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Abstract: China has a marked continental monsoon climate characterized by dry and wet hazards
that have destructive impacts on grape yields and quality. The purpose of this study was to analyze
the spatiotemporal characteristics of dryness/wetness in the wine regions of China and explore
the links between these variations and large-scale climatic factors. The crop-specific standardized
precipitation evapotranspiration index (SPEI) was used to characterize the dryness/wetness using
meteorological data collected at 168 meteorological stations located in or near the wine regions
from 1981–2015. Results showed that most wine regions of China experienced a wetting trend. The
drought and wet event characteristics were region- and site-specific. The main wine regions of China
(e.g., Xinjiang, Helan Mountain and Hexi Corridor) were characterized by relatively high drought
severity; the extreme drought frequencies of the three regions were higher as well (11.5%, 3.3%, and
3.6%, respectively). Xinjiang was also characterized by a high wetness severity and an extremely
high wetness frequency of 16%, but the wetness severity decreased over time. A 4–6-year periodical
oscillation was commonly detected over the wine regions. The dryness/wetness characteristics were
highly associated with the Southern Oscillation Index, Niño 3.4 and the Indian Ocean Dipole, with
highest correlation coefficients of−0.40, 0.36 and 0.43 at lag times of 11, 8, and 11 months, respectively.
The serious dry and wet events that occurred in 2001 and 1998, respectively, were speculated to be
associated with anomalous atmospheric circulation patterns. These results can be used to inform
grapevine stakeholders at various levels (e.g., farmer and industry) for developing strategies to
mitigate and adapt dryness/wetness events in the wine regions of China. It is expected that the
approach proposed in this study can also be applicable to wine regions of other countries.

Keywords: China; wine region; SPEI; drought; wet; climatic factors

1. Introduction

Grapevines (Vitis vinifera L.) are an important crop with 7.8 million hectares of cul-
tivated land and an annual production of 67.6 million tons worldwide [1]. According to
International Organization of Vine and Wine (OIV) statistics, in 2014, China had the second-
largest vineyard surface area, the seventh-largest wine production, and the fifth-largest
wine consumption in the world, with values of 796,000 ha, 11,600,000 hL and 15,500,000 hL,
respectively [2]. The effects of climatic conditions were found to explain 24.1% of the
wine variances [3]. In contrast to most of the wine regions around the world that benefit
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from a Mediterranean climate, China has a marked continental monsoon climate that is
characterized by dry and wet hazards [4]. Drought events have deleterious impacts on
viticulture around the world, and the occurrence of unfavorable abundant rainfall during
ripening can lead to severe disease outbreaks and epidemics that cause losses ranging
from 40 to 90% [5,6]. Reductions in fruit quality and fruit yield cause substantial economic
losses to the grape industry. Hence, there is a need to fully recognize the spatiotemporal
characteristics of dryness and wetness in the wine regions of China.

Many indices have been developed to characterize and monitor droughts using vari-
able climatic and hydrologic data [7–9]. Among these indices, the standardized precipi-
tation index (SPI) and standardized precipitation evapotranspiration index (SPEI) are the
indices most commonly used to monitor dry and wet conditions [10–15]. The SPI character-
izes water deficit and surplus conditions [16], provides a better representation of wetness
and dryness [17], and can be applied to any location on a month-based timescale [17].
While the SPI is recommended as an optimal drought index because the required parame-
ters are simple, only precipitation is considered in this index, making it, to some extent,
specifically applicable to meteorological drought [12] and preventing it from reflecting
drought conditions caused by warming. The SPEI was proposed as an improved drought
index compared to the SPI; it describes the deviation degrees of dry and wet conditions by
standardizing the difference between precipitation and potential evapotranspiration [13];
the SPEI is suitable for studying the effects of global warming on drought severity [10].
Guo et al. [18] analyzed the spatiotemporal drought characteristics in Central Asia from
1966 to 2015 using the SPEI and found that Central Asia showed an overall wetting trend
with a switch to a drying trend since 2003; additionally, a common, significant 16–64-month
periodical oscillation was detected. Gao et al. [12] found that water resources are expected
to increase under global warming, which may alleviate the water scarcity issue on the Loess
Plateau from 2001 to 2050. Polong et al. [13] studied the temporal and spatial evolution of
the SPEI in the Tana River Basin of Kenya, and the results showed that the period between
1960 and 1980 was dominated by dry events, while wet events were dominant in the period
between 1990 and 2000 [13].

However, in the SPEI forms used in the studies described above, the calculated poten-
tial evapotranspiration (ET0) referred to water lost to the atmosphere by evaporation from
the soil surface and by transpiration from a reference surface [19]; this calculation method
cannot represent a specific crop. The crop evapotranspiration (ETc) can be calculated by
multiplying the ET0 by a crop coefficient (Kc) that varies predominantly with specific crop
characteristics, and the resulting metric can represent the evapotranspiration from a specific
crop surface [19]. Thus, calculating the SPEI using the ETc instead of the ET0 can serve to
assess the dryness and wetness of specific crop-planting areas.

The reasons for the occurrence of dryness/wetness are extremely complex because
dryness/wetness relates not only to the climatology of a specific region but also to different
atmospheric circulation mechanisms. Among these atmospheric mechanisms, the El Niño–
Southern Oscillation (ENSO) event is considered as the dominant climate mode in the
equatorial Pacific with considerable effects on the global climate [20]. With the occurrence
of ENSO-related warm and cold events, extreme weather disasters, such as drought and
flooding, have occurred in most parts of the world. Precipitation in China changes under
the influence of ENSO events [21]. The Indian Ocean dipole (IOD), an important mode
of interannual variability in the tropical Indian Ocean, has been proposed as another
significant factor influencing rainfall over China. Past studies have also found that the
IOD was primarily associated with dryness and wetness [22]. Therefore, it is necessary
to analyze the effect of these large-scale climatic factors on the dryness/wetness of wine
regions in China.

The general objective of this study is, therefore, to comprehensively determine the
spatiotemporal characteristics of dryness and wetness in the wine regions of China based
on the SPEI from 1981–2015 and the relationship of the SPEI with large-scale climatic factors.
Specifically, the objectives of this study are (1) to detect the temporal variations and spatial
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trends in the SPEI using grapevine evapotranspiration in the wine regions of China; (2) to
identify drought and wet events and reveal the characteristics of dryness and wetness in
the wine regions of China based on run theory and the modified Mann-Kendall (MMK)
trend test; and (3) to reveal the dryness/wetness periodicity and its relationship with
climatic factors using bivariate and multiple wavelet coherence analysis. The findings of
this study are promising for providing a valuable scientific reference to mitigating drought
and wetness risks in the wine regions of China.

