Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils
Abstract
:1. Introduction
2. Material and Method
2.1. Plant Materials and Experimental Arrangement
2.2. Observations and Measurements
2.2.1. Agronomic Parameters
2.2.2. Physiological Parameters
2.2.3. Forage Yield, Forage Quality and Grain Yield
2.3. Statistical Analysis
3. Results
3.1. Plant Height
3.2. Leaf Area Index
3.3. SOD, POD and CAT
3.4. MDA, Proline and Soluble Sugar
3.5. Biomass Yield, Grain Yield and Yield Components
3.5.1. Biomass Yield
3.5.2. Panicles, Spikelets per Panicle, Grain Weight, and Grain Yield
3.5.3. Crude Fat, Crude Protein, and Crude Fiber
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viswanathan, C.; André, J.; Zhu, J.K. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448. [Google Scholar]
- Zhang, H.B.; Cui, J.; Cao, T.; Zhang, J.; Liu, Q.; Liu, H. Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Acta Ecol. Sin. 2011, 31, 2805–2812. [Google Scholar]
- Pooja, S.; Rajesh, K. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar]
- Zhu, G.; Lu, H.; Shi, X.; Wang, Y.; Zhi, W.; Chen, X.; Liu, J.; Ren, Z.; Shi, Y.; Ji, Z.; et al. Nitrogen Management enhanced plant growth, antioxidant ability, and grain yield of rice under salinity stress. Agron. J. 2020, 112, 550–563. [Google Scholar] [CrossRef]
- Zhen, Y.; Wang, B. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric. Sci. 2015, 47, 125–130. [Google Scholar]
- Szabolcs, I. Global overview of sustainable management of salt affected soils. Bur. Soils Water Manag. 1995, 569–575. [Google Scholar]
- Wang, J.L.; Huang, X.J.; Zhong, T.Y. Review on sustainable utilization of salt affected land. ACTA Geogr. Sin. 2011, 66, 673–684. [Google Scholar]
- Pinthus, M.J. Lodging in Wheat, Barley, and Oats: The phenomenon, its causes, and preventive measures. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 1974; Volume 25, pp. 209–263. [Google Scholar]
- Bo, W.; Song, F. Physiological responses and adaptive capacity of oats to saline-alkali stress. Ecol. Environ. 2006, 15, 625–629. [Google Scholar]
- Wu, J.; Liu, J.; Li, Q.; Fu, Z. Effect of salt stress on oat seed germination and seeding membrane permeability. J. Triticeae Crops 2009, 29, 341–345. [Google Scholar]
- Lu, X.; Wang, Q.; Zhao, H.; Zhang, X.; Han, Y. Effects of salt stress on seed germination and emergence of different oat varieties. Pratacultural Sci. 2009, 26, 77–81. [Google Scholar]
- Luo, G.N.; Zhao, G.Q.; Liu, H. The comprehensive evaluation of salt tolerance for 24 oat cultivars. Grassl. Turf 2012, 32, 34–38. [Google Scholar]
- Liu, F.; Liu, J.; Zhu, R.; Zhang, Y.; Guo, Y.; Han, G.; Tang, F. Physiological responses and tolerance of four oat varieties to salt stress. Acta Prataculturae Sin. 2015, 24, 183–189. [Google Scholar]
- Yuan, F.; Chang-zhong, R.; Pin-fang, L.; Tu-sheng, R. Oat growth and cation absorption characteristics under salt and alkali stress. Chin. J. Appl. Ecol. 2011, 22, 2875–2882. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Song, X.; Zhou, G.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.; Yan, W.; Jiao, X. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Manimaran, M.; Poonkodi, P. Yield and yield attributes of maize as influenced by graded levels of phosphorus fertilization in salt affected soils. Ann. Agric. Res. 2014, 30, 26–28. [Google Scholar]
- Tunturk, M.; Tunturk, R.; Yasar, F. Changes in micronutrients, dry weight and plant growth of soybean (Glycine Max L. Merrill) cultivars under salt stress. Afr. J. Biotechnol. 2008, 7, 1650–1654. [Google Scholar]
