Assessment of Fermentative Quality of Ensiled High-Moisture Maize Grains by a Multivariate Modelling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Sampling Datasets, and Ensiling Procedure
2.2. Chemical Analysis and Description of Fermentative Quality Indices
2.3. Statistical Analysis
3. Results
3.1. Fermentative Quality Pattern and Indices
3.2. Validation of Grain-Adapted Quality Score (GQS)
3.3. Classification Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 2013, 96, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesini, G.; Cortese, M.; Ughelini, N.; Ricci, R.; Chinello, M.; Contiero, B.; Andrighetto, I. Effect of total mixed ration processing time on ration consistency and beef cattle performance during the early fattening period. Anim. Feed Sci. Technol. 2020, 262, 114421. [Google Scholar] [CrossRef]
- Castro, L.P.; Pereira, M.N.; Dias, J.D.L.; Lage, D.V.D.; Barbosa, E.F.; Melo, R.P.; Ferreira, K.; Carvalho, J.T.R.; Cardoso, F.F.; Pereira, R.A.N. Lactation performance of dairy cows fed rehydrated and ensiled corn grain differing in particle size and proportion in the diet. J. Dairy Sci. 2019, 102, 9857–9869. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Bertuzzi, T.; Giuberti, G.; Moschini, M.; Bruschi, S.; Cerioli, C.; Masoero, F. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. J. Sci. Food Agric. 2016, 96, 437–448. [Google Scholar] [CrossRef]
- Fabiszewska, A.U.; Zielińska, K.J.; Wróbel, B. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: A minireview. World J. Microbiol. Biotechnol. 2019, 35, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Estrada, P.D.A.; De Andrade, P.A.M.; Paziani, S.D.F.; Nussio, L.G.; Quecine, M.C. Rehydration of dry corn preserves the desirable bacterial community during ensiling. FEMS Microbiol. Lett. 2020, 367, 76. [Google Scholar] [CrossRef]
- Gomes, A.L.M.; Bueno, A.V.I.; Jacovaci, F.A.; Donadel, G.; Ferraretto, L.F.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Effects of processing, moisture, and storage length on the fermentation profile, particle size, and ruminal disappearance of reconstituted corn grain. J. Anim. Sci. 2020, 98, 1–9. [Google Scholar] [CrossRef]
- Fernandes, J.; da Silva, É.B.; Carvalho-Estrada, P.D.A.; Daniel, J.L.P.; Nussio, L.G. Influence of hybrid, moisture, and length of storage on the fermentation profile and starch digestibility of corn grain silages. Anim. Feed Sci. Technol. 2021, 271, 114707. [Google Scholar] [CrossRef]
- Carvalho-Estrada, P.D.A.; Fernandes, J.; da Silva, É.B.; Tizioto, P.; Paziani, S.D.F.; Duarte, A.P.; Coutinho, L.L.; Verdi, M.C.Q.; Nussio, L.G. Effects of hybrid, kernel maturity, and storage period on the bacterial community in high-moisture and rehydrated corn grain silages. Syst. Appl. Microbiol. 2020, 43, 126131. [Google Scholar] [CrossRef]