2. Data and Methodology
2.1. Study Area and Datasets

Eleven wine regions within 21 provincial areas of the entire wine regions of mainland
China (EMC) were chosen to conduct this research; these wine regions were primarily de-
limited according to meteorological geographic divisions and administrative divisions [4].
A total of 168 weather stations located in or near these 11 wine regions (Jing-Jin-Ji: JJJ;
Northeast: NE; Inner Mongolia: IM; Hexi Corridor: HXC; Helan Mountain, HLM; Xin-
jiang: XJ; Loess Plateau: LP; Ancient Yellow River: AYR; Shandong: SD; Southwest: SW
and Special: S) were selected to analyze the dryness and wetness conditions in the wine
regions of China (Figure 1). Authoritative drought events were collected from Ding [23].
The records were stated on a yearly scale from 1950–2000. Drought events after 2000
were also mentioned but incomplete. According to Ding [23], droughts occurred almost
every year (except in 1964 and 1970) in different regions and different seasons. Extreme
nationwide droughts occurred in 1961, 1965, 1972, 1978, 1986, 1988, 1992, 1994, 1997, 1999
and 2000. The observed weather variables, including the daily precipitation (P), relative
humidity (RH), minimum temperature (Tmin), mean temperature (Tmean) and maximum
temperatures (Tmax), wind speed at 2 m (U2), and sunshine hours (n) data recorded over
the 1981–2015 period were collected from the Meteorological Data Sharing Service Net-
work in China following strict quality control. The quality and reliability of the data were
cross-examined using nonparametric tests, including the Kendall autocorrelation test and
Mann-Whitney homogeneity test [24]. The precipitation increased from the northwest to
the southeast, and the mean temperature was higher in Xinjiang, Ancient Yellow River,
Shandong, and Special regions and lower in the Northeast region during the grapevine
growing stage.

The following large-scale climate indices covering the period from 1981 to 2015 were
chosen to explore the possible relationships between climatic factors and dryness/wetness
variabilities in the wine regions of China: ENSO was considered using the Niño 3.4
SST index and Southern Oscillation Index in this study, as derived from the National
Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory
(https://www.esrl.noaa.gov/, accessed on 9 September 2020), and Indian Ocean Dipole
data were obtained from the National Climate Center of China (http://cmdp.ncc-cma.net/
Monitoring/cn_index_130.php, accessed on 9 September 2020).

2.2. Computation of the SPEI

The ET0 (reference crop evapotranspiration, mm·d−1) was estimated using the Food
and Agricultural Organization (FAO)-56 Penman-Monteith equation [25], which can be
expressed as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(ed − ea)

∆ + γ(1 + 0.34U2)
(1)

where ∆ is the vapor pressure slope curve (KPa·◦C−1), Rn is the net radiation at the crop
surface (MJ·m−2·d−1), G is the soil heat flux density (MJ·m−2·d−1) (assumed to be zero
based on the FAO-56 recommendation that the magnitude of the daily or ten-day soil heat
flux beneath a grass reference surface may be ignored because it is relatively small), T
is the mean daily air temperature at a height of 2 m (◦C), U2 is the wind speed at 2 m

https://www.esrl.noaa.gov/
http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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above the ground (m·S−1), ed is the saturation vapor pressure (KPa), ea is the actual vapor
pressure (KPa), and γ is the psychrometric constant (KPa·◦C−1).
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Figure 1. Spatial distribution of wine regions (a), related weather stations (b), precipitation (c) and
mean temperature (d) during the grapevine growth period in China.

The ETC (crop evapotranspiration) was determined by the crop coefficient and ref-
erence evapotranspiration procedure. Next, the ET0 outputs were multiplied by the crop
coefficient (KC) to estimate the crop evapotranspiration as follows:

ETC = KC × ET0 (2)

The monthly crop coefficients for grapevine from April to September have been
reported to be 0.3, 0.45, 0.52, 0.76, 0.70, and 0.60, respectively [26]. The crop-specific SPEI
was calculated using the P and ETC series to indicate drought and wetness in the wine
regions. The computation procedure of the SPEI followed the method outlined by Vicente-
Serrano et al. [14]: (1) First, the ET0 is estimated at the monthly timescale using Equation (1);
(2) next, the accumulation of the water condition D (P-ETC) is determined at the 1- and
6-month time scales; and (3) D is normalized into a log-logistic probability distribution to
obtain the SPEI series using Equations (3) and (4):

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(3)

SPEI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (4)
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where F(x) is the probability distribution function of the D series and α, β and γ are the scale,
shape, and origin parameters, respectively [14,27]. For P(D) ≤ 0.5, W =

√
−2lnP(D) and

P(D) = 1 − F(x); for P(D) > 0.5, P(D) is replaced by 1− P(D), and the sign of the SPEI is reversed.
The growth period of grapevine lasts from 1 April to 30 September. The 1-month-scale

SPEI calculated from April to September (SPEI1) was used to reflect the evolution and
characteristics of the short-term water condition (the difference between precipitation and
grapevine evapotranspiration) during the grapevine growth period in the wine regions
of China. The 6-month-scale SPEI (SPEI6-Sep) was used to reflect the long-term water
condition of the whole grapevine growth period in each studied wine region.

2.3. Identification and Characterization of Drought/Wet Events

Run theory is one of the most frequently used methods to characterize drought and
wet events. A run is defined as a portion of the variable time series in which all values are
below a selected threshold [28,29]. Runs can be both positive and negative which indicate
the wet and drought events respectively.

The SPEI1 was used to identify drought and wet events during grapevine growth. It
was reported to capture the historical drought and wet events efficiently [9]. A drought
event was thought to have started when the SPEI1 fell below −1 and ended when the
SPEI1 rose above 0. A wet event started when the SPEI1 rose above 1 and ended when
the SPEI1 fell below 0. A drought event corresponded to a negative run, while a wet
event corresponded to a positive run. Once drought and wet events were defined, they
could be characterized in terms of the drought/wet duration (DD/WD), drought/wet
severity (DS/WS), drought/wet intensity (DI/WI), and drought/wet peak (DP/WP) based
on run theory. The definition of these characteristics was listed on the following Table 1.

Table 1. The definition of drought/wet characteristics.

Drought/Wet Characteristics Definition

drought/wet duration (DD/WD) The number of months between the drought/wet initiation time and the termination time
drought/wet severity (DS/WS) The positive sum of the SPEI values determined during a drought/wet event.

drought/wet intensity (DI/WI) The average SPEI value during the drought/wet duration and was calculated by dividing
the drought/wet severity by the drought/wet duration.

drought/wet peak (DP/WP) The absolute lowest/highest SPEI value recorded at the time of peak drought/wet
conditions during an event.

drought/wet frequency (DF/WF) The number of drought/wet event occurrences during the study period divided by the
studied years in the spatial study

In order to investigate the temporal and spatial drought/wet event characteristics,
a series of drought/wet event indices were calculated based on the drought/wet events
identified by the run theory in each region and at each station separately. The spatial
characteristics of drought/wet events at individual stations were calculated using the
simple arithmetic mean of the corresponding characteristics of individual drought/wet
events (DD/WD, DS/WS, DI/WI, and DP/WP, respectively).