- Short, T.W. Biochemistry and molecular biology of plants. Biochem. Mol. Biol. Educ. 2001, 29, 37–38. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Mekawy, A.M.M.; Liu, L.; Noori, M.S.; Kokulan, K.S.; Ueda, A.; Nagaoka, T.; Saneoka, H. Na+ retention in the root is a key adaptive mechanism to low and high salinity in the glycophyte, talinum paniculatum (Jacq.) gaertn. (Portulacaceae). J. Agron. Crop Sci. 2017, 203, 56–67. [Google Scholar] [CrossRef]
- Jini, D.; Joseph, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 2, 97–107. [Google Scholar] [CrossRef]
- Seckin, B.; Sekmen, A.H.; Türkan, S. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul. 2009, 28, 12–20. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed. Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- Czapla, J.; Stasiulewicz, L.; Nogalska, A. Effects of growth regulators, applied alone or in combination with magnesium sulfate, on nitrogen and magnesium economy in spring triticale plants. Pol. J. Nat. Sci. 2007, 22, 357–366. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Huang, J.; Zhong, X.; Yang, J.; Wang, G.; Zou, Y.; Zhang, F.; Zhu, Q.; Buresh, R.; Witt, C.; et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci. Agric. Sin. 2002, 35, 1095–1103. [Google Scholar]
- Jayakumar, B.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. (Special Issue: Oxidative stress and cell death.). J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar]
- Zhu, G.; Chen, Y.; Ella, E.S.; Ismail, A.M. Mechanisms associated with tiller suppression under stagnant flooding in rice. J. Agron. Crop Sci. 2019, 205, 235–247. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 2010, 326, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.E.H.; Zhu, X.; Zhou, G.; Ali, A.Y.A.; Ahmad, I.; Elsiddig, A.M.I.; Zhu, G.; Nimir, N.E.A. Promoting salt tolerance in wheat seedlings by application of nitrogen fertilizer. Pak. J. Bot. 2019, 51, 1995–2002. [Google Scholar] [CrossRef]
- Ibrahim, M.E.H.; Zhu, X.; Zhou, G.; Abidallhaa, E.H.M.A. Effects of Nitrogen on seedling growth of wheat varieties under salt stress. J. Agric. Sci. 2016, 8, 131. [Google Scholar] [CrossRef]
- Rui, M.; Almeida, M. Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar]
Variety | Fertilizer | Plant Height (cm) | LAI | ||||||
---|---|---|---|---|---|---|---|---|---|
TS | JS | HS | FS | TS | JS | HS | FS | ||
V1 | T1 | 17.1 ± 0.8 d | 45.2 ± 2.0 f | 68.6 ± 4.0 d | 100.1 ± 4.1 abc | 1.7 ± 0.07 bc | 2.7 ± 0.03 e | 3.6 ± 0.12 d | 2.8 ± 0.06 e |
T2 | 23.6 ± 1.0 a | 53.6 ± 1.7 cd | 81.1 ± 2.3 bc | 111.0 ± 4.8 a | 2.0 ± 0.09 a | 3.8 ± 0.16 b | 5.6 ± 0.19 b | 4.5 ± 0.04 c | |
T3 | 21.8 ± 1.1 b | 49.7 ± 1.5 e | 80.3 ± 2.5 c | 106.1 ± 1.4 ab | 1.5 ± 0.07 c | 3.9 ± 0.18 b | 5.9 ± 0.34 b | 4.9 ± 0.25 b | |
T4 | 22.2 ± 1.1 ab | 54.5 ± 1.8 bc | 90.6 ± 4.8 a | 109.1 ± 16.2 a | 1.6 ± 0.02 bc | 3.5 ± 0.16 c | 5.5 ± 0.32 b | 4.3 ± 0.23 c | |
V2 | T1 | 19.3 ± 1.0 c | 50.2 ± 1.1 de | 70.8 ± 2.6 d | 88.6 ± 2.3 c | 1.7 ± 0.08 b | 3.3 ± 0.12 d | 4.8 ± 0.26 c | 3.6 ± 0.17 d |
T2 | 22.9 ± 0.8 ab | 58.0 ± 2.6 ab | 86.2 ± 3.8 abc | 106.6 ± 9.2 ab | 2.2 ± 0.20 a | 4.4 ± 0.03 a | 6.6 ± 0.15 a | 5.3 ± 0.06 a | |
T3 | 19.4 ± 0.2 c | 52.8 ± 2.5 cde | 80.0 ± 2.8 c | 93.6 ± 8.7 c | 2.0 ± 0.13 a | 4.3 ± 0.04 a | 6.7 ± 0.19 a | 5.3 ± 0.11 a | |