- Marchesini, G.; Serva, L.; Chinello, M.; Gazziero, M.; Tenti, S.; Mirisola, M.; Garbin, E.; Contiero, B.; Grandis, D.; Andrighetto, I. Effect of maturity stage at harvest on the ensilability of maize hybrids in the early and late FAO classes, grown in areas differing in yield potential. Grass Forage Sci. 2019, 74, 415–426. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.K.; Scott, M.P.; Bodnar, A.L.; Schmidt, R.J.; Charley, R.C. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. J. Appl. Microbiol. 2017, 122, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Serva, L.; Marchesini, G.; Chinello, M.; Contiero, B.; Tenti, S.; Mirisola, M.; Grandis, D.; Andrighetto, I. Use of near-infrared spectroscopy and multivariate approach for estimating silage fermentation quality from freshly harvested maize. Ital. J. Anim. Sci. 2021, 20, 859–871. [Google Scholar] [CrossRef]
- Andrighetto, I.; Serva, L.; Gazziero, M.; Tenti, S.; Mirisola, M.; Garbin, E.; Contiero, B.; Grandis, D.; Marchesini, G. Proposal and validation of new indexes to evaluate maize silage fermentative quality in lab-scale ensiling conditions through the use of a receiver operating characteristic analysis. Anim. Feed Sci. Technol. 2018, 242, 31–40. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2003. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ferreira, G.; Mertens, D.R. Measuring detergent fibre and insoluble protein in corn silage using crucibles or filter bags. Anim. Feed Sci. Technol. 2007, 133, 335–340. [Google Scholar] [CrossRef]
- Schlau, N.; Mertens, D.; Taysom, K.; Taysom, D. Technical note: Effects of filter bags on neutral detergent fiber recovery and fiber digestion in vitro. J. Dairy Sci. 2021, 104, 1846–1854. [Google Scholar] [CrossRef]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a Filter Bag System for NDF, ADF, and IVDMD Forage Analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Martillotti, F.; Puppo, S. Liquid chromatographic determination of organic acids in silages and rumen fluids. Ann. Dell’istituto Sper. Zootec. 1985, 18, 1–10. [Google Scholar]
- De Jesus Inacio, L.; Merlanti, R.; Lucatello, L.; Bisutti, V.; Contiero, B.; Serva, L.; Segato, S.; Capolongo, F. Pyrrolizidine alkaloids in bee pollen identified by LC-MS/MS analysis and colour parameters using multivariate class modeling. Heliyon 2020, 6, e03593. [Google Scholar] [CrossRef]
- Segato, S.; Merlanti, R.; Bisutti, V.; Montanucci, L.; Serva, L.; Lucatello, L.; Mirisola, M.; Contiero, B.; Conficoni, D.; Balzan, S.; et al. Multivariate and machine learning models to assess the heat effects on honey physicochemical, colour and NIR data. Eur. Food Res. Technol. 2019, 245, 2269–2278. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Bruschi, S.; Fortunati, P.; Masoero, F. Use of principal factor analysis to generate a corn silage fermentative quality index to rank well- or poorly preserved forages. J. Sci. Food Agric. 2016, 96, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Riuzzi, G.; Davis, H.; Lanza, I.; Butler, G.; Contiero, B.; Gottardo, F.; Segato, S. Multivariate modelling of milk fatty acid profile to discriminate the forages in dairy cows’ ration. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Tabacco, E.; Righi, F.; Quarantelli, A.; Borreani, G. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 2011, 94, 1409–1419. [Google Scholar] [CrossRef]