2.4. Trend Test

The nonparametric Mann-Kendall (MK) test is one of the most widely used nonpara-
metric tests in climate studies for detecting trends in time series and is highly recommended
for general use by the World Meteorological Organization. However, the MK method tends
to underestimate the sample variance because it suffers from time-series correlation. The
modified nonparametric Mann–Kendall (MMK) method [30], which adds a correction
factor to the original variance computation based on the effective or equivalent sample
size (ESS) to avoid the effect of temporal data autocorrelation [31,32], is applied to analyze
the tendencies of the dryness/wetness indices.
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The modified MMK statistic Z* was calculated using the following equations:

Z∗ =
Z√
ns

(5)

ns = 1 +
2

n(n− 1)(n− 2)

n−1

∑
j=1

(n− j)(n− j− 1)(n− j− 2)rj (6)

where ns is the calibration factor, j is the lag number, and rj is the autocorrelation function
of the time series.

2.5. Bivariate and Multiple Wavelet Coherence

The wavelet method is a common tool that has been widely used to untangle scale-
specific and localized relationships for the assessment of nonstationary processes in the
geosciences. Bivariate wavelet coherence is a special case of multiple wavelet coher-
ence [33,34]. Both analyses are based on smoothed auto- and cross-wavelet power spectra
series [35–37]. We only briefly introduce the equations related to the bivariate wavelet
coherence and multiple wavelet coherence analyses in this section; readers can refer to
previous studies for details [33,34,38–41].

Assuming a response variable Y and multiple predictor variables
X (X =

{
X1, X2, . . . , Xq

}
), the multiple wavelet coherence (MWC) at scale s and location τ,

ρm
2
(s, τ) can be written as follows:

ρm
2
(s, τ) =

↔
W

Y,X
(s, τ)

↔
W

X,X
(s, τ)−1↔W

Y,X
(s, τ)

↔
W

Y,Y
(s, τ)

(7)

where
↔
W

Y,X
(s, τ),

↔
W

X,X
(s, τ), and

↔
W

Y,Y
(s, τ) compose the matrices of the smoothed cross-

wavelet power spectra between response variable Y and predictor variables X, the matrix
of the smoothed auto and cross-wavelet power spectra series among multiple predictor
variables X, and the smoothed wavelet power spectrum of response variable Y, respectively.

The term
↔
W

Y,X
(s, τ) is a complex conjugate of

↔
W

Y,X
(s, τ).

When only one predictor variable (e.g., X1) is included in X, Equation (1) becomes the
equation for bivariate wavelet coherence, ρ2

b(s, τ), which can be expressed as follows [35,42]:

ρ2
b(s, τ) =

↔
W

Y,X1
(s, τ)

↔
W

Y,X1
(s, τ)

↔
W

X1,X1
(s, τ)

↔
W

Y,Y
(s, τ)

(8)

The wavelet phase between a response variable (Y) and a predictor variable (X1) is
shown as follows:

φ(s, τ) = tan−1
(

Im
(

WY,X1(s, τ)
)

/Re
(

WY,X1(s, τ)
))

(9)

where Im and Re denote the imaginary and real parts of WY,X1(s, τ), respectively.
Both the bivariate wavelet coherence and multiple wavelet coherence were calculated

at the 95% significance level using the Monte Carlo method [33,35].

3. Results
3.1. Temporal and Spatial Variations in SPEI

The temporal evolution of the SPEI1 in each wine region is shown in Figure 2a–k. The
regional characteristics were obvious based on the linear trend lines. The NE, HXC, LP, and
SW regions remained stable or slightly dry, whereas the other regions (JJJ, IM, HLM, XJ,
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AYR, SD, and S) became increasingly wet from 1981–2015. Dry and wet climate processes
alternated in the entire wine regions of mainland China (EMC) on different time scales from
1981–2015 (Figure 2m). As the timescale decreased, the amplitude and frequency of the
fluctuations increased, while the separations between the dryness and wetness intensified.
Despite the great detected differences in the fluctuation frequency, the linear trend lines
showed similar patterns among different time scales. The SPEI6-Sep and SPEI1 values
showed increasing trends, suggesting that a wet trend occurred in the EMC region from
1981 to 2015.

The quantified SPEI trend was listed in Table 1. The results were consistent with the
linear lines shown in Figure 2. The SPEI6-Sep and SPEI1 values calculated in each wine
region showed the same trends except those obtained for the IM, LP, and SW regions. The
SPEI6-Sep and SPEI1 values in the EMC region showed increasing trends. In the NE, HXC,
LP, and SW regions, decreasing trends were identified, while the other regions showed
increasing trends according to the SPEI1. These results indicated that the NE, HXC, LP, and
SW regions experienced drying trends, while the other regions and the EMC experienced
wetting trends from 1981–2015.

The spatial distributions of the SPEI1 and SPEI6-Sep trends are mapped in Figure 3.
The results showed that the site SPEI trends were consistent with the regional results
obtained in SD and AYR; the other SPEI trends were site-specific throughout the rest of
the wine regions (Figure 3, Table 2). For example, in NE, the SPEI1 and SPEI6-Sep values
obtained at some sites showed increasing trends, while others showed decreasing trends;
regionally, a decreasing trend was observed.

3.2. Drought Characteristics

The drought events identified by the SPEI1 were used to analyze the drought trend
characteristics. The drought trend characteristics are shown in Figure 4 and exhibited both
regional and site specificity. The DS trend was consistent with the DD trend in most wine
regions except IM, HLM, LP, S, and EMC; both DD and DS increased in HXC and AYR and
decreased in JJJ, NE, XJ, SD, and SW. In LP and S, the DS trend was increasing, but the DD
trend was decreasing; the IM region showed the opposite characteristics. A decreasing
DD trend was found in EMC. The DI trend was consistent with that of DP in most regions.
They decreased in JJJ, HLM, XJ, and LP and increased in HXC, AYR, SW, S, and EMC. NE
and SD exhibited increasing DI trends and decreasing DP trends, while IM showed the
opposite characteristics. DF decreased in the EMC and in most wine regions, increased
only in NE, HCX, HLM, and LP. The drought trend characteristics were also site-specific
and differed in each wine region (Figure 4). For example, some sites showed increasing
drought trend characteristics in XJ, although a regional decreasing trend was observed in
this region.
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Figure 3. Spatial distributions of the SPEI6-Sep and SPEI1 trends in the wine regions of China. SigDec,
InsigDec, InsigInc, and SigInc represent significant decrease, insignificant decrease, insignificant
increase, and significant increase trends, respectively.

Table 2. The SPEI6-Sep and SPEI1 trends obtained in the wine regions of China from 1980 to 2015.