T4 | 20.2 ± 0.5 c | 59.5 ± 3.1 a | 87.0 ± 4.5 ab | 94.5 ± 7.0 bc | 2.1 ± 0.08 a | 4.3 ± 0.15 a | 6.5 ± 0.26 a | 5.2 ± 0.19 ab | |
V | ** | ** | ns | ** | ** | ** | ** | ** | |
T | ** | ** | ** | * | ** | ** | ** | ** | |
V × T | ns | ns | ** | ns | ** | ns | ** | * |
Treatment | SOD (U/g FW/min) | POD (U/g FW/min) | CAT (U/g FW/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | JS | HS | FS | TS | JS | HS | FS | TS | JS | HS | FS | |
V | ** | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** |
T | ** | ** | ** | ** | ** | ** | ** | * | ** | ** | ** | ** |
V × T | ** | ns | ** | * | ns | ns | ** | ns | * | ns | ns | ** |
Treatment | MDA (nmol/g FW) | Pro (ug/g FW) | Soluble Sugar (mg/g DW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TS | JS | HS | FS | TS | JS | HS | FS | TS | JS | HS | FS | |
V | ** | ** | ns | ** | * | ** | ns | ** | ns | ns | ** | ns |
T | ** | ** | ** | * | ** | ** | ** | ** | ** | ** | ** | ** |
V × T | ns | ns | ** | ns | ns | ns | ** | ** | ns | ns | ns | ** |
Variety | Fertilizer | Biomass Yield | Panicles | Spikelets per | Grain Weight | Grain Yield |
---|---|---|---|---|---|---|
(kg ha−1) | (×104 ha−1) | panicle | (mg) | (kg ha−1) | ||
V1 | T1 | 6238 ± 108.2 e | 289.5 ± 2.7 bc | 25.0 ± 1.0 f | 21.8 ± 0.58 f | 1577.6 ± 25.5 e |
T2 | 7881 ± 344.2 bcd | 329.1 ± 3.0 a | 35.0 ± 1.0 ab | 23.3 ± 0.50 d | 2680.6 ± 46.1 b | |
T3 | 7530 ± 402.8 cde | 293.9 ± 6.7 b | 28.3 ± 1.0 e | 22.1 ± 0.35 ef | 1836.2 ± 57.4 d | |
T4 | 7048 ± 426.0 cde | 331.2 ± 2.1 a | 32.0 ± 1.5 cd | 22.7 ± 0.10 de | 2410.6 ± 225.6 c | |
V2 | T1 | 6708 ± 188.8 de | 274.7 ± 1.5 c | 30.0 ± 0.6 de | 24.6 ± 0.50 c | 2029.6 ± 55.9 d |
T2 | 9992 ± 412.4 a | 325.3 ± 5.0 a | 36.7 ± 0.6 a | 27.6 ± 0.26 a | 3293.7 ± 46.3 a | |
T3 | 8994 ± 151.2 ab | 332.0 ± 2.7 a | 33.3 ± 1.5 bc | 26.1 ± 0.21 b | 2888.7 ± 78.5 b | |
T4 | 8230 ± 160.5 bc | 341.7 ± 7.8 a | 35.0 ± 1.0 ab | 26.2 ± 0.25 b | 3136.8 ± 67.7 a | |
V | ** | ns | ** | ** | ** | |
T | ** | ** | ** | ** | ** | |
V × T | ** | ** | ns | ns | ns |
Variety | Fertilizer | Crude Fat (%) | Crude Protein (%) | Crude Fiber (%) |
---|---|---|---|---|
V1 | T1 | 1.35 ± 0.02 d | 10.27 ± 0.05 d | 37.44 ± 0.15 a |
T2 | 1.49 ± 0.02 bc | 12.56 ± 0.02 ab | 33.35 ± 0.10 cd | |
T3 | 1.44 ± 0.01 c | 12.74 ± 0.02 a | 35.30 ± 0.44 b | |
T4 | 1.55 ± 0.02 b | 11.59 ± 0.82 bc | 38.12 ± 0.47 a | |
V2 | T1 | 1.35 ± 0.02 d | 10.21 ± 0.03 d | 38.33 ± 0.09 a |
T2 | 1.55 ± 0.03 b | 11.51 ± 0.10 bc | 32.53 ± 0.25 d | |
T3 | 1.48 ± 0.02 bc | 11.02 ± 0.13 cd | 34.78 ± 0.28 bc | |
T4 | 1.66 ± 0.02 a | 11.93 ± 0.58 abc | 38.34 ± 0.12 a | |
V | ns | ** | * | |
T | ** | ** | ** | |
V × T | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Xu, Z.; Xu, Y.; Lu, H.; Ji, Z.; Zhou, G. Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils. Agronomy 2022, 12, 317. https://doi.org/10.3390/agronomy12020317
Zhu G, Xu Z, Xu Y, Lu H, Ji Z, Zhou G. Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils. Agronomy. 2022; 12(2):317. https://doi.org/10.3390/agronomy12020317
Chicago/Turabian StyleZhu, Guanglong, Zhenran Xu, Yunming Xu, Haitong Lu, Zhongya Ji, and Guisheng Zhou. 2022. "Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils" Agronomy 12, no. 2: 317. https://doi.org/10.3390/agronomy12020317
APA StyleZhu, G., Xu, Z., Xu, Y., Lu, H., Ji, Z., & Zhou, G. (2022). Different Types of Fertilizers Enhanced Salt Resistance of Oat and Associated Physiological Mechanisms in Saline Soils. Agronomy, 12(2), 317. https://doi.org/10.3390/agronomy12020317