.2. Radicle Emergence Impairs Seed Desiccation Tolerance and Post-Priming Seedling Development
3.3. Overpriming Results into ROS Accumulation after Dry-Back
3.4. The Loss of Desiccation Tolerance Correlates with Radicle Protrusion Length and with ROS Levels during Dry-Back
3.5. The Correlation between ROS Accumulation and Loss of Desiccation Tolerance Is Reproducible in Medicago sativa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Farooq, M.; Usman, M.; Nadeem, F.; ur Rehman, H.; Wahid, A.; Basra, S.M.A.; Siddique, K.H.M. Seed priming in field crops: Potential benefits, adoption and challenges. Crop. Pasture Sci. 2019, 70, 731–771. [Google Scholar] [CrossRef]
- Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004, 14, 93–107. [Google Scholar] [CrossRef]
- Macovei, A.; Pagano, A.; Leonetti, P.; Carbonera, D.; Balestrazzi, A.; Araújo, S.S. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: Implications on seed technology traits. Plant Cell Rep. 2017, 36, 669–688. [Google Scholar] [CrossRef] [Green Version]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Bray, C.M.; West, C.E. Seeds and the Art of Genome Maintenance. Front. Plant Sci. 2019, 10, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macovei, A.; Balestrazzi, A.; Confalonieri, M.; Carbonera, D. The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn.: Bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 2010, 232, 393–407. [Google Scholar] [CrossRef]
- Macovei, A.; Balestrazzi, A.; Confalonieri, M.; Faé, M.; Carbonera, D. New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiol. Biochem. 2011, 49, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Araújo, S.S.; Macovei, A.; Leonetti, P.; Balestrazzi, A. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula. Front. Plant Sci. 2017, 8, 1972. [Google Scholar] [CrossRef]
- Pagano, A.; de Sousa Araújo, S.; Macovei, A.; Dondi, D.; Lazzaroni, S.; Balestrazzi, A. Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula. Plant Cell Environ. 2019, 42, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Forti, C.; Ottobrino, V.; Bassolino, L.; Toppino, L.; Rotino, G.L.; Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds. Hortic. Res. 2020, 7, 87. [Google Scholar] [CrossRef]
- Forti, C.; Shankar, A.; Singh, A.; Balestrazzi, A.; Prasad, V.; Macovei, A. Hydropriming and Biopriming Improve Medicago truncatula Seed Germination and Upregulate DNA Repair and Antioxidant Genes. Genes 2020, 11, 242. [Google Scholar] [CrossRef] [Green Version]
- Forti, C.; Ottobrino, V.; Doria, E.; Bassolino, L.; Toppino, L.; Rotino, G.L.; Pagano, A.; Macovei, A.; Balestrazzi, A. Hydropriming Applied on Fast Germinating Solanum villosum Miller Seeds: Impact on Pre-germinative Metabolism. Front. Plant Sci. 2021, 12, 639336. [Google Scholar] [CrossRef]
- Soeda, Y.; Konings, M.C.; Vorst, O.; van Houwelingen, A.M.; Stoopen, G.M.; Maliepaard, C.A.; Kodde, J.; Bino, R.J.; Groot, S.P.; van der Geest, A.H. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 2005, 137, 354–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarquis, A.M.; Bradford, K.J. Prehydration and Priming Treatments that Advance Germination also Increase the Rate of Deterioration of Lettuce Seeds. J. Exp. Bot. 1992, 43, 307–317. [Google Scholar] [CrossRef]
- Capron, I.; Corbineau, F.; Dacher, F.; Job, C. Sugar beet seed priming: Effects of priming conditions on germination, solubilisation of 11S globulin and accumulation of LEA proteins. Seed Sci. Res. 2000, 10, 243–254. [Google Scholar] [CrossRef]
- Ranal, M.A.; Garcia de Santana, D. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Jan, M.T.; Khan, N.; Khan, A.; Khan, M.; Munir, I. Effect of seed priming on growth parameters of soybean. Pak. J. Bot. 2010, 42, 2803–2812. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-Priming Effects on Seed Germination and Field Performance of Faba Bean in Spring Sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.V.; Faria, J.M.; Tonetti, O.A.; Silva, E.A. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination. Braz. J. Biol. 2014, 74, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Buitink, J.; Vu, B.L.; Satour, P.; Leprince, O. The re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. seeds. Seed Sci. Res. 2003, 13, 273–286. [Google Scholar] [CrossRef]