JJJ NE IM HXC HLM XJ LP AYR SD SW S EMC

SPEI6-Sep 0.28 −0.44 −0.42 −1.77 1.44 0.14 0.06 1.12 1.61 0.24 1.07 1.72
SPEI1 1.36 −0.36 0.16 −1.78 1.14 1.10 −0.07 1.49 1.82 −0.15 1.19 1.84

The spatial distributions and the regional averages of the obtained drought charac-
teristics are shown in Figure 5. The drought characteristics showed regional features; DS
and DD had similar spatial patterns in XJ, HLM, and HXC characterized by relatively high
values, while these regions also had relatively low DF values. This result indicated that
these regions experienced fewer drought events with longer durations and higher severities.
In contrast, the LP and JJJ region suffered from higher DF values but relatively short DDs
and lower DSs. The NE region was characterized by a relatively high DF as well as higher
DI and DP values. The drought characteristics also showed site-specific features, and
greater differences were identified among stations, although no large differences among
regions were observed, especially in DI or DP.
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Figure 4. The trends of drought severity (DS), drought duration (DD), drought intensity (DI), drought
peak (DP), and drought frequency (DF) of the drought events identified by the SPEI1 in the wine
regions of China from 1981–2015. SigDec, InsigDec, InsigInc, and SigInc represent significant decrease,
insignificant decrease, insignificant increase, and significant increase trends, respectively.

The three levels of drought frequency corresponding to the wine regions of China
are listed in Table 3. The number of drought events in different wine regions ranged
between 26 and 30. Moderate drought events occurred most often, followed by severe
drought events and extreme drought events in each region and in the EMC. The frequency
of extreme drought events in XJ was 11.5%, much higher than those obtained in the other
regions. No extreme drought events were identified in JJJ, NE, AYR, SD, or S. NE, IM and
LP experienced more severe drought events than other regions, and SD, SW, JJJ, and AYR
experienced more moderate drought events than other regions.
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Table 3. Three levels of drought frequency of the drought events identified by the SPEI1 in the wine
regions of China from 1981 to 2015.

Region Number of
Drought Events

Moderate Drought
Frequency (%)

Severe Drought
Frequency (%)

Extreme Drought
Frequency (%)

JJJ 29 72.4% 27.6% 0
NE 28 57.1% 42.9% 0
IM 27 55.6% 40.7% 3.7%

HLM 30 70.0% 26.7% 3.3%
HXC 28 75.0% 21.4% 3.6%

XJ 26 57.7% 30.8% 11.5%
LP 29 62.1% 34.5% 3.5%

AYR 28 71.4% 28.6% 0
SD 27 74.1% 25.9% 0
SW 27 74.1% 25.9% 0

S 26 65.4% 30.8% 3.9%
EMC 29 55.2% 41.4% 3.5%

The drought characteristics were mutually influential; for most short-DD events, a
higher DP was accompanied by a higher DI. For example, the events that occurred in July
2000 in HLM and from May–June in 2001, and in April 1997 in XJ were characterized by DP
values higher than 2.00 and DI values higher than 1.50. For some cases, a high DP value did
not follow a high DI value, mostly due to the long DD value; this situation was observed
for the events such as May-September 1999 in NE and May-September 1997 in LP, during
which the DPs were higher than 2.00 and the DIs were lower than 1.50 (Figure S1). Based on
the severities of drought events, the five most serious drought events (D1–D5) in each wine
region were identified (Table S1). Most of these serious drought events were detected in the
1980s and in approximately 2000 in the analyzed wine regions. Some drought events occurred
across several regions, while some were regionally specific. The most serious drought events
identified in JJJ and NE occurred in 1999, and those in XJ and S occurred in 1985. AYR and
SD experienced the most serious drought events in 1981; in the same year, some other serious
drought events occurred in JJJ and S. LP underwent the most serious drought event in 1997,
while some serious drought events occurred at this time in JJJ, AYR, and SD. IM suffered
its most serious drought in 2001, and many other regions also experienced serious drought
events in this year, such as HLM, XJ, LP, JJJ, HCX, AYR, and NE.

3.3. Wetness Characteristics

The wetness trend characteristics in the wine regions of China are shown in Figure 6.
Regional and site-specific wetness trend characteristics were observed, similar to the
characteristics of the drought trends. The WS trend was consistent with the WD trend in
most wine regions. NE and S showed increasing WS trends and decreasing WD trends,
while AYR and SW showed increasing WS and WD trends. In other regions, these two
wet characteristics both decreased. The WI trend was consistent with the WP trend in
most wine regions in addition to JJJ, IM, and AYR. The NE, HLM, LP, SW, S, and the EMC
experienced increasing WI and WP trends, while HCX, XJ, and SD experienced decreasing
WI and WP trends. In JJJ and IM, the WI increased and the WP decreased, while AYR
showed the opposite characteristics. An increasing WF trend was found in the EMC and in
most wine regions except LP.
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Figure 6. The trends of wet severity (WS), wet duration (WD), wet intensity (WI), wet peak (WP),
and wet frequency (WF) of the wet events identified by the SPEI1 in the wine regions of China
from 1981–2015. SigDec, InsigDec, InsigInc, and SigInc represent significant decrease, insignificant
decrease, insignificant increase, and significant increase trends, respectively.

Figure 7 shows the spatial distribution of the wetness characteristics obtained in the
wine regions of China. WS and WD exhibited similar spatial patterns. XJ was characterized
by higher WS and WD values and lower WF values, indicating the occurrence of fewer but
more serious wet events in this region. In contrast, HXC and HLM suffered from higher WF
values but had relatively short WDs and lower WSs compared to XJ. The wet characteristics
showed not only regional features but also site-specific features. More differences were
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found in the WI and WP trends among stations, while fewer differences among regions
were observed.
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Figure 7. Spatial patterns of wet severity (WS), wet duration (WD), wet intensity (WI), wet peak (WP),
and wet frequency (WF) of the wet events identified by the SPEI1 in the wine regions of China from
1981–2015.

Three levels of wetness frequencies in the analyzed wine regions are listed in Table 4.
The wet events occurred most in IM and less in XJ and S. Comparing the frequencies of
wet events at different levels, wet events occurred with the following frequency rank in
each wine region and in the EMC: moderately wet > severely wet > extreme wet events.
Extremely wet events were identified in the EMC and in all wine regions except AYR. The
frequency of extremely wet events was 16.0% in XJ, which was higher than those in other
regions. The frequencies of extremely wet and severely wet conditions were quite high in
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HLM, HXC, and LP, at 48.28%, 46.67% and 45.16%, respectively, and were lowest in AYR,
at 25%.

Table 4. Three levels of wetness frequencies of the wet events identified by the SPEI1 in the wine
regions of China from 1981 to 2015.