- Windle, M.C.; Walker, N.; Kung, L., Jr. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time. J. Dairy Sci. 2014, 97, 3053–3060. [Google Scholar] [CrossRef] [Green Version]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.S.; Adesogan, A.T.; Nussio, L.G.; Daniel, J.L.P. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef] [Green Version]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Filya, I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim. Feed Sci. Technol. 2004, 116, 141–150. [Google Scholar] [CrossRef]
- Hoedtke, S.; Zeyner, A. Comparative evaluation of laboratory-scale silages using standard glass jar silages or vacuum-packed model silages. J. Sci. Food Agric. 2011, 91, 841–849. [Google Scholar] [CrossRef]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.-H. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass Forage Sci. 2017, 73, 53–66. [Google Scholar] [CrossRef]
- Serva, L.; Andrighetto, I.; Marchesini, G.; Contiero, B.; Grandis, D.; Magrin, L. Prognostic capacity assessment of a multiparameter risk score for aerobic stability of maize silage undergoing heterofermentative inoculation (Lactobacillus buchneri) in variable ensiling conditions. Anim. Feed Sci. Technol. 2021, 281, 115116. [Google Scholar] [CrossRef]
Constituents (g kg−1 DM) | Experimental (n = 80) Mean ± s.d. (Min–Max) | Farm-Derived (n = 201) Mean ± s.d. (Min–Max) |
---|---|---|
DM (g kg−1) | 656 ± 58 (556–784) | 688 ± 43 (579–814) |
Crude protein | 94.7 ± 7.9 (82.2–112.8) | 91.2 ± 9.8 (67.9–119.8) |
Ether extract | 32.7 ± 4.7 (20.9–44.8) | 39.6 ± 4.3 (26.3–49.3) |
Ash | 14.2 ± 1.2 (11.7–17.6) | 15.4 ± 1.9 (10.2–23.4) |
Neutral detergent fibre (aNDF) | 78.2 ± 3.3 (69.5–84.3) | 80.3 ± 12.9 (51.5–100.6) |
Acid detergent fibre (ADF) | 26.0 ± 4.5 (11.5–34.2) | 17.3 ± 6.1 (8.7–35.6) |
Starch | 720 ± 19.9 (659–757) | 668 ± 31.4 (589–753) |
Lactic acid | 18.0 ± 9.2 (4.2–35.3) | 18.2 ± 8.0 (3.6–39.6) |
Acetic acid | 3.0 ± 2.2 (0.5–9.1) | 5.1 ± 3.3 (0.5–14.2) |
Propionic acid | 1.1 ± 0.3 (0.3–2.7) | 1.0 ± 0.8 (0.2–4.8) |
Butyric acid | 0.44 ± 0.12 (0.16–0.89) | 0.49 ± 0.32 (0.11–1.28) |
Ethanol | 7.3 ± 3.2 (0.7–13.1) | 2.4 ± 1.5 (0.5–7.7) |
NH3-N (g 100 g−1 total N) | 1.8 ± 1.3 (0.3–5.3) | 3.5 ± 1.6 (0.4–9.3) |
pH | 4.09 ± 0.27 (3.54–4.69) | 4.05 ± 0.17 (3.64–4.68) |
Fermentative quality score | ||
Flieg-Zimmer’s (FQS) | 83.1 ± 14.3 (30.5–100) | 86.5 ± 15.7 (27.0–100) |
Grain-adapted (GQS) | 55.1 ± 15.3 (27.7–82.6) | 52.9 ± 12.3 (20.1–80.0) |
Standardized (SQS) | 0.0 ± 1.0 (–2.46–1.51) | 0.0 ± 1.0 (–2.81–3.72) |
Constituents * | Normalized Scores | ||||
---|---|---|---|---|---|
m − 2 × s.d. | m − s.d. | mean (m) | m + s.d. | m + 2 × s.d. | |
Lactic acid | 0.0 | 8.8 | 18.0 | 27.2 | 36.4 |
Scores | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
Acetic acid | 0.0 | 0.8 | 3.0 | 3.2 | 7.4 |
Butyric acid | 0.20 | 0.32 | 0.44 | 0.56 | 0.68 |
Ethanol | 0.9 | 4.1 | 7.3 | 10.5 | 13.7 |
Ammonia (NH3-N) | 0.0 | 0.5 | 1.8 | 3.1 | 4.4 |
pH | 3.55 | 3.82 | 4.09 | 4.36 | 4.63 |