- Maia, J.; Dekkers, B.J.; Provart, N.J.; Ligterink, W.; Hilhorst, H.W. The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS ONE 2011, 6, e29123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekkers, B.J.; Costa, M.C.; Maia, J.; Bentsink, L.; Ligterink, W.; Hilhorst, H.W. Acquisition and loss of desiccation tolerance in seeds: From experimental model to biological relevance. Planta 2015, 241, 563–577. [Google Scholar] [CrossRef]
- Wang, W.Q.; Wang, Y.; Song, X.J.; Zhang, Q.; Cheng, H.Y.; Liu, J.; Song, S.Q. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds. J. Proteome Res. 2021, 20, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Reisdorph, N.A.; Koster, K. Progressive loss of desiccation tolerance in germinating pea (Pisum sativum) seed. Physiol. Plant 1999, 105, 266–271. [Google Scholar] [CrossRef]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef]
- Leprince, O.; Hendry, G.A.; Atherton, N.M.; Walters-Vertucci, C.W. Free radicals and metabolism associated with the acquisition and loss of desiccation tolerance in developing seeds. Biochem. Soc. Trans. 1996, 24, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Rasul, F.; Gupta, S.; Olas, J.J.; Gechev, T.; Sujeeth, N.; Mueller-Roeber, B. Priming with a Seaweed Extract Strongly Improves Drought Tolerance in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 1469. [Google Scholar] [CrossRef]
- Huang, H.; Song, S. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process. Plant Physiol. Biochem. 2013, 68, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.L.; Wang, Z.Y.; Fan, J.W.; Turner, N.C.; Wang, T.; Li, F.M. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J. Exp. Bot. 2012, 63, 4849–4860. [Google Scholar] [CrossRef]
- Roach, T.; Beckett, R.P.; Minibayeva, F.V.; Colville, L.; Whitaker, C.; Chen, H.; Bailly, C.; Kranner, I. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ. 2010, 33, 59–75. [Google Scholar] [PubMed]
- Chandra, J.; Keshavkant, S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol. Mol. Biol. Plants 2018, 24, 75–87. [Google Scholar] [CrossRef]
- Peng, L.; Lang, S.; Wang, Y.; Pritchard, H.W.; Wang, X. Modulating role of ROS in re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom. J. Exp. Bot. 2017, 68, 3585–3601. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rodríguez, M.C.; Archidona-Yuste, A.; Abril, N.; Gil-Serrano, A.M.; Meijón, M.; Jorrín-Novo, J.V. Germination and early seedling development in Quercus ilex recalcitrant and non-dormant seeds: Targeted transcriptional, hormonal, and sugar analysis. Front. Plant Sci. 2018, 9, 1508. [Google Scholar] [CrossRef]
- Macovei, A.; Caser, M.; Donà, M.; Valassi, A.; Giovannini, A.; Carbonera, D.; Scariot, V.; Balestrazzi, A. Prolonged cold storage affects pollen viability and germination along with hydrogen peroxide and nitric oxide content in Rosa hybrida. Not. Bot. Horti Agrobot. 2016, 44, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Kiran, K.R.; Deepika, V.B.; Swathy, P.S.; Prasad, K.; Kabekkodu, S.P.; Murali, T.S.; Satyamoorthy, K.; Muthusamy, A. ROS-dependent DNA damage and repair during germination of NaCl primed seeds. J. Photochem. Photobiol. B Biol. 2020, 213, 112050. [Google Scholar] [CrossRef]
- Assaad, H.I.; Hou, Y.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid publication-ready MS-Word tables for two-way ANOVA. SpringerPlus 2015, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Bryksová, M.; Hybenová, A.; Hernándiz, A.E.; Novák, O.; Pěnčík, A.; Spíchal, L.; De Diego, N.; Doležal, K. Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety. Front. Plant Sci. 2020, 11, 1941. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology; Araújo, S., Balestrazzi, A., Eds.; InTechOpen: London, UK, 2016. [Google Scholar]
- Barga, S.; Dilts, T.E.; Leger, E.A. Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 2017, 185, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Johnston, I.G.; Bassel, G.W. Variability in seeds: Biological, ecological, and agricultural implications. J. Exp. Bot. 2017, 68, 809–817. [Google Scholar] [CrossRef]
- Sawan, Z.M.; Mohamed, A.A.; Sakr, R.A.; Tarrad, A.M. Effect of kinetin concentration and methods of application on seed germination, yield components, yield and fiber properties of the Egyptian cotton (Gossypium barbadense). Environ. Exp. Bot. 2000, 44, 59–68. [Google Scholar] [CrossRef]
- Tuan, P.A.; Yamasaki, Y.; Kanno, Y.; Seo, M.; Ayele, B.T. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci. Rep. 2019, 9, 3983. [Google Scholar] [CrossRef] [Green Version]