Region Number of Wet
Events

Moderate Wet
Frequency (%)

Severe Wet
Frequency (%)

Extreme Wet
Frequency (%)

JJJ 30 60.0% 36.7% 3.3%
NE 27 59.3% 33.3% 7.4%
IM 33 63.6% 30.3% 6.1%

HCX 30 53.3% 40.0% 6.7%
HLM 29 51.7% 34.5% 13.8%

XJ 25 64.0% 20.0% 16.0%
LP 31 54.8% 38.7% 6.5%

AYR 32 75.0% 25.0% 0
SD 28 57.1% 39.3% 3.6%
SW 29 55.2% 41.4% 3.5%

S 25 64.0% 28.0% 8.0%
EMC 26 76.9% 19.2% 3.9%

The wet characteristics are mutually influential; for most short-WD events, higher WPs
are accompanied by higher WIs, as observed for the events of May 1997 in IM, April 2007
in HCX and May 2009 in LP. For some events, a higher WP did not follow a higher WI,
mostly due to long WDs, as observed for the events of June-July 2013 in HLM and April-
September 2003 in AYR (Figure S2). Based on the severity of wet events, the five most
serious wet events (W1–W5) in each wine region were identified (Table S2). These events
occurred mostly before 2000 in JJJ, NE, IM, XJ, HXC, HLM, and LP, after 2000 in AYR, and
in approximately 2000 in SW and S. The most serious wet events were identified in JJJ, IM,
and XJ in 1998, and some serious wet events were also identified in NE and SW in this
year. HLM, SW, and S experienced the most serious wet events in 2002, and a serious wet
event also occurred in HCX in this year. AYR and SD exhibited the most serious wet events
in 2003; meanwhile, a serious wet event was identified in LP.

3.4. Periodicities of the SPEI

The wavelet power spectra of the SPEI6-Sep in the wine regions of China are given
in Figure 8. In general, the periodicities of the SPEI varied within the range of 2–6 years.
Considerable differences were also detected in the power patterns among the wine regions.
JJJ and NE shared similar wavelet power spectrum patterns in which 3–5-year periodicities
were identified in the 1990s and later 2000s. A significant 2-year periodicity starting
approximately 2011, a 5–7-year periodicity before 2000 and an 8–10-year periodicity after
2000 were identified in IM. HXC, HLM, XJ, and LP showed similar wavelet power spectrum
patterns with significant 4–6-year periodicities in the 1980s and 2–3-year periodicities in
the 1990s. In the 2000s, 3–5-year periodicities were identified in all these regions except
XJ. AYR and SD exhibited differences and similarities in their wavelet spectra, with a
significant 4–6-year periodicity in the 2000s in AYR and a significant 2–3-year periodicity
in approximately 1991 in SD. Moreover, 5–7-year periodicities in the 1980s and 2-year
periodicities in the late 1990s were identified in these two regions. A 2–3-year periodicity
was identified in the 1990s and late 2000s in SW. A 5–7-year periodicity was identified
around the 1990s followed by a decreasing periodicity in S. For the EMC, a 4–6-year
periodicity and significant power pattern were identified around the 2000s. The wavelet
power spectrum patterns in these regions were consistent with most drought and wet
events that occurred from 1981 to 2015. The small periodicities could explain the intense
drought and wet events, while the larger periodicities could explain the occurrence of
scattered events in certain periods.
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demarcate the cones of influence, and the thick solid lines show the 95% confidence levels.

3.5. Relations between the SPEI and Climatic Factors

Observations of climate change have indicated that atmospheric responses to external
forcings can last for a long time. In this study, the correlation coefficients between SPEI6-Sep
and large-scale climate factors (SOI, Niño 3.4 and IOD) in the wine regions of China were
calculated considering the effect of lag times and the results are shown in Table 5. The lag ef-
fects of climate factors on the SPEI6-Sep were obvious, and the dryness/wetness variability
was sensitive to climate factors since the correlation coefficients were significant (Table 5).
The response times of the EMC to SOI, Niño 3.4, and IOD were 11, 8, and 11 months,
respectively. The lag times with which these climate factors influenced the SPEI6-Sep of
each wine region were scattered. The SOI had significant negative correlations with the
SPEI6-Sep in NE, IM, HXC, XJ, and S with lag times of 5, 7, 9, 9, and 11 months, respectively,
and a weak correlation with SPEI6-Sep in SW. In other regions, the SOI had a positive
correlation with SPEI6-Sep with a 1-month lag time, and significant correlations were also
found in HLM and LP. Niño 3.4 and SPEI6-Sep had significant positive correlations in
NE, IM, HCX, XJ, and S with lag times of 5–10 months. Moreover, negative correlations
with lag times of approximately 0–4 months were found in other regions, and significant
correlations were found in SD and LP. SW showed a weak correlation between Niño 3.4
and the SPEI6-Sep. The IOD was significantly positively correlated with the SPEI6-Sep in
JJJ, NE, HXC, AYR, SD, SW, and EMC, with lag times of 8–12 months, and was weakly
correlated with the SPEI6-Sep in S. In other regions, the IOD had a significant negative
correlation with the SPEI6-Sep with lag times of 4–6 months, except in LP, where the lag
time was 0 months.
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Table 5. The correlation coefficients between the SPEI6-Sep and large-scale climatic factors with lag
times from 0 to 12 months in the wine regions of China.

Index Region Lag Time (Months)

0 12 11 10 9 8 7 6 5 4 3 2 1

SOI JJJ 0.15 −0.11 0.04 −0.07 0.05 −0.01 0.02 0.13 −0.11 0.02 0.11 0.18 0.26
NE 0.05 −0.28 −0.29 −0.37 −0.31 −0.32 −0.41 −0.31 −0.26 −0.07 0.19 0.14 0.12
IM −0.24 −0.34 −0.36 −0.33 −0.27 −0.31 −0.19 −0.35 −0.46 −0.18 −0.23 −0.06 −0.05

HXC 0.15 −0.43 −0.51 −0.39 −0.54 −0.48 −0.42 −0.36 −0.28 0.03 −0.03 −0.07 0.11
HLM 0.30 0.00 0.01 0.18 −0.11 −0.13 0.09 0.12 0.12 0.27 0.13 0.23 0.32

XJ 0.20 −0.46 −0.45 −0.39 −0.58 −0.53 −0.46 −0.42 −0.34 0.09 0.14 0.16 0.19
LP 0.51 −0.04 −0.11 −0.11 −0.18 −0.19 −0.23 −0.14 0.25 0.48 0.24 0.43 0.52

AYR 0.18 −0.06 −0.06 −0.02 0.04 −0.13 0.06 0.09 0.10 0.06 −0.12 0.03 0.26
SD 0.17 0.08 −0.05 0.00 0.01 −0.06 −0.04 0.20 0.02 0.06 0.07 0.21 0.27
SW −0.12 −0.09 −0.06 0.06 0.00 −0.04 0.12 −0.05 −0.11 −0.09 −0.14 0.02 0.07

S −0.20 −0.24 −0.40 −0.16 −0.19 −0.17 −0.11 −0.25 −0.32 −0.15 −0.18 −0.23 −0.23
EMC 0.11 −0.27 −0.40 −0.22 −0.25 −0.31 −0.19 −0.17 −0.26 0.02 −0.01 0.12 0.23

Niño 3.4 JJJ −0.08 0.10 0.08 0.06 0.02 0.07 0.05 −0.01 −0.11 −0.15 −0.13 −0.02 −0.02
NE 0.01 0.31 0.31 0.33 0.30 0.32 0.32 0.30 0.24 0.17 0.09 0.05 0.07
IM 0.13 0.24 0.22 0.20 0.21 0.30 0.30 0.27 0.24 0.22 0.09 0.14 0.16