Scores | 1.0 | 0.8 | 0.6 | 0.4 | 0.2 |
Constituents * | Range of Values | Linear Regression Equations | Score Intervals |
---|---|---|---|
Lactic acid (LA) | 10.3–26.1 | Score = –26.1 + 2.53 × LA | 0–40 |
Acetic acid (AA) | 1.8–8.4 | Score = 12.7 − 1.52 × AA | 10–0 |
Butyric acid (BA) | 0.2–0.8 | Score = 26.7 − 33.3 × BA | 20–0 |
Ethanol (ET) | 0.9–4.0 | Score = 12.9 − 3.23 × ET | 10–0 |
Ammonia (NH3-N) | 1.97–5.09 | Score = 24.4 − 4.80 × NH3-N | 15–0 |
pH | 3.88–4.23 | Score = 60.4 − 14.3 × pH | 5–0 |
AUC ± s.e. 1 | CI0.95 2 | Cut-Off | Sensitivity | Specificity | p-Value | |
---|---|---|---|---|---|---|
GQS vs. FQS 3 | 0.94 ± 0.02 | 0.89–0.97 | 46.6 | 0.87 | 0.88 | <0.001 |
GQS vs. SQS | 0.88 ± 0.04 | 0.82–0.93 | 70.5 | 0.86 | 0.85 | <0.001 |
Original Farm-Derived Dataset (n = 201) | ||
---|---|---|
Predicted as | FQS ≤ 80 (Poor Quality) | FQS > 80 (Good Quality) |
GQS ≤ 46.6 (poor quality) | 42 | 23 |
GQS > 46.6 (good quality) | 20 | 116 |
Predictive statistics | ||
Sensitivity | 0.68 | 0.83 |
Specificity | 0.83 | 0.68 |
Accuracy | 0.79 | 0.79 |
Precision | 0.65 | 0.85 |
MCC | 0.51 | 0.51 |
Predicted as | SQS ≤ 1 (Poor Quality) | SQS > 1 (Good Quality) |
GQS ≤ 70.5 (poor quality) | 62 | 121 |
GQS > 70.5 (good quality) | 0 | 18 |
Predictive statistics | ||
Sensitivity | 1.00 | 0.13 |
Specificity | 0.13 | 1.00 |
Accuracy | 0.40 | 0.40 |
Precision | 0.34 | 1.00 |
MCC 1 | 0.21 | 0.21 |
Prediction | Original Farm-Derived Dataset (n = 201) | |||
---|---|---|---|---|
Actual Class | GQS <39.8 | 39.8 ≤ GQS ≤ 70.4 | GQS > 70.4 | |
Predicted as | GQS < 39.8 (L) | 22 | 32 | 0 |
Predicted as | 39.8 ≤ GQS ≤ 70.4 (M) | 4 | 92 | 3 |
Predicted as | GQS > 70.4 (H) | 1 | 25 | 22 |
Predictive statistics | ||||
Sensitivity | 0.81 | 0.62 | 0.88 | |
Specificity | 0.82 | 0.87 | 0.85 | |
Accuracy | 0.82 | 0.68 | 0.86 | |
Precision | 0.41 | 0.93 | 0.46 | |
Matthews correlation coefficient | 0.49 | 0.42 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segato, S.; Marchesini, G.; Serva, L.; Contiero, B.; Magrin, L.; Andrighetto, I. Assessment of Fermentative Quality of Ensiled High-Moisture Maize Grains by a Multivariate Modelling Approach. Agronomy 2022, 12, 429. https://doi.org/10.3390/agronomy12020429
Segato S, Marchesini G, Serva L, Contiero B, Magrin L, Andrighetto I. Assessment of Fermentative Quality of Ensiled High-Moisture Maize Grains by a Multivariate Modelling Approach. Agronomy. 2022; 12(2):429. https://doi.org/10.3390/agronomy12020429
Chicago/Turabian StyleSegato, Severino, Giorgio Marchesini, Lorenzo Serva, Barbara Contiero, Luisa Magrin, and Igino Andrighetto. 2022. "Assessment of Fermentative Quality of Ensiled High-Moisture Maize Grains by a Multivariate Modelling Approach" Agronomy 12, no. 2: 429. https://doi.org/10.3390/agronomy12020429
APA StyleSegato, S., Marchesini, G., Serva, L., Contiero, B., Magrin, L., & Andrighetto, I. (2022). Assessment of Fermentative Quality of Ensiled High-Moisture Maize Grains by a Multivariate Modelling Approach. Agronomy, 12(2), 429. https://doi.org/10.3390/agronomy12020429