- Araújo, S.; Pagano, A.; Dondi, D.; Lazzaroni, S.; Pinela, E.; Macovei, A.; Balestrazzi, A. Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci. Rep. 2019, 9, 10466. [Google Scholar] [CrossRef] [Green Version]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus. Biol. 2008, 331, 806–814. [Google Scholar] [CrossRef]
- Mhamdi, A.; Van Breusegem, F. Reactive oxygen species in plant development. Development 2018, 145, dev164376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [Green Version]
- Kranner, I.; Roach, T.; Beckett, R.P.; Whitaker, C.; Minibayeva, F.V. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J. Plant Physiol. 2010, 167, 805–811. [Google Scholar] [CrossRef]
- Pukacka, S.; Ratajczak, E. Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct. Plant Biol. 2007, 34, 601–613. [Google Scholar] [CrossRef]
- Kalemba, E.M.; Bagniewska-Zadworna, A.; Suszka, J.; Pukacka, S. Dehydration Sensitivity at the Early Seedling Establishment Stages of the European Beech (Fagus sylvatica L.). Forests 2019, 10, 900. [Google Scholar] [CrossRef] [Green Version]
- Oracz, K.; Karpiński, S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016, 7, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, Y.; Yuasa, T.; Iwaya-Inoue, M. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. Adv. Exp. Med. Biol. 2018, 1081, 233–257. [Google Scholar]
- Buitink, J.; Leger, J.J.; Guisle, I.; Vu, B.L.; Wuillème, S.; Lamirault, G.; Le Bars, A.; Le Meur, N.; Becker, A.; Küster, H.; et al. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J. 2006, 47, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Roqueiro, G.; Maldonado, S.; Ríos, M.; Maroder, H. Fluctuation of oxidative stress indicators in Salix nigra seeds during priming. J. Exp. Bot. 2012, 63, 3631–3642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Villasante, C.; Burén, S.; Barón-Sola, Á.; Martínez, F.; Hernández, L.E. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016, 109, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Priming | Treatment | G (%) | T50 (h) | PV (N/h) | MGT (h) |
---|---|---|---|---|---|
UP | H | 68 ± 4.36 bc | 25.9 ± 0.98 a | 0.327 ± 0.038 c | 30.5 ± 0.78 a |
UP | K | 81 ± 3.67 ab | 19.4 ± 0.54 d | 0.642 ± 0.026 a | 21.5 ± 0.59 d |
P2h | H | 87 ± 5.15 a | 22.4 ± 1.04 bc | 0.511 ± 0.041 ab | 25.8 ± 1.26 bc |
P2h | K | 77 ± 4.64 ab | 18.9 ± 0.36 d | 0.533 ± 0.048 ab | 22.6 ± 0.74 cd |
P24h | H | 65 ± 1.58 bc | 22.5 ± 0.27 b | 0.363 ± 0.022 c | 26.4 ± 0.42 b |
P24h | K | 55 ± 4.74 c | 19.6 ± 0.32 cd | 0.414 ± 0.015 bc | 20.9 ± 0.36 d |
p-value treatment | 0.502 | <0.001 | <0.001 | <0.001 | |
p-value priming | <0.001 | 0.015 | 0.002 | 0.011 | |
p-value interaction | 0.015 | 0.028 | <0.001 | 0.003 | |
Priming | Treatment | MGR (1/h) | CVG (%) | U (bit) | Z (unit) |
UP | H | 0.0328 ± 0.0008 d | 3.28 ± 0.081 d | 2.71 ± 0.130 ab | 0.102 ± 0.029 b |
UP | K | 0.0466 ± 0.0013 a | 4.66 ± 0.13 a | 2.06 ± 0.150 c | 0.234 ± 0.027 a |
P2h | H | 0.0392 ± 0.0021 bc | 3.92 ± 0.208 bc | 2.77 ± 0.125 a | 0.115 ± 0.018 b |
P2h | K | 0.0445 ± 0.0015 ab | 4.45 ± 0.152 ab | 2.97 ± 0.053 a | 0.084 ± 0.005 b |
P24h | H | 0.0380 ± 0.0006 cd | 3.80 ± 0.060 cd | 2.88 ± 0.080 a | 0.080 ± 0.011 b |
P24h | K | 0.0478 ± 0.0008 a | 4.78 ± 0.083 a | 2.17 ± 0.193 bc | 0.164 ± 0.030 ab |
p-value treatment | <0.001 | <0.001 | 0.001 | 0.002 | |
p-value priming | 0.061 | 0.061 | 0.003 | 0.015 | |
p-value interaction | 0.012 | 0.012 | 0.003 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagano, A.; Folini, G.; Pagano, P.; Sincinelli, F.; Rossetto, A.; Macovei, A.; Balestrazzi, A. ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds. Agronomy 2022, 12, 268. https://doi.org/10.3390/agronomy12020268
Pagano A, Folini G, Pagano P, Sincinelli F, Rossetto A, Macovei A, Balestrazzi A. ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds. Agronomy. 2022; 12(2):268. https://doi.org/10.3390/agronomy12020268
Chicago/Turabian StylePagano, Andrea, Giulia Folini, Paola Pagano, Federico Sincinelli, Andrea Rossetto, Anca Macovei, and Alma Balestrazzi. 2022. "ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds" Agronomy 12, no. 2: 268. https://doi.org/10.3390/agronomy12020268
APA StylePagano, A., Folini, G., Pagano, P., Sincinelli, F., Rossetto, A., Macovei, A., & Balestrazzi, A. (2022). ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds. Agronomy, 12(2), 268. https://doi.org/10.3390/agronomy12020268