HXC −0.24 0.43 0.43 0.42 0.46 0.48 0.48 0.46 0.35 0.20 0.05 −0.19 −0.22
HLM −0.27 0.02 −0.02 −0.01 −0.04 0.01 0.04 −0.01 −0.12 −0.24 −0.28 −0.20 −0.24

XJ −0.24 0.55 0.55 0.59 0.59 0.61 0.60 0.62 0.52 0.28 0.05 −0.12 −0.23
LP −0.48 0.30 0.24 0.25 0.25 0.23 0.21 0.19 −0.02 −0.19 −0.37 −0.47 −0.50

AYR −0.21 0.03 0.05 0.01 0.03 0.05 0.00 −0.08 −0.12 −0.17 −0.22 −0.14 −0.17
SD −0.30 0.10 0.08 0.07 0.04 0.08 0.03 −0.03 −0.09 −0.21 −0.25 −0.17 −0.23
SW −0.05 0.01 −0.02 −0.01 −0.02 0.03 0.01 −0.02 −0.03 −0.11 −0.11 −0.01 0.00
S 0.15 0.24 0.24 0.26 0.25 0.27 0.25 0.29 0.34 0.25 0.21 0.14 0.16

EMC −0.20 0.35 0.32 0.34 0.31 0.36 0.32 0.28 0.18 −0.01 −0.12 −0.10 −0.13
IOD JJJ 0.00 0.38 0.30 0.13 0.07 0.43 0.04 0.14 −0.06 −0.04 0.00 −0.03 0.10

NE 0.01 0.23 0.28 0.25 0.21 0.36 −0.14 −0.18 0.05 0.05 −0.06 −0.08 0.06
IM 0.11 0.18 0.15 0.14 0.12 0.24 −0.11 −0.25 0.00 0.02 −0.06 0.15 0.08

HXC −0.15 0.21 0.38 0.35 0.27 0.07 −0.11 −0.38 −0.23 0.03 −0.04 0.01 −0.17
HLM −0.11 0.42 0.41 0.21 0.22 0.00 −0.12 −0.10 −0.37 −0.56 −0.41 −0.11 −0.13

XJ −0.32 0.29 0.32 0.35 0.38 0.00 −0.22 −0.41 −0.27 −0.11 −0.15 −0.19 −0.33
LP −0.42 0.28 0.39 0.23 0.14 0.06 −0.16 −0.17 −0.16 −0.24 −0.15 −0.16 −0.21

AYR −0.11 0.31 0.28 0.11 0.05 −0.09 −0.13 0.09 0.06 0.09 −0.03 −0.02 0.00
SD −0.19 0.27 0.21 0.09 0.02 0.35 −0.08 0.13 −0.02 0.02 0.02 −0.05 0.02
SW −0.01 0.11 −0.02 0.06 0.12 0.13 0.36 0.30 0.15 0.00 0.04 −0.05 −0.06

S 0.13 0.02 0.12 0.13 0.14 0.07 0.11 −0.10 −0.14 0.00 0.16 0.15 0.14
EMC −0.11 0.39 0.43 0.29 0.24 0.35 0.01 −0.05 −0.14 −0.06 0.02 0.00 0.04

T statistics were used to test the correlations between SPEI6-Sep and SOI, Niño 3.4 and IOD with different lag
times; the critical correlation coefficients were 0.283, 0.334 and 0.430 at significance levels of 10%, 5%, and 1%,
respectively. The italic, underlined and bold values indicate the highest significant correlation that was significant
at the 10% level.

According to the correlation and lag time analyses, the relationships between the
SPEI6-Sep and climatic indices with the highest correlations in the wine regions were
explored using the bivariate wavelet coherence method, taking advantage of scale specificity
and localization (Figures 9–11). The relationships between the SPEI6-Sep and SOI in the
wine regions of China are illustrated in Figure 9. The SOI negatively affected the SPEI6-Sep
in NE, IM, HXC, XJ, S, and EMC on different time scales and temporal domains. For
example, an anti-phase coherence pattern was recognized in a 2–6-year band before 2011 in
HXC and in a 3–6-year band from 1981–2015 in XJ. The correlation was highest in XJ, as
evidenced by a remarkable coherence pattern. This relationship indicated that a higher SOI
value led to a lower SPEI6-Sep value in these regions, corresponding to the occurrence of
serious drought events. On the other hand, significant positive correlations between the
SPEI6-Sep and SOI could be recognized in JJJ, HLM, LP, AYR, and SD on different time
scales and temporal domains. For example, significant in-phase coherence patterns were
identified in a 3–7-year band before 2000 in HLM and in a 2–7-year band before 2010 in LP.
These relationships indicate that a higher SOI value results in a higher SPEI6-Sep value in
these regions, resulting in the occurrence of serious wet events.
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Figure 10. The bivariate wavelet coherency between the SPEI6-Sep and Niño 3.4 in the wine regions
of China from 1981–2015. The colors from blue to red indicate increasing coherence. The phase
relationships between the SPEI6-Sep and Niño 3.4 are denoted by arrows (in-phase arrows point
right and anti-phase arrows point left); the thin, solid lines demarcate the cones of influence, and the
thick solid lines show the 95% confidence levels.
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Niño 3.4 positively affected the SPEI6-Sep in NE, IM, HXC, XJ, S, and EMC and
negatively affected the index in other regions on different time scales and temporal domains;
these results are opposite to the effects of the SOI (Figure 10). However, the correlation
pattern between Niño 3.4 and the SPEI6-Sep shared similarities with that between SOI
and SPEI6-Sep in the analyzed wine regions. Significant patterns appeared at similar
locations in the same region, although the scales and temporal amplitudes sometimes had
few differences. For example, in XJ, the 3–6-year bands identified during the whole study
period were found to be under the influence of both the SOI and Niño 3.4. In NE, the
effect of Niño 3.4 on the SPEI6-Sep was higher before 1990 with a 2–3-year band and an
approximately 6-year band, similar to the effect the SOI had on SPEI6-Sep before 1990.
Niño 3.4 also exhibited an obvious influence on the SPEI6-Sep in NE since 2005 in a 2–4-year
band in which the significant band shrank compared to the band of the SOI and SPEI6-Sep
relation since 2000. Compared to the correlation pattern between the SOI and SPEI-Sep in
the EMC, the significant patterns of Niño 3.4 and SPEI-Sep shrank at small scales after 1995,
and a new, large-scale significant pattern appeared after 2005.

The IOD significantly positively affected the SPEI6-Sep in JJJ, NE, HXC, AYR, SD, S,
and EMC on different time scales and temporal domains (Figure 11). For example, in JJJ, a
strong positive coherence between the IOD and SPEI6-Sep could be observed in a 6–9-year
band before 2001 and in a 2–4-year band during 1985–2001. In HXC, this coherence could be
observed in a 3–7-year band before 1998 and a 2–3-year band from 2006–2013. On the other
hand, significant negative correlations between the SPEI6-Sep variation and IOD could
be recognized in the IM, HLM, XJ, and LP on different time scales and temporal domains.
Strong negative coherence between the IOD and SPEI6-Sep could be observed within a large
time scale (8–10 years) in IM during the whole study period, and significant coherence was
detected from 1980–1990 and from 2003–2015. HLM, XJ, and LP shared similar coherence
patterns with strong negative correlations between the IOD and SPEI6-Sep in a 2–6-year
band before 2001. The IOD showed a weak influence on the SPEI6-Sep in SW, as evidenced
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by a weak coherence pattern. A significant coherence in the 6–8-year band was detected for
the IOD after 2010 in this region, and this result might be affected by potential edge effects.

4. Discussion
4.1. Impacts of the Time Scale and Evapotranspiration on the SPEI

The SPEI is one of the most common recently used indices for monitoring dryness and
wetness, and this index can be applied on a variety of time scales (such as 1, 3, 6, 12, or
24 months), allowing the SPEI to be used to analyze the impacts of dryness and wetness
on various types of hydrologic conditions. Durations of weeks or months can be used to
apply this index to agricultural research, while longer durations spanning years can be
used to apply this index to water supply and water management research [43]. We used the
SPEI1 and SPEI6-Sep to reflect the evolution and characteristics of dryness/wetness in the
wine regions of China. Various studies have used the SPEI at different time scales and in
certain months to indicate the dryness and wetness conditions associated with agricultural
crops [44–46]. The SPEI6-Oct was used to analyze the spatiotemporal distribution and
variation characteristics of summer maize drought on the North China Plain [44]. The
SPEI3-Oct, SPEI3-Jan, SPEI3-Jun, and SPEI12-Jun were used to indicate the strength of
drought affecting winter wheat in Henan Province at different growth stages and through-
out the whole growth stage [46]. The SPEI3-May, SPEI3-July, SPEI3-Sep, and SPEI6-Sep
were used to denote temporal and spatial maize drought characteristics during different
growth stages and throughout the whole growth stage in Yunnan Province [45]. However,
in these studies, the SPEI output the reference evapotranspiration, which did not corre-
spond exactly to the evapotranspiration of the studied crops. Crop evapotranspiration
differs distinctly from reference evapotranspiration, as the ground cover, canopy properties,
and aerodynamic resistance of crops are different from those of grasses [25]. Evapotranspi-
ration has been confirmed to play a critical role in the SPEI; it can aggravate the drought
degree in areas with reduced precipitation and lead to a change from a wet climate to a
dry climate in areas with slightly increased precipitation [47,48]. In addition, the roles of
different climatic variables in determining drought evolution varied. This research did not
focus on which climatic factors control the dryness and wetness in the different sub-regions.
We will further consider the impact of different regional climate factors on drought/wet
assessment in future studies.

A calculation method used to obtain evapotranspiration from a specific crop surface
by multiplying the reference evapotranspiration by a crop coefficient, which integrates the
differences in evaporation and transpiration between field crops and the reference grass
surface, has been suggested [19]. Due to differences in albedo, crop height, aerodynamic
properties, and leaf and stomatal properties, different crops have different crop coefficients.
The changing characteristics of the same crop over the growing season also affect the crop
coefficient. In our research, we calculated the SPEI using the studied crop (grapevine)
coefficient to calculate the evapotranspiration, thus improving the reliability of the SPEI
characterizing wine regions.

4.2. Variations in the SPEI and Dryness/Wetness Characteristics

The variations in the SPEI and dryness/wetness characteristics in the wine regions
of China were found to be region-specific, site-specific, and complicated; these results
were consistent with the drought situation in China as reported by Yao et al. [9]. From the
relatively detailed comparison, different conclusions have been obtained in publications
concerning drought evolution in China, and most research has indicated general drought
relief over the last several decades in the EMC [9,49,50]. The general increases in the SPEI1
and SPEI6-Sep calculated in the EMC in this study were consistent with these results.
However, the SPEI trends performed differently among the different wine regions. Most
regions showed increasing trends, and only a few regions showed decreasing trends. XJ
ranked first with a grapevine cultivation area of 36,700 ha, followed by HLM with 34,000 ha.
HXC ranked third, with grapevines covering an area of 20,500 ha. These top three regions
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accounted for approximately 55% of the total grapevine cultivation area in China [4]. XJ and
HLM showed increasing SPEI trends, while HXC showed a decreasing SPEI trend. This was
consistent with reports that XJ was dominated by a wetting trend and HXC was dominated
by a dry trend from 1966 to 2015 [18]. The SPEI was not only regionally specific but was
also site-specific; within a wine region, some sites showed increasing trends, while others
showed decreasing or no trends. The wine regions in China were located in mountain,
plain, hilly, or basin areas at different elevations; for example, the standard deviation
of SW reached nearly 580 m, and this region is situated in the Hengduan Mountains.
The geographical and topographic differences of the studied regions resulted in distinct
differences in the climatic characteristics within and between wine regions [4]. Similar to
the SPEI, the dryness/wetness characteristics were region- and site-specific with similar
geographical and topographic drivers. In other words, the SPEI and dryness/wetness
characteristics were not only regional but were also site-specific, and comparing the water
resource allocation and utilization between and within regions is thus challenging.

XJ presented drought and wetness events with higher average severities and longer
durations as well as the highest extreme drought and wetness event frequencies. It was
easy to understand that the serious drought situation in XJ can be attributed to its arid and
semiarid climate. When analyzing serious wet events, one should know that the SPEI is a
standardized index that indicates the probability of the occurrence of an observed water
surplus or deficiency in the studied region. The dryness and wetness conditions were
determined relative to the historical averages rather than using the absolute difference
between precipitation and evapotranspiration at a particular location. Moreover, the arid
areas also experience floods due to the uneven distribution of precipitation, and rainstorms
and floods reportedly occurred more than 2000 times between 1949 and 1997 in XJ [4]. XJ is
known as the largest wine region as well as an excessively water-stressed area in China;
the grapevine in this region relies on irrigation. The harvests in lands that experience rain
and irrigation in a drought year could be reduced by 40% and 30%, respectively, due to
the scarcity of water resources [51]. Thus, water resource management and allocation for
grapevines in XJ is absolutely necessary, and appropriate water usage plans should be
prioritized and developed in this region.

4.3. Influence of ENSO and the IOD on Dryness/Wetness

Many serious dry and wet events were identified in 2001 and 1998, respectively, in
the analyzed wine regions. Another extremely desiccative year was identified in 2001
in China after the continuous excessive drought events that occurred in 1999 and 2000.
The drought-affected area reached 3846 × 104 hm2, the average grain yield decreased by
approximately 5%, and the direct economic losses exceeded 100 billion Yuan. The grape
yield in 2001 in China was the lowest since 1996 [52], which might have been due to the
water resource shortage in China as a whole. The drought that occurred in 2001 in China
was speculated to be a consequence of anomalous atmospheric circulation over Eurasia [53].
In 1998, a mega-flood swept through China’s major river basins, including the Yangtze,
Songhua, Nen, Min, and Pearl Rivers, and these floods affected 186 million people, caused
4150 deaths, and led to a total economic loss of 436 billion Yuan [54]. The disastrous floods
that occurred in the entire Yangtze River basin in 1998 were a direct result of unusually
high precipitation (670 mm) due to a strong El Niño event [11].

The SPEI periodicities identified in the wine regions of China were mainly constrained
within 2–6-year bands, and a common significant 4–6-year periodical oscillation could
be detected over the wine regions, consistent with the ENSO periodicity, which varied
between 2 and 7 years with an average of approximately 4 years [55,56]. Thus, studying the
links between large-scale climate patterns and SPEI variations is helpful for understanding
the formation mechanisms of dry and wet events. As supposed, the climatic factors ENSO
and the IOD significantly influenced the SPEI in the wine regions of China, possibly
because distinctive regional and seasonal precipitation patterns were identified in China
under the impacts of ENSO and the IOD [21,57,58]. The impact of ENSO on precipitation
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varied regionally; the summer, autumn, and winter precipitation and annual precipitation
decreased in the northern part of eastern China, while the autumn precipitation in the
southern part of China and the winter precipitation in southeastern China apparently
increased in the El Niño-developing year [21]. The rainfall over China was remotely
influenced by different IOD phases via changes in the intensity of the southern Asian High
and western North Pacific summer monsoon [22,58,59]. During positive IOD events, the
associated low-level anomalous anticyclones that develop over the Bay of Bengal and the
South China Sea strengthen the south-westerlies, thus leading to an increased moisture
flux that gives rise to anomalously high precipitation over southern China [58]. When
ENSO co-occurs with the IOD, the influences exerted by one phenomenon on precipitation
in different regions of China might be enhanced or weakened by other phenomena [59],
and the positive phase of the combined ENSO and IOD events might result in increased
autumn rainfall over southern China [60]. In general, the responses of the SPEI to climate
indices differed regionally, with some regions simultaneously affected by a given climate
index and the influences of that climate index modulated by another climate index.

The responses of the SPEI to the Niño 3.4, SOI, and IOD varied among different stages,
and the lag effects associated with climatic factors were obvious. ENSO and drought are
closely correlated with a certain time lag, as has been determined in many regions of the
world [60]. The lag effects of the Niño 3.4, SOI, and IOD indices on the SPEI were similar to
the results reported by Chen et al. [11], who found that the main dryness/wetness patterns
were positively correlated with Niño 3.4 and the IOD and negatively correlated with the
SOI with lag times of 8–12 months [11]. In addition, the lag effects of the IOD and Niño 3.4
on the SPEI were found to be consistent with the findings that an increased rainfall amount
occurs after the occurrence of positive IOD a year before [22] and that precipitation is
positively correlated with the ENSO one year ahead in the eastern part of China [61]. With
the background of climate change, the results that the main climatic factors, ENSO and the
IOD, affect the SPEI with a given lag time are important for the prediction and mitigation of
potential risks in the wine regions of China. However, there are hundreds of atmospheric
circulation factors. We only analyzed the effects of ENSO and IOD on dryness/wetness
changes in this study, and there are some uncertainties.

5. Conclusions

The different time scales on which the SPEI was analyzed in the entire wine region of
China showed an overall wetting trend from 1981 to 2015. The regional characteristics of
the SPEI were obvious as well; most wine regions experienced wetting trends, such as the
Jing-Jin-Ji, Inner Mongolia, Helan Mountain, Xinjiang, Ancient Yellow River, Shandong,
and Special regions, while a few wine regions experienced drying trends, such as the
Northeast, Hexi Corridor, Loess Plateau, and Southwest regions.

The dryness and wetness characteristics in the analyzed wine regions of China were
found to be region-specific, site-specific, and complicated. Great dryness/wetness dif-
ferences were identified among stations and regions due to differences in climatological,
geographical, and topographic features between and within the studied wine regions. The
Xinjiang, Helan Mountain, and Hexi Corridor regions accounted for approximately 55%
of the total grapevine cultivation area in China and suffered from higher drought/wet
severities and extreme drought frequencies, which aggregated the water resource allocation
and risk mitigation pressures for the wine industry in these regions of China.

A common, significant 4–6-year periodical oscillation of the SPEI was observed in
the wine regions of China. This was consistent with the ENSO periodicity, which varied
between 2 and 7 years, with an average periodicity of approximately 4 years. The dry-
ness/wetness characteristics in the wine regions of China were highly associated with the
Southern Oscillation Index, Niño 3.4 and the Indian Ocean Dipole, with correlations of
−0.40, 0.36, and 0.43 and lag times of 11, 8, and 11 months, respectively. The Southern
Oscillation Index, Niño 3.4, and Indian Ocean Dipole affected the dryness/wetness con-
ditions differently in different wine regions of China; Niño 3.4 had a positive correlation
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with SPEI6-Sep in the Northeast, Inner Mongolia, Hexi corridor, Xinjiang, and Special
regions as well as in the entire wine region of mainland China and a negative correlation
with SPEI6-Sep in other regions; this was opposite to the effect of the SOI. The IOD had a
significantly positive correlation with SPEI6-Sep in the Jing-Jin-Ji, Northeast, Hexi Corridor,
Ancient Yellow River, Shandong, and Special regions as well as in the entire wine region
of mainland China, while the IOD had a negative correlation with SPEI6-Sep in the other
studied regions. The serious dry events that occurred in 2001 and wet events that occurred
in 1998 in the analyzed wine regions might be consequences of anomalous atmospheric
circulation patterns.

This study can provide a scientific basis for optimizing grape irrigation systems and
alleviating the effects of drought/wet on wine grape production. However, it did not
connect the drought/wet conditions to wine production directly due to the shortage of
wine grape production data. In future studies, we will explore the relationship between
drought/wet conditions and wine production by solving the wine grape production data
problem in China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12040843/s1, Figure S1: Temporal patterns of drought
severity (DS), drought intensity (DI), drought peak (DP), drought duration (DD) and drought fre-
quency (DF) of the drought events identified by the SPEI1 in the wine regions of China during
1981-2015; Figure S2: Temporal patterns of wet severity (WS), wet duration (WD), wet intensity (WI),
wet peak (WP) and wet frequency (WF) of the wet events identified by the SPEI1 in the wine regions
during 1981-2015; Table S1: The drought duration (DD), drought peak (DP), drought severity (DS)
and drought intensity (DI) of the five most severe drought events identified by SPEI1 in the wine
regions of China during the period from 1981 to 2015. Drought events in each wine region are sorted
out based on the drought severity from high to low. Table S2: The wet duration (WD), wet peak (WP),
wet severity (WS) and wet intensity (WI) of the five most severe wet events identified by SPEI1 in the
wine regions of China during the period from 1981 to 2015. Wet events in each sub-region are sorted
out based on the drought severity from high to low.
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